
Breakdown of order preservation in symmetric oscillator networks with
pulse-coupling

Hinrich Kielblock,1,a) Christoph Kirst,1,2 and Marc Timme1,3

1Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Bunsenstrasse
10, 37073 Göttingen, Germany
2Bernstein Center for Computational Neuroscience (BCCN) Berlin, Unter den Linden 6, 10099 Berlin,
Germany
3Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Bunsenstrasse 10, 37073 Göttingen,
Germany

(Received 1 February 2011; accepted 18 April 2011; published online 28 June 2011)

Symmetric networks of coupled dynamical units exhibit invariant subspaces with two or more units

synchronized. In time-continuously coupled systems, these invariant sets constitute barriers for the

dynamics. For networks of units with local dynamics defined on the real line, this implies that the

units’ ordering is preserved and that their winding number is identical. Here, we show that in

permutation-symmetric networks with pulse-coupling, the order is often no longer preserved. We

analytically study a class of pulse-coupled oscillators (characterizing for instance the dynamics of

spiking neural networks) and derive quantitative conditions for the breakdown of order

preservation. We find that in general pulse-coupling yields additional dimensions to the state space

such that units may change their order by avoiding the invariant sets. We identify a system of two

symmetrically pulse-coupled identical oscillators where, contrary to intuition, the oscillators’

average frequencies and thus their winding numbers are different. VC 2011 American Institute of
Physics. [doi:10.1063/1.3589960]

Symmetries are an important feature of network dynami-

cal systems, often constraining their dynamics. One such

restriction is, e.g., the forced order conservation of oscil-

lators in fully symmetric systems of time-continuously

coupled oscillators.
1,2

Here, we reveal that symmetric

networks of dynamical units coupled via the exchange of

pulses, such as networks of spiking neurons, circumvent

these restrictions, thus increasing the complexity of the

dynamical phenomena emerging in such systems. We

show that pulse-coupled oscillators may overtake each

other, thus breaking the order conservation in contrast to

similar time-continuously coupled systems. We explain

the mechanisms behind this overtaking phenomenon and

discuss its consequences. Intriguingly, we find that identi-

cal and symmetrically pulse-coupled oscillators may ex-

hibit n : m locking (n 6¼ m), which is impossible for

similar systems that are time-continuously coupled. Our

results highlight that the nature of discrete-time pulse-

coupling plays a distinct role in network dynamical sys-

tems, in particular, for synchronization and phase-lock-

ing phenomena.

I. IMPACT OF SYMMETRY ON DYNAMICS

Symmetries strongly impact the time evolution of dy-

namical systems. For instance, in Hamiltonian systems,

Noether’s theorem3 states that a symmetry of the action of

the system implies an integral of motion, e.g., conservation

of momentum, if the system is invariant under translations.

In general, a symmetry of a dynamical system is a transfor-

mation that keeps the set of all trajectories unchanged. Dy-

namical systems with symmetries are called equivariant

dynamical systems.4–6 The symmetries in such equivariant

systems entail certain properties of their bifurcations (equiv-

ariant bifurcation theory). For example, the equivariant

branching lemma5 ensures the existence of specific equilib-

rium solution branches from the bifurcation point given a

certain symmetry of the system. Symmetries also play an im-

portant role for the existence and robustness of heteroclinic

cycles.7 Such structures for example enable dynamical com-

putations via switching phenomena along the heteroclinic

orbits in models of neuronal networks.8,9 In systems of ordi-

nary differential equations (ODEs) whose structure is that of

a finite number of subsystems (cells) coupled together, also

called coupled cell networks,10 the appearance of cluster

states, i.e., states involving groups of synchronized units, of-

ten relies on symmetries.11–14

In equivariant dynamical systems defined by a set of

ODEs, a symmetry implies the existence of a flow-invariant

subspace, the fixed-point space of that symmetry. For exam-

ple, consider a coupled cell network where a certain subset

of the cells is symmetric under permutations. Then the sub-

sets of state space with two or more synchronized units, i.e.,

the polydiagonals, are invariant under the dynamics. As a

consequence, these invariant sets form barriers for the dy-

namics that cannot be crossed, i.e., units cannot overtake. In

particular, this implies that the average frequencies of oscil-

lators for which the polydiagonal is flow-invariant are

equal1,2 and oscillators that have an invariant polydiagonal

cannot pass each other. This intuitive fact is often used whena)Electronic mail: hinrich@nld.ds.mpg.de.
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analyzing the dynamics of such symmetric networks in more

detail.10–12

Similar arguments that ensure order preservation due to

symmetries are used in dynamical systems that are not based

on ODEs, as, for example, in networks of pulse-coupled

units.14–17 In a pulsed-coupled system, the interaction

between units is determined by discrete points in time where

the units generate pulses, e.g., due to a threshold crossing.

