
Guiding Synchrony through Random Networks

Sven Jahnke,1,2,3 Marc Timme,1,2,3 and Raoul-Martin Memmesheimer4

1Network Dynamics Group, Max Planck Institute for Dynamics & Self-Organization (MPIDS), Göttingen, Germany
2Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
3Fakultät für Physik, Georg-August-Universität Göttingen, Göttingen, Germany

4Donders Institute, Department for Neuroinformatics, Radboud University, Nijmegen, Netherlands
(Received 9 August 2011; revised manuscript received 18 June 2012; published 13 December 2012)

Sparse random networks contain structures that can be considered as diluted feed-forward networks.

Modeling of cortical circuits has shown that feed-forward structures, if strongly pronounced compared to

the embedding random network, enable reliable signal transmission by propagating localized (subnet-

work) synchrony. This assumed prominence, however, is not experimentally observed in local cortical

circuits. Here, we show that nonlinear dendritic interactions, as discovered in recent single-neuron

experiments, naturally enable guided synchrony propagation already in random recurrent neural networks

that exhibit mildly enhanced, biologically plausible substructures.
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I. INTRODUCTION

Cortical neural networks generate a ground state of
highly irregular spiking activity whose dynamics is sensi-
tive to small perturbations such as missing or additional
spikes [1–4]. A robust, reliable transmission of information
in the presence of such perturbations and noise is nonethe-
less assumed to be essential for neural computation. It has
been hypothesized that this reliable transmission might be
achieved by propagation of pulses of synchronous spikes
along feed-forward chains [5]. In current models, function-
ally relevant chains require a dense connectivity between
the neuronal layers of the network [6] or strongly enhanced
synapses and specifically modified response properties of
neurons within the chain [7]. Such highly distinguished
large-scale structures are not observed experimentally,
however.

Can less-structured networks also guide synchrony?
Recently, single-neuron experiments have revealed a
mechanism that nonlinearly promotes synchronous inputs.
On synchronous dendritic stimulation, neurons are capable
of generating fast dendritic spikes. In the soma, these
spikes induce rapid, strong depolarizations [8] that are
nonlinearly enhanced compared to depolarizations ex-
pected from linear summation of single inputs. If the
dendritic spike induces an action potential in the soma,
the potential occurs at a fixed time after the stimulation,
with submillisecond precision. Other experiments have
found slow dendritic spikes that are comparably insensitive
to input synchrony [9]. These slow dendritic spikes endow
single neurons with computational capabilities comparable
to multilayered feed-forward networks of simple-rate

neurons [10]. Furthermore, they provide a possible mecha-
nism underlying neural bursting and its propagation, which
have been shown to enhance reliability and temporal
precision of signal propagation [11,12]. The impact on
collective circuit dynamics of fast dendritic spikes that
induce nonadditive coupling has not been systematically
investigated in a general setting so far.
In this article, we show that and describe how fast

dendritic nonlinearities may support guided-synchrony
propagation in neural circuits. First, we develop an ana-
lytical approach to describe such propagation in linearly
and nonlinearly coupled networks. In particular, we derive
expressions for the critical connectivity above which
propagation occurs and for the size of the propagating
pulse. We quantify how dendritic nonlinearities compen-
sate for dense anatomical connections and thereby promote
propagation of synchrony. Finally, using large-scale simu-
lations of more detailed recurrent network models, we
show that feed-forward networks that occur naturally as
part of random circuits enable persistent guided synchrony
propagation due to dendritic nonlinearities.

II. MODELS AND METHODS

A. Analytically tractable model

Model with linear summation of inputs. As a basis
model, we consider networks of conventional leaky
integrate-and-fire neurons that interact by sending and
receiving spikes via directed connections. The membrane
potential Vl of a neuron l satisfies

_VlðtÞ ¼ ��lVlðtÞ þ IlðtÞ; (1)

where �l is the inverse membrane time constant and IlðtÞ is
the total input current at time t. In addition to inputs from
the network, the neurons receive excitatory and inhibitory
random inputs that emulate an embedding network, i.e.,
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IlðtÞ ¼ I0l þ Iext;exl ðtÞ þ Iext;inl ðtÞ þ Inetl ðtÞ; (2)

where I0l is a constant input current modeling slow external

(from outside the chain) and internal (from the chain)

currents; Iext;exl ðtÞ and Iext;inl ðtÞ are the contributions due to
arriving external excitatory and inhibitory spikes [which
are modeled as independent random (Poissonian) spike
trains with rate �ext;ex and �ext;in, respectively]; and Inetl ðtÞ
are the contributions originating from spikes of neurons of
the network. In the absence of any spiking activity, the
membrane potential exponentially converges toward its
asymptotic value V1

l
:¼ I0l =�l. When the neuron’s mem-

brane potential reaches or exceeds its threshold �l, its
membrane potential is reset to Vreset

l and a spike is emitted,

which arrives at the postsynaptic neuron j after a delay
time �jl. For a refractory period trefl after the reset, all

incoming spikes to neuron l are ignored, and the membrane
potential is kept at Vreset

l .

We model the fast rise of the membrane potential on the
arrival of a presynaptic spike by an instantaneous jump,
such that the contributions of the arriving external spikes to
the total input current are given by

Iext;exl ðtÞ ¼ X
k2Z

�ext;ex�ðt� text;exl;k Þ; (3)

Iext;inl ðtÞ ¼ X
k2Z

�ext;in�ðt� text;inl;k Þ; (4)

where text;exl;k (text;inl;k ) are the arrival times of the kth excita-

tory (inhibitory) external spike at neuron l, �ext;ex > 0 or
�ext;in < 0 are the strengths of single external spikes, and
�ð�Þ is the Dirac � distribution. Analogously, the contribu-
tion of spikes received from neurons of the network is
given by

Inetl ðtÞ ¼ X
j

X
k

�lj�ðt� tfj;k � �ljÞ; (5)

where �lj is the coupling strength from neuron j to l and tfj;k
is the kth spike time of neuron j.

Model with nonlinear summation of inputs. In the above
model without nonlinear dendrites, the strengths of syn-
chronous inputs are summed up linearly [cf. Eq. (5)]. We
incorporate nonlinear dendrites by modulating this sum for
excitatory inputs by a nonlinear function � that can be
directly read off from experimental results [8]:� equals the
identity for small excitatory input, increases steeply when
the input exceeds a threshold �b, and saturates for larger
inputs. We define the dendritic modulation function as

�ð�Þ ¼
�
� for � � �b

� otherwise.
(6)

For simplicity, we consider only exactly simultaneous
spikes as synchronous. Accordingly, conduction delays
are chosen homogeneously, �ij � �, so that synchronous

presynaptic spiking can be amplified. In this scenario, the

detection of synchronous events is straightforward.
However, systems with heterogeneous delays and a finite
dendritic integration window exhibit qualitatively the same
phenomena [13]. The contribution of spikes received from
the network is then given by

Inetl ðtÞ ¼X
tf

�
�

� X
j2MexðtfÞ

�lj

�
þ X

j2MinðtfÞ
�lj

�
�ðt� tf � �Þ;

(7)

where tf are all firing times in the network. The sets
MexðtfÞ and MinðtfÞ denote the sets of indices of neurons
sending an excitatory or inhibitory spike at time tf, re-
spectively. Networks with linear dendrites can be described
by setting �ð�Þ ¼ �.

B. Biologically more detailed model

Conductance-based model. In the last part of this article,
we employ a biologically more detailed neuron model to
highlight the generality of our findings on propagation
enhancement. The neuron model is a conductance-based,
leaky integrate-and-fire neuron that is augmented by terms
introducing the impact of dendritic spikes (see also [14]).
The subthreshold dynamics of the membrane potential Vl

of neuron l obeys the differential equation

Cm
l

dVlðtÞ
dt

¼ gLl ½Vrest
l � VlðtÞ� þ gAl ðtÞ½EEx � VlðtÞ�

þ gGl ðtÞ½EIn � VlðtÞ� þ IDSl ðtÞ þ I0l : (8)

Here, Cm
l is the membrane capacity, gLl is the resting

conductance, Vrest
l is the resting membrane potential, EEx

and EIn are the reversal potentials, and gAl ðtÞ and gGl ðtÞ are
the conductances of excitatory and inhibitory synaptic
populations, respectively. IDSl ðtÞ models the current pulses

caused by dendritic spikes, and I0l is a constant current

gathering slow external and internal currents. The time
course of single synaptic conductances contributing to
gAl ðtÞ and gGl ðtÞ is given by the difference between two

exponential functions (e.g., [15]). Whenever the membrane
potential reaches the spike threshold�l, the neuron sends a
spike to its postsynaptic neurons, is reset to Vreset

l , and

becomes refractory for a period trefl .

To account for dendritic spike generation, we consider
the sum gl;�t of excitatory input strengths (characterized by
the coupling strengths) arriving at an excitatory neuron l
within the time window �t for nonlinear dendritic inter-
actions,

gl;�tðtÞ ¼
X
j

X
k

gmax
lj �½t;t��t�ðtfj;k þ �Þ; (9)

where �½t;t��t� is the characteristic function of the interval

½t; t� �t�, tfj;k is the kth firing time of excitatory neuron j,

and � denotes the synaptic delay. We denote the peak
conductance (coupling strength) for a connection from
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neuron j to neuron l by gmax
lj . If gl;�t exceeds a threshold

g�, a dendritic spike is initiated and the dendrite becomes
refractory for a time window tDS;ref . The effect of the
dendritic spike is incorporated into the model by the cur-
rent pulse that reaches the soma a time �DS thereafter. This
current pulse is modeled as the sum of three exponential
functions,

IDSl ðtÞ ¼ cðg�tÞ½�Ae�ðt=�DS;1Þ þ Beð�t=�DS;2Þ � Ce�ðt=�DS;3Þ�;
(10)

with prefactors A > 0, B> 0, C> 0, decay time constants
�DS;1, �DS;2, �DS;3, and a dimensionless correction factor
cðg�tÞ, where g�t is the summed excitatory input at the
initiation time of the dendritic spike as given by Eq. (9).
The factor cðg�tÞ modulates the pulse strength, ensuring
that the peak of the excitatory postsynaptic potential
(pEPSP) reaches the experimentally observed region of
saturation. At very high excitatory inputs, the convention-
ally generated depolarization exceeds the level of satura-
tion, and the pEPSP increases [cf. Fig. 1(a)].

Detection probability. In the last part of this article, we
investigate recurrent networks where a feed-forward sub-
network consisting of a certain number of layers (groups)
is created by modifying strengths of existing synaptic
connections of the network. To decide whether propagation
of synchrony in recurrent networks is successful, we con-
sider the signal-to-noise ratio (SNR): We pick ! neurons,
randomly selected from the network, to be a first group.
After initiation of synchronous activity in this group, we
count the number of spikes from neurons of the ith group,
Si, within a time window [texpi � tw

2 , t
exp
i þ tw

2 ]. (For details

on how the ith group is defined, see Sec. III C on recurrent
networks.) Here, t

exp
i is the expected time for the synchro-

nous pulse to reach layer i, and tw is the expected width
of the synchronous pulse. We consider all spikes within
the time window of size tw centered at texpi as part of
the synchronous pulse. We assume that texpi ¼ texp1 þ
ði� 1Þ�texp, where �texp itself is chosen after simulation
such that

P
iSi becomes maximal:

Si ¼
X
k

X
j2GrðiÞ

�½texpi �ðtw=2Þ;texpi þðtw=2Þ�ðtfj;kÞ: (11)