Pulse-coupled systems provide mathematical models for a

wide range of natural phenomena, including fireflies interact-

ing by exchanging light flashes,18,19 chirping crickets,20 neu-

rons that interact by sending and receiving electrical

pulses,21,22 and tectonic plates that spread mechanical stress

to their neighbors during earthquakes.23 These networks ex-

hibit several new and sometimes counter-intuitive features,

including unstable periodic orbit Milnor attractors,16,24–27

first order multi-operator dynamics instead of linear relaxa-

tion,28,29 finite time synchronization,15,30 dynamics that ex-

hibit positive finite time Lyapunov exponents and are highly

irregular but nevertheless stable,31–34 and speed limits in

response to dynamical perturbations.35,36

In this article, we show that in pulse-coupled dynamical

systems with full permutation symmetry, the ordering of the

coordinates is not preserved, i.e., that the invariant polydiag-

onals in general do not form barriers to the dynamics and

units may pass each other (we also refer to this as

“overtaking”). This is in contrast to the results obtained in

time-continuously coupled equivariant systems defined via

ODEs, and thus special attention has to be paid when apply-

ing well-established results for ODEs to pulse-coupled

systems.9,15

This article is structured as follows: After introducing

the basic notations and relevant results that ensure order

preservation in symmetric systems defined via ODEs in Sec.

II, the crossing of the invariant polydiagonals in general

pulse-coupled systems is illustrated in Sec. III. In Sec. IV,

we focus on a class of pulse-coupled oscillators that permits

a detailed analysis predicting the breakdown of order preser-

vation. In Sec. V, we identify an example of two symmetri-

cally pulse-coupled identical oscillators that exhibit different

average frequencies and thus different winding numbers.

Finally, we summarize and discuss our results in Sec. VI.

II. SYMMETRIES, SYNCHRONY, INVARIANCE,
AND ORDER PRESERVATION

It is well understood that symmetries imply the exis-

tence of invariant subspaces: Consider a system of differen-

tial equations of the form

d

dt
x ¼ Fðx; tÞ; (1)

where x 2 RN and F : RNþ1 ! RN is a smooth velocity

field that satisfies the Lipschitz condition. Then there exists a

flow U t; x0ð Þ such that x tð Þ ¼ U t; x0ð Þ is the unique solution

of Eq. (1) starting from initial conditions xð0Þ ¼ x0 2 RN .37

If Eq. (1) has a symmetry, i.e., a group C of elements

g 2 C acting on RN that satisfy

gFðx; tÞ ¼ Fðgx; tÞ for all g 2 C; (2)

then the fixed point spaces

FixðgÞ ¼ x 2 RN jgx ¼ x
� �

; (3)

for g 2 C and all their intersections are invariant under the

flow U of Eq. (1), e.g.,

x0 2 FixðgÞ ) Uðt; x0Þ 2 FixðgÞ for all t � 0: (4)

For instance, a permutation symmetric coupled cell network of

N units with states xi, i 2 1; 2;…;Nf g evolves according to

_x1 ¼ f x1; x2; x3…; xNð Þ;
_x2 ¼ f x2; x1; x3…; xNð Þ

..

.

xN ¼ f xN; x1; x2;…; xN�1ð Þ; (5)

where the overbar indicates symmetrization in the variables

below, i.e., f ðx1; x2; x3;…; xNÞ ¼ f ðx1; xr2
; xr3

;…; xrN
Þ for all

permutations of the indices r 2 SN . Hence, Eq. (5) has sym-

metry group C ¼ SN and according to Eqs. (3) and (4), all

subspaces of two or more synchronized units, i.e., the sets

x 2 RN jxi ¼ xj;
� �

and their intersections, are flow invariant.

Using continuity of trajectories and uniqueness of the flow,

these invariant subspaces cannot be crossed and it follows

that if xiðtÞ � xjðtÞ at time t, then xiðt0Þ � xjðt0Þ for all future

times t0 2 ½t;1Þ, i.e., the units preserve their ordering (cf.

Fig. 1).

This fact is often utilized when analyzing the dynamics

of such networks in more detail.15,38–40 Often it is equally

presumed for pulse-coupled systems.1,15,40 However, as we

FIG. 1. (Color online) Real-valued units in a permutation-symmetric

smooth network dynamical system [Eq. (5)] cannot pass each other because

they cannot cross the invariant manifolds (dashed) which are fixed points of

the permutation symmetries [Eq. (3)]. A projection of two trajectories

(black, solid) onto the x1 - x2 plane is sketched, one on the invariant set and

one that stays on one side of the invariant manifold.
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show in the following, in pulse-coupled systems with full

permutation symmetry order preservation may break down.

III. BREAKDOWN OF ORDER PRESERVATION IN
PERMUTATION-SYMMETRIC PULSE-COUPLED
SYSTEMS

Here, we demonstrate that in pulse-coupled dynamical

systems with full permutation symmetry, the order preserva-

tion is broken. In a pulse-coupled system, the interaction

between individual units is fully determined by discrete

events in time at which the units generate pulses. The times

at which unit i generates its sth pulse is denoted by ts
i . In neu-

ronal systems, for example, this could be the spike times of

individual neurons. Then, unit i generates a pulse when

its state xi crosses a threshold xi ts
i

� �
¼ H from below,

_xi ts
i

� �
> 0, and thus the times ts

i depend on the initial condi-

tions. Mathematically, the velocity field F from Eq. (1) for a

pulse-coupled system additionally depends on the pulse gen-

eration times ts
i

d

dt
xðtÞ ¼ F x; tsi

� �
i2 1;…;Nf g;s2Z

; t
� �

: (6)

Therefore, there is a fundamental mathematical difference in

state space between ODEs and pulse-coupled dynamical sys-

tems: In a system of ODEs [Eq. (1)], a state is fully specified

by the values xi, i 2 1;…;Nf g, i.e., the system has an N-

dimensional state space. On the contrary, a pulse-coupled

system [Eq. (6)] at time t in general also depends on the set

of all pulse generation times up to time t, tsi
� �

tsi�t
and thus its

state at time t is fully specified by a tuple

yðtÞ ¼ xðtÞ; tsi
� �

tsi�t

� �
; (7)

that formally has infinite dimension. The additional dimen-

sions that control the change in the velocity field F due to

different pulse sequences ts
i

� �
enable the units to pass each

other, avoiding the invariant sets of the symmetric system.