Here, GrðiÞ are the indices of neurons of group i, tfj;k is the

kth firing time of neuron j, and � denotes the characteristic
function, as before.
To determine the noise level of group i, we measure the

probability Pi
�tobs;tw

ðkÞ of finding k spikes from neurons of

group iwithin time windows tw over a control time interval
during which no synchronous activity is initiated. The
noise level Ni of group i is the minimal value satisfying

XNi

k¼0

Pi
�tobs;tw

ðkÞ � a; (12)

with a constant a & 1.
Finally, we denote the propagation of synchrony up to

the ith layer as successful if the SNR is larger than b,

SNR i :¼ min
j¼1;...;i

�
Sj
Nj

�
> b; (13)

where b � 1. This means, in particular, that we can dis-
tinguish the background (spontaneous) activity from the

65

55

0 25 50 75 100 125 150
0

5

10

51 52
0

2

1 2
0

2

100 102
0

2

Time (ms)

V
 (

m
V

)
In

p.
 s

tr
. (

nS
)

pEPSP (mV)
Expected2 12

2

12

pE
P

S
P

 (
m

V
)

(b)

(c)

(a)

FIG. 1. Example dynamics of a conductance-based, leaky integrate-and-fire neuron with dendritic spike generation. (The neuron is
initially at resting membrane potential Vrest ¼ �65 mV, there are no external inputs, and I0 ¼ 0.) Panel (a) shows the pEPSP after a
stimulation versus the expected pEPSP, i.e., the pEPSP for a neuron without dendritic spike generation. For inputs corresponding to a
pEPSP larger than about 3:8 mV, a dendritic spike is generated which leads to a higher depolarization than expected from additive
integration. Panel (b) shows the time course of the membrane potential of a neuron with (green) and without (black) nonlinear dendritic
interaction in response to different excitatory inputs sequences. (The red horizontal line indicates the somatic spike threshold). Panel
(c) shows the input sequences (black lines, strength: gex ¼ 2:3 nS; close-ups given in insets) and the sum gl;�tðtÞ of excitatory inputs

received within the dendritic integration window [t��t, t] (gray lines); cf. Eq. (9). At the first spike arrival around t ¼ 1 ms, three
inputs are received within �t such that gl;�tðtÞ reaches 6.9 nS. The sum is smaller than the dendritic threshold g� ¼ 8:65 nS [red

horizontal line in (c)], so no dendritic spike is generated and there is no difference between the membrane potential for a neuron with
and without a mechanism for dendritic spike generation. Around t ¼ 50 ms, four spikes arrive within �t, gl;�tðtÞ exceeds the dendritic
threshold, and a dendritic spike is generated. Around t ¼ 100 ms, four spikes arrive at the neuron, but the temporal difference between
the last and the first spike is slightly larger than �t. Consequently, gl;�tðtÞ does not exceed the dendritic threshold and no dendritic

spike is initiated.
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signal induced by propagation of synchrony in all layers
1; . . . ; i.

III. RESULTS

A. Feed-forward chains with linear coupling

How can diluted feed-forward networks (FFNs) propa-
gate synchrony? FFNs consist of a sequence of layers, each
composed of ! excitatory neurons; they forward connec-
tions to neurons in the subsequent layer randomly present
with probability p. Present connections have strength �.
Synchronous spiking activity is initiated by exciting neu-
rons of the first layer to spike simultaneously. In the second
layer, the synchronous pulse arriving from the first layer
excites a certain subgroup of neurons to spike simulta-
neously which in turn generates a synchronous input to
layer three, etc.

To understand the collective dynamics analytically, we
consider networks of leaky integrate-and-fire neurons in
the limit of fast synaptic currents (cf. Sec. II). In the
absence of synchronous activity, each neuron of the FFN
receives a large number of inputs from an emulated exter-
nal network and only very few inputs from the previous
layer, such that its dynamics is practically identical to the
ground state of balanced networks. If the connections
within the FFN are weak and/or the connection probability
is low, the spontaneous spiking activity is influenced only
weakly by spiking activity of the FFN. Therefore, we
assume that the ground-state activity is exclusively gov-
erned by the external inputs, effectively setting couplings
within the chain to �ij ¼ 0. The external input is balanced,

i.e., the mean input is subthreshold, and spontaneous spik-
ing is caused by fluctuations in the input. The network’s
neurons thus spike in an asynchronous and irregular man-
ner [1,2] and the stationary distribution of membrane

potentials PVðVÞ can be calculated analytically in diffusion
approximation [2,16].

pfðxÞ :¼
Z �

��x
PVðVÞdV (14)

is the probability of finding a neuron’s membrane potential
in the interval [�� x, �]. We model the fast rise of the
membrane potential on the arrival of (possibly nonlinear
enhanced) presynaptic spikes by an instantaneous jump in
the membrane potential (cf. Sec. II); thus, pf½�ðh�Þ�
specifies the spiking probability of a single neuron, after
receiving h input spikes of strength � from the preceding
layer.
To assess the propagation of synchrony, we consider the

average number of neurons that are activated in each layer
in response to the initial synchronous pulse (cf. also [17]).
When gi neurons spike synchronously in layer i,

pspðgiÞ :¼
Xgi
h¼0

gi
h

� �
phð1� pÞgi�hpf½�ðh�Þ� (15)

is the probability of spiking of a particular neuron in layer
iþ 1, where the number of simultaneous inputs h is bino-
mially distributed, h� Bðgi; pÞ. Thus, for layers of size!,
the average number of neurons spiking in layer iþ 1 is

hgiþ1i ¼ !pspðgiÞ: (16)

Substituting the average group size hgii for the actual size
gi yields the interpolated map hgiþ1i ¼ !pspðhgiiÞ, whose
fixed points qualitatively determine the propagation of
synchronous activity (cf. Fig. 2).
The trivial, absorbing fixed point G0 ¼ 0, defining a

state of extinguished activity, always exists. For suffi-
ciently small p, �, and !, this is the only fixed point.
With increasing connectivity and layer size, a pair of fixed
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FIG. 2. Emergence of propagation of synchrony. (a) Analytically derived iterated maps approximating the time evolution of the
synchronous pulse [solid line, cf. Eq. (16)] and transition probability obtained from network simulations (color code). (b) The basin of
attraction of the stable fixed point G2 is illustrated. Initial pulses within the range ðG1; !� propagate with an average pulse size around
G2. (c) Iterated maps for FFNs with linear (solid lines) and nonlinear dendritic interactions (dashed lines). Nonlinear interactions
reduce the connectivity required for propagation and allow for smaller fractions of active neurons.
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points (G1, unstable, and G2, stable) appears via a tangent
bifurcation. Initial pulses in the basin of G2 (i.e., those
larger than G1) typically initiate stable propagation of
synchrony with group sizes around G2. For given layer
size ! and connection strength �, the critical connectivity
p� for whichG1 ¼ G2 marks the minimal connectivity that
supports stable propagation of synchrony.

To elaborate the influence of nonlinear dendritic inter-
actions, we derive the critical connectivity for FFNs. The
mechanisms underlying propagation of synchrony are dif-
ferent for networks with and without nonlinear dendritic
interactions and thus require different analytical ap-
proaches to derive p�. We first consider feed-forward
chains with conventional, linear coupling, i.e., �ðxÞ ¼ x.
To obtain p�, we first expand pfðxÞ into a Taylor series up

to first order around the mean of the binomial distribution
specifying the average number pgi of active neurons in
each layer, such that Eq. (16) simplifies to

hgiþ1i ¼ !
Xgi
h¼0

gi

h

 !
phð1� pÞgi�hpfðh�Þ (17)

	 !
Xgi
h¼0

gi

h

 !
phð1� pÞgi�h (18)


 ½pfðgip�Þ þ p0
fðgip�Þðh�� gip�Þ� (19)

¼ !pfðgip�Þ: (20)

The linear approximation becomes exact in the limit of
large layer sizes ! and small couplings �, where the
product �! is kept constant. We obtain an interpolated
map from expression (20) by replacing gi by its mean value
hgii. At the fixed point G :¼ hgiþ1i ¼ hgii, the function

FðG;py; !; �Þ :¼ G�!pfðpyG�Þ ¼ 0 (21)

vanishes. Here, the values G and py are the average group
size and the connection probability at the fixed point for
given layer size ! and coupling strength �, respectively.
Furthermore, F has a double root at the bifurcation point,
so the derivative

@FðG;p�; !; �Þ
@G

¼ 1�!p��p0
fðp�G�Þ ¼ 0 (22)

also vanishes such that the derivative of pf at the bifurca-

tion point is given by

p0
fðp�G�Þ ¼ 1

!p��
: (23)

Combining the above equations, we express the derivatives
of F at the bifurcation point by

@FðG;p�; !; �Þ
@p� ¼ �!G�p0

fðp�G�Þ ¼ � G

p� ; (24)

@FðG;p�; !; �Þ
@!

¼ �pfðp�G�Þ ¼ �G

!
; (25)

and

@FðG;p�; !; �Þ
@�

¼ �!Gp�p0
fðp�G�Þ ¼ �G

�
: (26)

Applying the implicit function theorem yields the set of
derivatives of p�,

@p�ðG;!; �Þ
@G

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@G

�
¼ 0; (27)

@p�ðG;!; �Þ
@!

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@!

�

¼ �p�ðG;!; �Þ
!

; (28)

and

@p�ðG;!; �Þ
@�

¼ �
�
@FðG;p�; !; �Þ

@p�

��1
�
@FðG;p�; !; �Þ

@�

�

¼ �p�ðG;!; �Þ
�

; (29)

which are solved by

p�
L
:¼ p� ¼ 1

	�!
; (30)

where 	 is a constant independent of! and �. We note that
we did not make explicit assumptions on the distribution of
membrane potentials PVðVÞ, which is determined by the
setup of the external network, i.e., the external input cur-
rent I0, the coupling strengths �ext;ex and �ext;in, as well as
the firing rates �ext;ex and �ext;in. With a different, lengthier
approach based on a second-order expansion of pf, one

can derive an analytical estimate of 	 [13]. Figure 3(a)
displays this analytical approximation for p�

L and its agree-
ment with numerical simulations. For connectivity larger
than p�

L, there is stable propagation of synchrony even in
networks with linear dendritic interactions, and the size of
the propagating pulse fluctuates around the stable fixed
point G2 of Eq. (16). (For very large connectivity, patho-
logical high-frequency spiking activity can emerge due to
spontaneous chain activation.)

B. Feed-forward chains with nonlinear coupling

We now consider networks incorporating nonlinear den-
dritic interactions and show that the connectivity and num-
ber of active neurons required for propagation of
synchrony are smaller. In such networks, the mechanism
underlying propagation of synchrony is different, because
it is supported predominantly by nonlinearly enhanced
inputs. As a consequence, the maximal input is bounded
by �, leading to a saturation in the return map (16)
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[cf. Fig. 2(c)]. The saturation enables propagating pulses of
a size substantially smaller than !, in contrast to linearly
coupled networks. The discontinuity in the modulation
function � induces a discontinuity in pf½�ðxÞ�, which

prevents our previous analytical method. We thus deter-
mine the critical connectivity by a self-consistency ap-
proach. When a synchronous pulse arrives at a specific
layer, the summed excitatory input strength x is either
smaller or larger than the dendritic threshold �b. For
sufficiently small �b, the spiking probability of a neuron
due to a subthreshold input is much smaller than that due to
a suprathreshold input, i.e., pfð�bÞ � pfð�Þ. Thus, only a
small fraction of neurons receives an input smaller than�b

and is elicited to spike. We approximate pfðxÞ ¼ 0 for x �
�b. When there is persistent propagation of synchrony, p�

(which denotes the fraction of neurons that receive suffi-
ciently strong input to reach the dendritic threshold) is
constant throughout the layers. The total spiking probabil-
ity of a single neuron on the arrival of the synchronous
pulse is then given by the product p�pfð�Þ. The probability

p#ðgÞ ¼ !
g

� �
½p�pfð�Þ�g½p�pfð�Þ�w�g (31)

for g neurons to spike synchronously follows a binomial
distribution. By combining the total spiking probability
and the topological connection probability p, we compute
the probability

PðkÞ ¼ X!
g¼k

g

k

 !
pkð1� pÞg�kp#ðgÞ (32)

¼ !

k

 !
½p�ppfð�Þ�k½1� p�ppfð�Þ�w�k (33)

that a neuron of the subsequent layer receives exactly k
synchronous spikes. Thus, k itself is binomially distributed,

andwe denote itsmeanvalue by� and its standard deviation
by ��. Using a Gaussian approximation of the binomial
distribution yields the self-consistent equation

p� ¼ X!
k¼d�b=�e

PðkÞ (34)

	
Z 1

�b=�

1ffiffiffiffiffiffiffi
2


p
��

exp

�
� 1

2

�
k� �

��

�
2
�
dk (35)

¼ 1

2

�
1� Erf

��b

� � �ffiffiffi
2

p
��

��
(36)

¼:
1

2

�
1þ Erf

�
nffiffiffi
2

p
��

; (37)

where we defined

n :¼ ���b=�

��

(38)

¼ !p�ppfð�Þ ��b=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p�pfð�Þp½1� p�pfð�Þp�

q (39)

as the distance between the average number of inputs and
the number needed to reach the onset of the nonlinearity,
measured in units of ��. Solving definition (38) for p that
occurs as an argument of� and�� and using Eq. (37) yields
the connection probability in terms of n,

pNL ¼ n2�þ 2�b þ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2 þ 4�bð�� �b

! Þ
q

pfð�Þ�ðn2 þ!Þ½1þ Erfð nffiffi
2

p Þ� : (40)

For a certain setup of the FFN with variable connectivity,
pNLðnÞ is the connectivity for which a stationary propaga-
tion of synchrony occurs with a certain n. Any pNL

above the critical connectivity p�
NL has two preimages n,
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FIG. 3. Critical connectivity in isolated FFNs. (a),(b) Network simulations (symbols) agree well with analytical predictions (solid
lines) (30) and (45). The critical connectivity decays with layer size and coupling strength. (c) The reduction factor c ¼ p�

L=p
�
NL > 1

shows that nonlinear dendritic interaction compensates for reduced connectivity. In both scenarios, with linear and nonlinear coupling,
we find that p� / !�1, such that the reduction factor is independent of the layer size. In networks with linear couplings, the critical
connectivity is p� / ��1, whereas, in networks with nonlinear coupling, the dependence on ��1 is nonlinear. Therefore, the reduction
factor increases with decreasing coupling strength. Dashed horizontal lines indicate jumps in the reduction factor at which the number
of inputs needed for dendritic spike generation changes.
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corresponding to the group sizes G1 and G2, p
�
NL has one

preimage, and any pNL below p�
NL has none [cf. Fig. 2(c)].

Thus, pNLðnÞ has one global minimum at n ¼ n� where
dpNLðnÞ

dn jn¼n� ¼ 0, and the critical connectivity is pNLðn�Þ ¼
p�
NL.
The comparison of the results for linearly and nonli-

nearly coupled FFNs is particularly enlightening in the
limit of large layer size (! � 1) and small coupling
strengths (� � �� Vreset). We fix the maximal input to
a neuron from the previous layer, �! ¼ const, to preserve
the network state and expand Eq. (40) in a power series
around ! ! 1 and � ! 0. Considering the leading terms,
we find

pNL 	 2
�b þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð�� �b

! Þ
q

pfð�Þ�!½1þ Erfð nffiffi
2

p Þ� : (41)

We note that propagation of synchrony mediated by den-
dritic spikes is enabled if a sufficiently large fraction of
neurons of each layer receives a total input larger than or
equal to �b, which implies in particular that �b < !�.
Moreover, if the connectivity within the FFN is low, stable
propagation even requires that �b � !�, and pNL further
simplifies to

pNL 	 2�b

pfð�Þ�!
1þ n

ffiffiffiffiffi
�
�b

q
1þ Erfð nffiffi

2
p Þ : (42)

As described above, the critical connectivity is given by the
minimum of pNL as a function of n, which is assumed at

n ¼ n�. dpNLðnÞ
dn jn¼n� ¼ 0 yields n� as an implicit function

of �b

� , ffiffiffiffiffiffiffi
�b

�

s
¼

ffiffiffiffi



2

r
exp

�
n�2

2

��
1þ Erf

�
n�ffiffiffi
2

p
��

� n�: (43)

For better readability, we define

�

�
�b

�

�
:¼ 1

2

�
1þ Erf

�
n�ffiffiffi
2

p
��

� n�
e�ðn�2=2Þffiffiffiffiffiffiffi

2

p ; (44)

where n� ¼ n�ð�b

� Þ as given by Eq. (43). Combining

Eqs. (42)–(44) enables to simplify the critical connectivity
to

p�
NL ¼ �b

pfð�Þ�!
1

�ð�b=�Þ ; (45)

which depends nonlinearly on the number of spikes needed
to reach the dendritic threshold�b=� through the function
1=�ð�Þ. One can show that �ð�b=�Þ increases with de-
creasing coupling strength � from�ð�b=�Þ ¼ 0:5 for large
� and becomes maximal in the limit of small couplings,
lim�!0�ð�b=�Þ ¼ 1. Figure 3(b) displays the results for
p�
NL together with the results of numerical simulations. As

in the linearly coupled network, the critical connectivity

decays with layer size and coupling strength, but the
dependence on 1=� is nonlinear. The factor

c :¼ p�
L

p�
NL

¼ pfð�Þ
	�b

�

�
�b

�

�
; (46)

by which the nonlinear dendritic interactions reduce the
required network-connectivity, increases with decreasing
threshold �b and increasing enhancement �. Figure 3(c)
illustrates the numerically obtained reduction of connec-
tivity: The critical connectivity p�

NL is smaller over the
whole parameter range; the reduction is most effective for
small � and largely independent of !.
Nonlinear dendrites thus foster propagation of syn-

chrony. We note that our model still overestimates the
capability of linearly coupled networks to propagate syn-
chrony: On synchronous input, linearly coupled groups of
neurons generate synchronous output (if they generate
output at all). This fact is a consequence of the infinitesi-
mally short synaptic currents. In neurons with extended
synaptic currents, the timing of the output strongly depends
on the neurons’ state and input strength. In contrast, the
timing of somatic action potentials elicited by dendritic
spikes is largely independent of neuron state and input
strength. We therefore expect the effect of nonlinear den-
drites to be even stronger in networks of biologically more
detailed neurons, as considered in the next section.

C. Recurrent networks

The main findings generalize in two ways: to FFNs
occurring in recurrent random networks and to biologically
more detailed models. For such systems, we show that, in
nonlinearly coupled networks, stable propagation naturally
emerges, whereas it is difficult to achieve in linearly
coupled networks. In contrast to isolated FFNs studied
above, we now account for effects of the FFN on the
surrounding network and its feedback. Further, we choose
a more detailed neuron model (see Sec. II) to ensure that
the main assumptions underlying the analytically tractable
model are not crucial for stable propagation of synchrony.
In particular, we show that systems with temporally ex-
tended postsynaptic responses and a temporally extended
nonlinear dendritic interaction window exhibit qualita-
tively the same phenomena as found above.
We consider networks of randomly connected

conductance-based leaky integrate-and-fire neurons
[cf. Eqs (8)–(10)]. The networks consist of NE excitatory
and NI inhibitory neurons. A directed connection between
two neurons is present with probability p. As for the
isolated FFNs considered above, we construct the network
such that the ground state in the absence of synchronous
activity is characterized by balanced excitatory and inhibi-
tory input, which results in an asynchronous irregular
spiking activity. For simplicity, all neurons have the same
parameters, e.g., Cm

l ¼ Cm, gLl ¼ gL, etc.
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First, we set up a model network in which the total
excitation and inhibition to the neurons is balanced such
that the spiking activity is asynchronous irregular. The
external constant current I0, together with the leak con-
ductance gL and the resting potential Vrest, determines the
asymptotic membrane potential in the absence of incoming
spikes:

V1 ¼ Vrest þ I0

gL
: (47)

Additionally, each neuron receives excitatory and inhibi-
tory random Poissonian spike trains. The frequencies are
denoted by �ext;ex and �ext;in, and the ratio between them is
chosen such that it equals the ratio of the number of
excitatory and inhibitory neurons in the network:

�ext;ex

�ext;in
¼ NE

NI
: (48)

This ensures that each neuron receives the same ratio of
excitatory and inhibitory input from both the network and
the external sources when neurons in the excitatory and
inhibitory network populations spike on average with the
same mean rate. All excitatory as well as all inhibitory
connections have the same strength, i.e., gmax

lj ¼ gex for

excitatory and gmax
lj ¼ gin for inhibitory connections. The

ratio of the peak postsynaptic potentials due to an inhibi-
tory input and an excitatory input at the asymptotic mem-
brane potential V1 is approximately given by

grat :¼ ginjV1 � Einj
gexjV1 � Eexj : (49)

We set

grat ¼! N
E

NI
¼ �ext;ex

�ext;in
; (50)

gin ¼ jV1 � Eexj
jV1 � Einj

NE

NI
gex (51)

to obtain balanced activity.
In contrast to the model considered in the first sections,

now excitatory neurons have a nonzero time window�t for
nonlinear dendritic modulation. When the strength of the
excitatory input within �t exceeds a threshold, a current
pulse is injected into the soma, modeling the effect of a
dendritic spike. The neuron parameters for this phenome-
nological model are chosen according to experimental
findings to reproduce quantitatively the time course of
the membrane potential in response to a dendritic spike.
[See Sec. II and Figs. 1(b) and 1(c).]

Considering a random network, we detect naturally
occurring weak feed-forward structures suitable for signal
transmission in the following way: We randomly choose a
group of x neurons to be the first layer. The second layer

is composed of x neurons out of those receiving the
largest numbers of connections from the initial group.
By repeating this selection process l times, we identify
a FFN consisting of l layers. In each selection step, we
exclude the x neurons of the previous layer, but do not
exclude neurons that are members of the layers preceding
the previous one. The high-connectivity subnetwork se-
lected from an existing random network as described
above by construction has a slightly higher-than-average
connection probability. Therefore, this structure is particu-
larly well suited to enable propagation of synchrony.
Alternatively, one can assign neurons randomly to the
different layers and compensate for smaller connectivity
by, e.g., larger layer sizes, according to Eq. (45).
The measurements start after an equilibration phase.