To illustrate that order preservation is broken in pulse

coupled systems, we focus on pulse-coupled oscillators used

to model, e.g., spiking neurons.21,22 In general, the state of

each of the N oscillators is specified by a single real variable,

the “potential” VjðtÞ, j 2 1; 2;…;Nf g, that evolves according

to

d

dt
Vj ¼ GðVjÞ þ ZðVjÞ

XN

i¼1
i 6¼j

X
s2Z

ejiKðt� ts
i Þ; (8)

where the function GðVÞ > 0 specifies the local dynamics,

ZðVÞ, determines the response to incoming pulses, KðtÞ is a

causal (KðtÞ � 0 for t < 0) interaction kernel modeling the

shape of the pulses and eji is the coupling strength from oscil-

lators i to j. When an oscillator i reaches the potential thresh-

old Vi ts
i
�� �
¼ VH :¼ 1, its potential is reset to

Vi ts
i

� �
¼ V0 :¼ 0 and a pulse is generated. If ZðVÞ < 0 or

ZðVÞ > 0 for all V, there is a transformation of variables and

coupling strengths to a system [Eq. (8)] with Z ¼ const:41

Thus, we set Z Vð Þ ¼ 1 and consider homogenous inhibitory

interactions eij ¼ eð1� dijÞ, e < 0. This makes the system

symmetric under permutations of the indices.

Figure 2 illustrates that in this permutation symmetric

system, the different oscillators may pass each other, i.e., the

ordering is not preserved. Note that the dynamics of the os-

cillator variables ViðtÞ (except at the reset points) is continu-

ous and differentiable and that there is no delay in the

coupling. The breakdown of order preservation is thus

caused by the pulsatile nature of the coupling.

IV. ANALYTICAL PREDICTION FOR THE BREAKDOWN
OF ORDER PRESERVATION

Does pulse-coupling imply the breakdown of order con-

servation? Is the phenomenon restricted to specific choices

of parameters or initial conditions? To access these ques-

tions, we analyze a class of pulse-coupled systems that is

analytically tractable.

FIG. 2. (Color) Breakdown of order preservation in permutation symmetric pulse-coupled networks: (a) dynamics of N ¼ 4 pulse-coupled units [Eq. (8)] with

KðtÞ ¼ 1
r sin2 p

r t
� �

for t 2 ½0; r� and K tð Þ ¼ 0 otherwise, r ¼ 3, GðVÞ ¼ I � V, I ¼ 1:1, coupling strength e ¼ �1, and initial condition near the synchronous

state to which the dynamics converges. In the process of synchronization, the units pass each other; (b) magnification.
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A. Model and numerical simulations

We focus on pulse-coupled oscillators of the form (8)

with an interaction kernel

KðtÞ ¼ d t� sVð Þ: (9)

Here, a pulse generated at time t is received after a delay

time sV and then instantaneously increases the potentials of

the oscillators. This approximation is valid in the limit where

the time scale of the interaction due to the pulses is much

faster than the period of intrinsic oscillation.

The system has an equivalent phase description that sim-

plifies the analysis: as G > 0, the free (e ¼ 0) solution ~VðtÞ
of Eq. (8) starting with initial condition ~Vð0Þ ¼ 0 increases

monotonically and reaches the threshold after a time T, i.e.,
~VðT�Þ ¼ 1. This solution defines a bijective map between

potential and phase representation

U : ½/�; 1Þ ! ð�1; 1�; / 7!Uð/Þ :¼ ~Vð/TÞ;

called the rise function. Here, /� is a lower bound of the

phase and possibly /� ¼ �1, cf. Refs. 32, 33, 42, 43. In

the phase representation, the free dynamics simplifies to

d/j

dt
¼ 1: (10)

When /i reaches its phase threshold /iðt�Þ ¼ 1, it is reset to

/iðtÞ :¼ 0 and a pulse is generated that is received by all

other oscillators j after a rescaled delay time s ¼ sv=T,

where it causes an instantaneous phase jump

/jðtþ sÞ ¼ He /j tþ sð Þ�ð Þ
� �

(11)

mediated by the interaction function

Heð/Þ ¼ U�1ðUð/Þ þ eÞ: (12)

The dynamics of single units of this system is illustrated in

Figure 3. For later use, we define a pure phase shift by

SD /ð Þ ¼ /þ D:

In such network dynamical systems, the synchronous state,

where all oscillators have the same phase /iðtÞ ¼ /jðtÞ
¼: /0ðtÞ for all t 2 R and all i; j 2 f1;…;Ng, exists due to

permutation symmetry and is linearly and asymptotically sta-

ble for inhibitory interactions (e < 0) and concave rise func-

tions (U00 < 0).28,29

Numerical simulations of such systems suggest that in

the process of synchronization oscillators can overtake

repeatedly for certain parameters while for others the

ordering is conserved (cf. Figure 4). Systematic numerical

analysis uncovers that the breakdown of order preserva-

tion depends on the system parameters only (cf. Figs. 4

and 5).

B. Analysis

In this subsection, we concentrate on order preservation

close to the synchronous state. In the synchronous state

/iðtÞ ¼ /0ðtÞ, all pulses are simultaneously sent when the

phases reach the threshold, say at time t ¼ 0 and reset to

/sð0Þ ¼ 0. All pulses are simultaneously received at time

t ¼ s, leading to a phase jump to /0ðsÞ ¼ HðN�1Þe sð Þ.
Assume now that the system is close to the synchronous

state. Without a loss of generality, we label the oscillators

such that initially

1 > /1 � /2 �… � /N > 0 : (13)

To study whether some oscillators pass each other, we switch

to a different coordinate system /1;D1;2;D2;3;…;DN�1;N

� �
that encodes for the phase differences Di;iþ1 ¼ /i � /iþ1

between the oscillators i and iþ 1, i 2 1; 2;…;N � 1f g.
Using the ordering [Eq. (13)], we have Di;iþ1 � 0. The origi-

nal phases are recovered from these relative coordinates via

/i ¼ /1 �
Pi�1

j¼1 Dj;jþ1. We assume that we are sufficiently

close to the synchronous state such that the total phase spread

D1;N :¼
PN�1

i¼1 Di;iþ1 satisfies D1;N < min s
2
; 1�s

2

� �
, i.e., in this

perturbed synchronous state, first all oscillators generate a

pulse and afterwards all pulses are received. Assuming that

the first pulse is generated at t ¼ 0 (/1 0�ð Þ ¼ 1), the second

pulse is generated at time t ¼ D1;2, etc. In general, the k-th

pulse is generated at t ¼
Pk�1

i¼1 Di;iþ1, i.e., the ith inter-pulse

interval is exactly given by the phase difference Di:iþ1. Thus,

the reception of the individual pulses mediated by the interac-

tion function He alternates with phase shifts mediated by

SDi;iþ1
. The reception of the pulses starts at t ¼ s and the

phases of oscillators i and iþ 1 after reception of all pulses at

time t ¼ sþ D1;N are (cf. Appendix for details)

FIG. 3. (Color online) Model. Time

evolution [Eq. (8)] of the potential VðtÞ
and the corresponding phase /ðtÞ of one

oscillator [Eqs. (10) and (11)]: (a) the

time evolution of the oscillator’s poten-

tial, which evolves freely for one period

and then receives an inhibitory pulse of

strength e at time ts causing a potential

jump from V tsð Þ to V tsð Þ þ e ; (b) the

time evolution of the corresponding

phase / that jumps according to the

transfer function (12) from /� ¼ ts=T to

/ ¼ He /�ð Þ.
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/i sþD1;N

� �
¼ He � SDN�1;N

�… �He � SDiþ1;iþ2
�He � SDi;iþ1

�
� SDi�1;i

�… � SD2;3
�He � SD1;2

�He /iðsÞð Þ
/iþ1 sþD1;N

� �
¼ He � SDN�1;N

�… �He � SDiþ1;iþ2
� SDi;iþ1

�He�
� SDi�1;i

�… � SD2;3
�He � SD1;2

�� He /iðsÞ �Di;iþ1

� �
: (14)

Note that as we exclude the self-coupling, He is missing

between SDi;iþ1
and SDi�1;i

for oscillator i, etc. The following

dynamics are pure phase shifts which do not change the

phase differences. Thus, after one cycle of N pulse genera-

tions and receptions, the return map for Di;iþ1 is given by

Dr
i;iþ1 ¼ /i sþ D1;N

� �
� /iþ1 sþ D1;N

� �
:

As the Di;iþ1 are small, we only keep terms linear in Di;iþ1 in

Eq. (14) which yields

FIG. 4. (Color) Order preservation and its breakdown in the time evolution of a network of N ¼ 4 pulse-coupled oscillators [Eqs. (10) and (11)] with s ¼ 0:5,

U /ð Þ ¼ Ub /ð Þ [Eq. (21)]. The phases of all oscillators (color-coded) are shown vs. time t. Insets show magnifications as indicated: (a) time evolution for b ¼ 2:7
and e ¼ �0:13 with approach to stable synchronous state where the ordering of the oscillators is conserved; (b) similar dynamics that synchronize more slowly for

b ¼ 0:5 and e ¼ �0:13 ; (c) time evolution for b ¼ 3:2 and e ¼ �0:13 shows that oscillators pass each other; (d) similar dynamics with slower synchronization for

b ¼ 3:8 and e ¼ �0:4. Notice that in (d) all oscillators exchange their ordering, while in (c) only the blue oscillator overtakes the red and yellow oscillator.
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/i sþ D1;N