(Initially, the network is at rest.) In the ground state, the
network generates balanced irregular activity. Propagation
of synchrony is initiated by exciting the neurons of the first
layer to spike within a short time interval that is smaller
than the time window of dendritic integration, �t. This
synchronous spiking leads to an increased input to the
second layer after a delay time �. This input, in turn,
may lead to highly synchronous spiking of a certain num-
ber of neurons of the second layer (possibly supported by
dendritic spikes) and therewith to synchronous spiking
after another delay time � in the third layer, etc.
Propagation of synchrony requires (i) that the total input
of a layer to its successor within the FFN is sufficiently
strong and (ii) that the input to the remaining network is
sufficiently weak to avoid excitation of too many neurons
to synchronous spiking. Requirement (ii) prevents patho-
logical activity such as ‘‘synfire explosions’’ [6].
After initiating a propagation of synchrony by exciting

the neurons of the first group to spike within a short time
interval, we measure the probability of detecting a syn-
chronous pulse in the subsequent groups [see Sec. II;
cf. Figs. 4(a) and 4(b)]. Although the average connectivity
within the identified FFN is significantly larger than the
overall connectivity p, it is still small, and propagation of
synchronous activity is very unlikely [upper insets of
Figs. 4(a) and 4(b)]. We find that it is not sufficient to
choose high-connectivity subnetworks as FFNs (as de-
scribed above) to obtain a stable propagation of synchrony,
but that the synapses within the FFN have to be strength-
ened. To study the transition to propagation, we gradually
strengthen the synapses within the FFN. As suggested by
the results on isolated chains, we observe a propagation of
synchrony over more and more layers for moderate en-
hancements [Figs. 4(c) and 4(d)]. For very strong enhance-
ments, the feedback from the network becomes important:
The synaptic amplification leads to an increased sponta-
neous activity within the FFN, and this in turn results in an
increased background activity. The overall increased spik-
ing activity causes spontaneous synchronous pulses, and a
separation of the induced synchronous signal from the
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background activity is not possible anymore [the detection
probability decreases; see Figs. 4(a) and 4(b) and lower
insets].

In agreement with previous studies (cf. [7]), we find that,
in the linearly coupled networks considered, a synchronous
pulse propagates only over a few layers, even in the opti-
mal enhancement range [Fig. 4(a)]. In contrast, networks
incorporating nonlinear dendrites support stable propaga-
tion of synchrony [Fig. 4(b)] in a substantial region of
parameter space. In addition, the propagation is enabled
for enhancements considerably smaller than the optimal
enhancement for networks with linear dendrites.

IV. DISCUSSION

In conclusion, we have analyzed strongly diluted net-
works with linear and nonlinear dendritic interactions. We
have demonstrated how nonlinear dendritic interactions
may enhance and stabilize synchrony propagation in both
isolated feed-forward chains and recurrent network struc-
tures. Moreover, our results show that such local nonlinear
interactions support the separation of propagating syn-
chrony and asynchronous background activity. Earlier
works [6,7] did not take into account supralinear amplifi-
cation of synchronous activity. One study [7] used existing
connections in recurrent networks to create diluted chains
assuming strongly enhanced synapses and at the same time
partially decoupling the chain from the rest of the network;
still, synchrony could propagate only over a few groups. In
contrast, the results presented here indicate that a reliable

propagation is achieved by only mildly adapted synapses
and without specifically tuning or changing neuron prop-
erties or rewiring the network.
The recent study [18] incorporating nonlinear dendrites

has shown that synchronous activity can propagate in
purely random networks without modified connections.
There are no specific propagation paths, but neurons are
recruited in a quasirandom manner. Our results described
here now indicate that specific feed-forward chains that
naturally occur in random neural circuits are capable of
persistently propagating synchronous signals if their syn-
aptic strengths are increased. The strengths required in the
presence of nonlinear interactions are common in biologi-
cal neural circuits [19] and may well be generated by
learning, e.g., through spike-timing-dependent plasticity.
Dendritic (coupling) nonlinearities therefore offer a via-

ble mechanism for guiding synchrony through weakly
structured random topologies.
Recently [12], feed-forward chains with slow dendritic

(probably calcium) spikes have been simulated to check
the possibility of the occurrence of specific spike patterns
that are experimentally observed in the higher vocal center
of song birds. Our theoretical work now yields analytic
insights about the collective dynamics of circuits with fast
dendritic (sodium) spikes. Fast dendritic spikes have been
found in the hippocampus and in the neocortex and may
thus be involved in hippocampal replay, memory forma-
tion, and other computational processes. Experimentally,
the influence of fast dendritic spikes could be directly
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checked by selectively blocking dendritic sodium channels
(see, e.g., [20], which indicates that the types of sodium
channels in the dendrite and soma are different) and
thereby distinguishing those effects that come from non-
additive coupling via fast dendritic spikes from those
induced by other mechanisms. During the last decade,
the number of neurons simultaneously accessible has mul-
tiplied from a few to the order of 102 neurons, with this
rapid trend continuing. When recording the activity of a
substantial fraction of neurons of a local circuit, synchrony
propagation should be clearly detectable and analyzable.
Our results suggest that synchrony propagation and thus
spike patterns should be influenced if dendritic sodium
channels and thus fast dendritic spikes are blocked.
Specifically, in the hippocampus, the precision of (re-
played) spike patterns decreases or the patterns vanish after
blocking. Such experiments would thus provide a direct
test of how nonadditive coupling is exploited for the col-
lective dynamics of neural circuits. Once the connectome,
i.e., the structural synaptic connectivity, of neural circuits
becomes available in the future [21], the relative impact of
synaptic, structural to dynamic features of single neurons
on circuit dynamics may be well distinguishable.

The basic model of pulse-coupled units considered here
is applicable to a range of systems in nature, not only to
neural circuits but also, e.g., to earthquakes emerging from
abruptly relaxing tectonic plates, and fireflies interacting
by exchanging light flashes (e.g., [22]). We have now
studied the impact of nonlinear input modulation on col-
lective network dynamics and derived methods for their
analysis that may also be useful in a non-neuronal setting.
Interestingly, very recent results [23] have shown that fire-
flies are more prone to respond to synchronous flashes
rather than to asynchronous ones, suggesting a direct ap-
plication of our model.
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APPENDIX

1. Parameters for Figs. 2 and 3

The single-neuron parameters and the coupling delay are
�m ¼ 1=� ¼ 14 ms, � ¼ 15 mV, Vreset ¼ 0 mV, tref ¼
2 ms, and � ¼ 10 ms [15,24]. The external input is char-
acterized by �ext;ex ¼ ��ext;in ¼ 0:5 mV [19,25], �ext ¼
�ext;ex ¼ �ext;in ¼ 3 kHz, and V1 ¼ 5 mV. The parame-
ters of the dendritic modulation function were chosen
according to single-neuron measurements as �b ¼ 4 mV
and � ¼ 11 mV [8].