� �
¼: HðN�1ÞeðsÞ þ

Xi�1

k¼1

akDk;kþ1 þ
XN�1

k¼iþ1

bkDk;kþ1

þ H0ðN�i�1Þe HieðsÞð ÞDi;iþ1;

/iþ1 sþ D1;N

� �
¼: HðN�1ÞeðsÞ þ

Xi�1

k¼1

akDk;kþ1 þ
XN�1

k¼iþ1

bkDk;kþ1

þ H0ðN�i�2Þe Hðiþ1ÞeðsÞ
� �

Di;iþ1

� H0ðN�1ÞeðsÞDi;iþ1; (15)

with ak ¼ bk � H0ðN�1ÞeðsÞ and bk ¼ H0ðN�k�1Þe HkeðsÞð Þ.
Hence for the return map of the phase differences, we obtain

Dr
i;iþ1 ¼ H0ðN�i�1Þe HieðsÞð Þ � H0ðN�i�2Þe Hðiþ1ÞeðsÞ

� �h

þH0ðN�1ÞeðsÞ
i
Di;iþ1: (16)

Note that in this linear approximation, the phase difference

after return Dr
i;iþ1 depends only on the initial phase differ-

ence Di;iþ1 and no other Dk;kþ1, k 6¼ i, i.e., the phase differen-

ces Dj;jþ1 provide the coordinates in which the linearized

dynamics close to the synchronous state is diagonal and the

prefactors

ki ¼ H0ðN�i�1Þe HieðsÞð Þ � H0ðN�i�2Þe Hðiþ1ÞeðsÞ
� �

þ H0ðN�1ÞeðsÞ;
(17)

in Eq. (16) are the corresponding eigenvalues.

If one of these eigenvalues is negative ki < 0, the phase

difference Di;iþ1 changes sign under the return map and thus

the ordering of oscillators i and iþ 1 is exchanged. Thus, for

order preservation, we must have ki > 0 for all

i 2 1; 2;…;N � 1f g. Using

dHeð/Þ
d/

¼ U0ð/Þ
U0ðHeð/ÞÞ

(18)

and the group property of the transfer functions

He1
� He2

ð/Þ ¼ He1þe2
ð/Þ, we obtain the conditions

U0½Hðiþ1ÞeðsÞ�
U0½HðN�1ÞeðsÞ�

� U0½HieðsÞ�
U0½HðN�1ÞeðsÞ�

<
U0ðsÞ

U0½HðN�1ÞeðsÞ�
: (19)

As U0ð/Þ > 0, we can multiply by the denominator and

arrive at the following result:

Proposition 1: Prediction for the Breakdown of Order
Preservation: In pulse-coupled oscillator networks of the

form in Eqs. (8) and (9), the set of inequalities

U0½HieðsÞ� �U0½Hði�1ÞeðsÞ�< U0ðsÞ for all i 2 1;…;N� 1f g
(20)

constitutes necessary and sufficient conditions for order pres-

ervation close to the synchronous state. If one or more of the

conditions [Eq. (20)] is violated, oscillators pass each other

for sufficiently small perturbations around the synchronous

state.

Remark 1: For instance, if Eq. (20) is not fulfilled for

i ¼ i1, Di1;i1þ1 changes its sign under the return map and thus

for oscillators satisfying the initial ordering [Eq. (13)], the

ði1 þ 1Þth oscillator will overtake the i1th oscillator. The der-

ivation [Eqs. (13) and (14)] of Eq. (20) yields an intuitive

understanding of this inequality: The term on the right hand

side, U0 sð Þ, accounts for how the initial phase difference

Di;iþ1 changes due to the reception of all pulses. The larger

the term, the less the oscillators synchronize which makes it

harder for them to pass each other. The two terms on the left

hand side arise because unit i does not receive the ith pulse,

while unit iþ 1 does not receive the iþ 1ð Þth pulse as self-

coupling is excluded. The difference between these two

terms leads to a change in phase difference which if large

makes it easier for the iþ 1ð Þth unit to pass unit i.
Remark 2: It is important to note that conditions (20)

ensuring order conservation depend only on U, s, and e but

not on the perturbation vector itself. Therefore, order preser-

vation and its breakdown are intrinsic properties of the sys-

tem, at least close to synchrony.

For convex and for concave rise functions, the condi-

tions (20) are monotonic in the sense that once a single con-

dition (i ¼ N � 1 for concave U or i ¼ 1 for convex U) is

satisfied, all others are, too. Using the rise function15

Ubð/Þ ¼
1

b
ln 1þ ðeb � 1Þ/
� 	

; (21)

which is concave for b > 0 and convex for b < 0, the condi-

tions (20) for order conservation explicitly become

1 < eeb þ eieb (22)

FIG. 5. (Color online) Parameter dependence of the transition between

order conservation and its breakdown in b - e -parameter space of the pulse-

coupled network used in Figure 4. For each parameter set ðe; bÞ
(b 2 ½0:04; 4:00� in steps of Db ¼ 0:04, e 2 ½�1:0;�0:01� in steps of

De ¼ 0:01), the system was initialized 250 times with uniform distributed

phases /i 2 ½0; 0:1�. Shown is the percentage of these runs where the order-

ing is not conserved. The solid red line, given by Eq. (22), indicates the theo-

retically predicted transition between the regimes where the order is

conserved or units pass each other. The parameter values used for Figure 4

for the cases of order conservation (	, ~) and overtaking (þ, !) are indi-

cated. Because eigenvalues are close to zero near the transition line, the dy-

namics synchronize faster for ~ and !.
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where for b > 0, i ¼ N � 1, and b < 0, i ¼ 1: Interestingly,

these conditions are independent of the delay s, because the

transfer function for U ¼ Ub has the invariance property

Heð/Þ � HeðwÞ ¼ Heðtþ /Þ � Heðtþ wÞ for all t and /, w,

/þ t, and wþ t in the domain of He. This explicitly shows

that the delay is not essential for whether or not oscillators

overtake.

The explicit prediction [Eq. (22)] for the breakdown of

order preservation is illustrated in Figure 5. Condition (22)

divides the parameter-space into two regions, one where

oscillators pass each other repeatedly and one where the

ordering is preserved. Numerical simulations agree very well

with our theoretical prediction.

Note that the subset of the eigenvalues ki which are neg-

ative (i.e., for which indices i the parameter conditions (20)

do not hold) determines the possible permutations among the

oscillators in one cycle. For instance, Figure 6 shows the dy-

namics for three different parameter values of b in a N ¼ 4

network. It illustrates that with increasing b more and more

permutations become possible, increasing the disorder in the

system. For b ¼ 2:7, all conditions (22) are satisfied, and the

ordering of the oscillators is preserved. For b ¼ 3:2, condi-

tion (22) still holds for i 2 f1; 2g but not for i ¼ 3. Thus, the

first three oscillators’ ordering is preserved, but the oscillator

with the smallest phase can pass the other oscillators and

because condition (20) is sufficient for overtaking, it must at

least pass the second last oscillator. For b ¼ 4:0, the condi-

tion is violated for i 2 2; 3f g and thus only the first two

oscillators keep their ordering while the other oscillators

overtake.

We remark further that we considered local dynamics

converging towards the synchronous state, but in fact we

assumed only the existence of a fully synchronous state and

not its stability. Thus, in principle, overtaking is possible

also during a desynchronization process from an unstable

synchronous state. However, in the class of systems studied

in this section, the ordering is necessarily conserved close to

an unstable synchronous state: For instance, for systems with

convex rise function and inhibitory interactions, e < 0, the

synchronous state is unstable and the oscillators locally

desynchronize.44,45 Due to convexity U00 > 0, we obtain

U0½HieðsÞ� � U0½Hði�1ÞeðsÞ� < 0; (23)

for all i, and as U0ðsÞ > 0, the oscillators cannot pass each

other according to Eq. (20).

Let us shortly summarize our results: We found in a

large class of pulse-coupled systems that overtaking occurs

depending on the parameters but not on the initial conditions,

where we derived conditions predicting the breakdown of

order preservation analytically to first order approximation.

We found that the phenomenon of overtaking is insensitive

to parameter changes and thus robust.

V. DIFFERENT AVERAGE FREQUENCIES
IN PERMUTATION-SYMMETRIC SYSTEMS WITH
PULSE-COUPLING

So far, we have demonstrated that order preservation

breaks down in a class of pulse-coupled oscillator networks

converging towards the periodic orbit displaying full syn-

chrony. Here, we identify an example where oscillators may

also pass each other if their dynamics is not close to syn-

chrony. Interestingly, in this permutation-symmetric network

of identical oscillators the combination of desynchronizing

dynamics and overtaking leads to different average frequen-

cies of the oscillators.

We consider the system of phase oscillators [Eq. (8)]

with G /ð Þ ¼ x where we substitute V by the phase /. Here,

x is the intrinsic frequency of the oscillators and Z /ð Þ may

be viewed as their phase response curve.46 Equation (8) thus

reads

d

dt
/j ¼ xþ Z /j

� �X
i;s

ejiK t� ts
i

� �
: (24)

Similarly to Sec. IV, the phase /j is defined on the interval

½0; 1Þ and whenever the phase of a unit j reaches the thresh-

old /jðts�
j Þ ¼ 1, it is reset to /jðtsj Þ ¼ 0 and a pulse is

generated.

We focus on a system of two identical phase oscillators

N ¼ 2 coupled symmetrically, eij ¼ ð1� dijÞe, with coupling

strength e ¼ 11:7, a phase response

Zð/Þ ¼ sinð2p/Þe�3/ (25)

and a normalized alpha function for the pulse

KðtÞ ¼ HðtÞ30 expð�20tÞ � expð�60tÞð Þ (26)

(cf. Figure 7).

With this choice of the phase response, the two oscilla-

tors do not synchronize and repeatedly pass each other. Fig-

ure 8 shows an example where one oscillator generates four

pulses during one period of the dynamics while the other one

generates only three. More generally, we find that the dy-

namics of Eq. (24) with a phase response similar to Eq. (25)

and strong enough coupling typically converges to a periodic

FIG. 6. (Color online) Dynamics of the ordering of the oscillator phases

(N ¼ 4, s ¼ 0:5, e ¼ �0:13). Without loss of generality, we labeled all pos-

sible orderings of the oscillators from 1 to 4! ¼ 24. We start the system close

to the synchronous state and plot the ordering index at discrete times just af-

ter the reception of all pulses of one cycle (return map) for b ¼ 2:7 (	),
b ¼ 3:2 (þ), and b ¼ 4:0 (n).
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state in which one oscillator generates n pulses while the

other oscillator generates m, with n 6¼ m, i.e., the system

shows n : m locking. Thus, in this permutation-symmetric

network, one of the oscillators has a higher average fre-

quency than the other, and only the initial conditions deter-

mine which of the oscillators exhibits the higher frequency

and thus a larger winding number.