The maps and transition matrices presented in Fig. 2 are
derived for ! ¼ 100 and �ij ¼ � ¼ 0:3 mV. To obtain the

distribution of active neurons giþ1 in layer iþ 1, we excite
gi neurons of the first layer to spike simultaneously and
measure the number of active neurons in the following
layer. For each value of gi, we calculate the distribution
for m ¼ 1000 different realizations of the FFN and initial
conditions.
In Fig. 3, existing connections within the FFN have

strengths �ij ¼ �. We determine the critical connectivity

for � 2 ½0:05 mV; 0:6 mV� and layer sizes ! 2 ½50; 600�
as follows: We construct a FFN consisting of 20 layers,
with ! neurons in each layer, and connect neurons of
successive layers with probability p 2 ½0; 1�. After an
equilibration time tinit (initially, the network is at rest),
we initiate propagation of synchrony by exciting all neu-
rons of the first layer to spike simultaneously. We then
check whether the synchronous pulse propagates up to
layer i, i.e., whether there is synchronous activity in layer
i at time texpi ¼ tinit þ ði� 1Þ�. We consider the propaga-

tion for a certain setup specified by �, !, and p to be
successful if a synchronous pulse propagates along the
whole FFN in more than 50% of o ¼ 31 realizations of
the FFN with different initial conditions. We derive the
critical connectivities p�

L and p�
NL up to a resolution of

�p
p ¼ 5
 10�3 by repeatedly bisecting the interval [0,1]

and testing the success of propagation.

2. Parameters for Fig. 4

For the network simulations, we employed the simula-
tion software NEST [26]. The networks had a total number
of N ¼ 10 000 neurons with NE ¼ 8 000 and NI ¼ 2 000.
For simplicity, all neurons are considered identical, i.e.,
Cm
l ¼ Cm, gLl ¼ gL, Vrest

l ¼ Vrest, I0l ¼ I0,�l ¼ �, trefl ¼
tref , and Vreset

l ¼ Vreset. The single-neuron parameters are

Cm ¼ 400 pF, Vrest ¼ Vreset ¼ �65 mV, gL ¼ 25 nS,
� ¼ �50 mV, tref ¼ 3 ms [24,27], and I0 ¼ 250 pA,
and the frequencies of the external inputs are �ext;ex ¼
2:4 kHz and �ext;in ¼ 0:6 kHz. The recurrent connectivity
in cortical and hippocampal networks is sparse:
Connection probabilities between 1% and 10%, depending
on the distance and the region, have been estimated (e.g.,
[19,24,25]). For our simulations, we choose p ¼ 0:03.
The time constants of the excitatory (AMPA) conduc-

tances are �A;1 ¼ 2:5 ms and �A;2 ¼ 0:5 ms [28]. For sim-
plicity, we choose the same time constants for the
inhibitory (GABAA) conductances: �G;1 ¼ 2:5 ms and
�G;2 ¼ 0:5 ms. The reversal potentials are Eex ¼ 0 mV
and Ein ¼ �75 mV [15,24]. The strengths of experimen-
tally observed pEPSPs due to single inputs range from
small values like 0.1 mV to larger values like 2 mV
[19,24,25]. For nonenhanced couplings, we set gex ¼
0:6 nS, which corresponds to a pEPSP of approximately
0.3 mV at rest. According to Eq. (51), the coupling
strengths of the inhibitory synapses are gin ¼ �6:6 nS to
maintain balanced input. This configuration results in an

SVEN JAHNKE, MARC TIMME, AND RAOUL-MARTIN MEMMESHEIMER PHYS. REV. X 2, 041016 (2012)

041016-10



asynchronous irregular ground state with a spontaneous
firing rate � 	 1:8 Hz.

The parameters of the dendritic spike current are chosen
according to single-neuron measurements in hippocampal
cells: �t ¼ 2 ms [8], g� ¼ 8:65 nS (corresponding to a
pEPSP of about 3.8 mV at rest [8]), �DS ¼ 2:7 ms (such
that �þ �DS ¼ 4:7 ms and the peak of the depolarization
is reached approximately 5 ms after presynaptic spiking),
A ¼ 55 nA, B ¼ 64 nA, C ¼ 9 nA, �DS;1 ¼ 0:2 ms,
�DS;2 ¼ 0:3 ms, �DS;3 ¼ 0:7 ms, and tref;DS ¼ 5:2 ms.
The correction factor, which modulates the strength of
the dendritic spike, is found by fitting a linear correction
function, cðgÞ ¼ maxf1:5� g
 0:053 nS�1; 0g, such that
the experimentally observed region of saturation is ob-
tained. The dynamics of the neuron model incorporating
the mechanism for dendritic spike generation is illustrated
in Fig. 1.

For calculating the SNR, we use an a ¼ 0:99 and b ¼ 2
and an expected width of the synchronous pulse tw ¼
10 ms; the result is insensitive to changes in these parame-
ters. The expected interval between successive synchro-
nous active layers, �texp, is chosen from the interval [2 ms,
7 ms] such that the signal,

P
iSi, is maximized (cf. Sec. II).

The time interval for the estimation of the noise level is
�tobs ¼ 15 s. The detection probability shown in Figs. 4(a)
and 4(b) is the fraction of successful propagations obtained
from 10 different network realizations, where, for each
network setup, propagation of synchrony was tested for
20 initial conditions.

All measurements start after an initial equilibrium phase
of t0 ¼ 4000 ms.
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