These findings for pulse-coupled cell networks are in

stark contrast to the behavior obtained in similar systems

with time-continuous coupling analyzed in Refs. 1 and 2.

There it was shown that if the polydiagonals are invariant,

the ordering of the oscillators cannot change, and thus all

oscillators necessarily have identical average frequencies

and equal winding numbers.

We also note that the average frequencies of the oscilla-

tors are determined by the initial conditions. Thus, these

symmetric pulse-coupled systems are capable of storing in-

formation about their initial state in terms of a rate code.

Moreover, due to symmetry, there is no bias for one of the

frequency-locked states and all inputs are stored in a fully

symmetric way.

The key to obtaining different average frequencies in

the symmetric system above is related to the question of how

two oscillators in a pulse-coupled system can pass each other

and additionally increase their phase difference. The form of

the phase response function (25) achieves simultaneously

desynchronization and overtaking, as it desynchronizes the

two oscillators right after the first oscillator has generated a

pulse. This is due to the negative part of Z /ð Þ at large / (see

Figure 7). When the second oscillator finally reaches the

threshold and its phase is reset to zero, the phase velocity

strongly increases as the response Z /ð Þ becomes very large

for / close to zero and thus the oscillator may pass the first

oscillator. By then, this oscillator has already achieved a

large enough phase where the phase response curve becomes

negative again and thus the reception of the pulse forces its

phase to be pulled towards the phase w, the zero crossing of

the phase response ZðwÞ ¼ 0. In total, this increases the

phase difference between both oscillators while they pass

each other.

VI. CONCLUSIONS

Symmetry in dynamical systems forces the existence of

sets that are invariant under the dynamics.10,47 In standard

dynamical systems, such as ordinary differential equations

defining a smooth flow, trajectories cannot cross such

invariant manifolds. For permutation symmetric dynamical

systems consisting of one-dimensional units such as homog-

enous globally time-continuously coupled networks of phase

oscillators,39,48,49 this implies that an initial ordering of the

units is conserved for all future times. As a consequence, the

oscillators necessarily have identical average frequencies.1,2

It is quite tempting to apply this intuition also to permutation

symmetric systems with pulse-coupling.

However, as shown here, pulse-coupling removes the

barrier property of the invariant sets and the oscillators can

pass each other. We have demonstrated the breakdown of

order preservation in different prototypical model systems.

In a particular class of pulse-coupled oscillator networks, the

breakdown was explained analytically. We found that order

FIG. 7. (Color online) (a) Phase

response curve [Eq. (25)] and (b) inter-

action function [Eq. (26)] used in the

simulations shown in Figure 8.

FIG. 8. (Color) Symmetrically pulse-coupled identical oscillators with dif-

ferent average frequencies: (a) dynamics of N ¼ 2 phase oscillators [Eqs.

(24)–(26)] with x ¼ 3 and e ¼ 11:7 numerically integrated using Euler’s

method with step size Dt ¼ 10�4. Dashed lines indicate the beginning of one

period of a 4 : 3 frequency locked state; (b) pulse generation times of the

two oscillators in (a) indicated by vertical bars showing the convergence of

the dynamics to the periodic 4 : 3 frequency locked state from initial condi-

tion /1 ¼ 0:2, /2 ¼ 0:24. By permutation symmetry of the network, the

exchange of the initial phases leads to 3 : 4 frequency locked state.
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conservation only depends on the system parameters but not

on the initial conditions.

The breakdown of order preservation is caused by the

pulsatile (discrete-time) coupling. If a trajectory in any dy-

namical system leads onto an invariant manifold, it will stay

on this manifold for all future times. In systems with pulse-

coupling, the state space dimension is increased compared to

time-continuous coupling and thus trajectories can avoid the

lower dimensional invariant manifolds when two units pass

each other by moving around them in the additional dimen-

sions. In the lower dimensional phase space that coincides

with the time-continuous system, it appears as if the trajecto-

ries cross the invariant manifolds.

We stress that inhomogeneous systems without permuta-

tion symmetry do not show order preservation in gen-

eral.50,51 Here, we analyzed the effect of how pulse-coupling

provides a mechanism that breaks order preservation in per-

mutation symmetric systems. Possible other factors that lead

to this phenomenon in symmetric systems1,2 are, e.g., inter-

action delays that also increase the system’s dimension or in-

stantaneous and discontinuous couplings. Also, strong

inhibitory coupling in combination with an extended phase

representation can lead to overtaking:1,52 In Ref. 1, the state

space of the uncoupled oscillators consists of the ordinary

positive phase values / 2 S1 ¼ 0; 1½ �=0 
 1 (0 and 1 are

identified) but strong inhibitory coupling causes the phase to

decay and can lead to negative phases / < 0, i.e., the state

space is extended by the negative real line R� that is

attached to S1 at 0. In this case oscillators that receive strong

inhibitory coupling can get trapped in the negative phase

part while others pass them on S1. The mechanism of over-

taking revealed in the current work is markedly different: It

does not require negative phases and the breakdown of order

preservation is solely caused by the pulse-coupling. This

may also explain overtaking in other systems with similar

types of pulse-coupling as, e.g., in Refs. 53 and 54, where

the interaction is determined by the discrete times of thresh-

old crossings from below and above.

Finally, we identified permutation symmetric pulse-

coupled oscillator networks where the identical units have

different average oscillation frequencies. For two oscillators,

we find different n : m frequency lockings with n 6¼ m and

thus non-identical winding numbers. Further, the average

frequencies of the individual oscillators in these systems

may be varied by varying the initial conditions. Thus, the

system is capable of coding information about its initial state

via the different rates of the oscillators. Due to the permuta-

tion symmetry of the system, the basins of attraction are

symmetric as well, such that the information about the initial

state is coded in a completely symmetric way. This might

have useful applications to systems in engineering and neu-

roscience when faced with symmetric information sources.
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APPENDIX: RETURN MAP FOR PHASE DIFFERENCES

Here, we calculate the change of the phase differences

Di;iþ1 of the system’s dynamics for one cycle, i.e., the time

evolution until oscillator 1 has returned to its original phase

(cf. Table I and Eq. (14)). Because of the oscillators’ simple

intermediate dynamics d/i=dt ¼ 1, we just consider their

state at single event times: the pulse-sending times ti
s of the

single oscillators and the times ti
r, when the other oscillators

TABLE I. The phases of the N units directly after the events of the sequence s1 ! s2 !…! sN ! r1 ! r2 !…! rn

Event t /1 /2 …

s1 0 1! 0 1� D1;2 …

s2 D1;2 D1;2 1! 0 …
..
. ..

. ..
. ..

. ..
.

sN 1� D1;N D1;N D2;N …

r1 s /1 sð Þ ¼ s /2 sð Þ ¼ He s� D1;2

� �
…

r2 sþ D1;2 /1 sþ D1;2

� �
¼ He � SD1;2

/1 sð Þð Þ /2 sþ D1;2

� �
¼ SD1;2

/2 sð Þð Þ …
..
. ..

. ..
. ..

. ..
.

rN sþ D1;N /1 sþ D1;N

� �
¼ He � SDN�1;N

/1 sþ D1;N�1

� �� �
/2 sþ D1;N

� �
¼ He � SDN�1;N

/1 sþ D1;N�1

� �� �
…

Event t /i … /N

s1 0 1� D1;i … 1� D1;N

s2 D1;2 1� D2;i … 1� D2;N
..
. ..

. ..
. ..

. ..
.

sN D1;N Di;N … 1! 0

r1 s /iðsÞ ¼ Heðs� D1;iÞ /iðsÞ ¼ Heðs� D1;NÞ
r2 sþ D1;2 /iðsþ D1;2Þ ¼ He � SD1;2

ð/iðsÞÞ … /Nðsþ D1;2Þ ¼ He � SD1;2
ð/NðsÞÞ

..

. ..
. ..

. ..
. ..

.

rN sþ D1;N /iðsþ D1;NÞ ¼ He � SDN�1;N
/i sþ D1;N�1

� �� �
/Nðsþ D1;NÞ ¼ He � SDN�1;N

/N sþ D1;N�1

� �� �
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receive these pulses. We label these events si, when oscilla-

tor i sends a pulse, and ri, when the other oscillators receive

the pulse of oscillator i.
To calculate the phases at these times, we first add the

time difference between the current and the previous event

to an oscillator’s phase by applying the shift SDð/Þ ¼ /þ D
to all oscillators’ phases. Here, D is determined by the time

to the next event, either D ¼ mini 1� /if g for sending

events si or D ¼ mini s� /if g for receiving events ri. In the

case of a pulse-sending event si, we reset the phase of oscil-

lator i. If we have a pulse-reception event ri, we apply the

transfer function Heð/Þ to all phases except the phase of os-

cillator i as there is no self-coupling (eij ¼ ð1� dijÞe).
Defining Di;j ¼

Pi�1
k¼j Dk;kþ1, we start at time t ¼ 0 with

initial state /ið0Þ ¼ 1� D1;i. As all Di;iþ1 > 0, oscillator

i ¼ 1 generates the first pulse, then oscillator i ¼ 2, etc. The

reception times are locked to the pulse-sending times via the

delay s(tir ¼ ti
s þ s). Using the condition D1;N < min

s
2
; 1�s

2

� �
, we have the event sequence

s1 ! s2 !…! sN ! r1 ! r2 !…! rN: (A1)

At time t ¼ sþ D1;N , all pulses of this sequence have been

received. Taken together, this results in the dynamics shown

in event Table I.

The remainder of the time evolution until the next pulse

generation event is a pure phase shift S~D where ~D
¼ 1�maxi /i sþ D1;N

� �� �
which does not change the phase

differences Di;iþ1. We thus arrive at the expression (14) for

the phase differences after return.
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