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The response of a neuron to synaptic input strongly depends on whether or not the neuron has just

emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to

residual input charges and study its collective network dynamics analytically. We uncover a desynchro-

nization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an

increase in the strength of the partial response induces a sequence of bifurcations from states with large

clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous

spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical

neurons.
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The brain processes information in networks of neurons,
which interact by sending and receiving electrical pulses
called action potentials or spikes. The response of a neuron
to incoming signals strongly depends on whether or not it
has just sent a spike itself. After the initiation of a spike the
membrane potential at the cell body (soma) is reset towards
some potential and the response to further synaptic input is
reduced due to the refractoriness of the neuron [1]. The
dendritic part of the neuron where incoming signals are
integrated is affected only indirectly by this reset due to
intraneuronal interactions [2–4].

To characterize this effect several multicompartment
models have been proposed in which different parts of a
single neuron interact [2]. For instance, in a two-
compartment model [3] of coupled dendrite and soma,
the membrane potential at the soma is reset after spike
emission while the dendritic dynamics is affected only by
the resistive coupling from the soma to the dendrite. This
accounts for the fact that in several kinds of neurons
residual charge remains on the dendrite (following the
somatic reset) that is then transferred to the soma [4,5].
Thus the dynamics of the individual neurons is modified
which severely affects the collective capabilities of net-
works of such neurons.

In this Letter we propose a simple neuron model which
captures the response to residual input charges following
spike emission in the form of a partial reset and at the same
time allows an analytical study of the collective network
dynamics. A fraction c 2 ½0; 1� of the residual suprathres-
hold input charge is kept by the neuron after reset. For c ¼
0 all additional input charge not needed to trigger a spike is
lost after spike emission, whereas for c ¼ 1 the total input
charge is conserved [6]. Although the regime 0< c< 1 is
likely to be the biologically more relevant, to our knowl-
edge, there are so far no systematic studies of the dynam-
ics of networks of neurons with partial response. To reveal

the basic mechanisms underlying the collective dynamics
of networks of such neurons we focus on globally and
homogeneously coupled neurons. Despite their simplicity
these networks already exhibit a rich variety of dynamics
that is controlled by the partial reset. In particular we find
and show analytically that for a broad class of neurons
there is a desynchronization transition in the network
dynamics determined by a sequence of bifurcations: For
small c the fully synchronous state coexists with a variety
of cluster states (cf. [7]), with differently sized groups of
synchronously firing neurons. With increasing c, states
with clusters of size a and larger become sequentially

unstable at bifurcation points cðaÞcr satisfying 0 � cðNÞ
cr �

cðN�1Þ
cr � � � � � cð2Þcr � 1 such that for sufficiently large

c > cð2Þcr only an asynchronous state is left. We investigate
the main mechanisms generating this sequence of bifurca-
tions analytically and give an intuitive explanation. We
also discuss key consequences of this desynchronization
mechanism for biophysically more detailed systems.
Consider a network of N oscillatory neurons [8], whose

state at time t is characterized by a phase variable �i, i 2
f1; 2; . . . ; Ng, that constantly increases with time d

dt �i ¼ 1.

The membrane potentials ui ¼ Uð�iÞ are specified by a
rise function U that characterizes the subthreshold dynam-
ics of a neuron. Here U is smooth, strictly monotonically
increasing (U0 > 0), and normalized to Uð0Þ ¼ 0 and
Uð1Þ ¼ 1.
A neuron j generates a spike when its membrane poten-

tial crosses a threshold, ujðt�Þ � 1, which in turn may

trigger an avalanche of spikes: Neurons reaching the
threshold due to the free time evolution define the trigger-

ing set �ð0Þ ¼ fjjujðt�Þ ¼ 1g. The units j 2 �ð0Þ generate
spikes which are instantaneously received by all the neu-
rons i in the network. In response, their potentials are
updated according to
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uð1Þi ¼ uiðt�Þ þ
X

j2�ð0Þ
"ij; (1)

where "ij � 0 determines the strength of a directed syn-

aptic connection from neuron j to i. The initial pulse may

trigger certain other neurons k 2 �ð1Þ ¼ fkjukðt�Þ< 1 �
uð1Þk g to spike, etc. This process continues n � N steps until

no new neuron crosses the threshold. At each step m 2
f2; 3; . . . ; ng the potentials are updated according to

uðmþ1Þ
i ¼ uðmÞ

i þ X

j2�ðmÞ
"ij; (2)

where �ðmÞ ¼ fkjuðm�1Þ
k < 1 � uðmÞ

k g. The phases immedi-

ately after the avalanche � ¼ S
n
m¼0 �

ðmÞ of size a ¼ j�j
are obtained via

�iðtþÞ ¼
8
><
>:

U�1ðuiðt�Þþ
P
j2�

"ijÞ i =2 �

U�1ðR½uiðt�Þ þ P
j2�

"ij � 1�Þ i 2 �;
(3)

where R is the partial reset function. Here we focus on the
linear form Rð�Þ ¼ c� , with c 2 ½0; 1� specifying the re-
maining fraction of suprathreshold input charges after
reset. As a key example of the collective dynamics of
neurons with partial reset, we here study neurons with
convex rise function (U00 > 0), modeling, e.g., a class of
conductance based integrate-and-fire neurons, which are
homogeneously and globally coupled without self-
interactions, "ij ¼ ð1� �ijÞ~", and total input strength " ¼P

j"ij ¼ ðN � 1Þ~" < 1. As explicit sample rise functions

we use Ubð�Þ ¼ 1
b ln½1þ ðeb � 1Þ��, where b < 0 speci-

fies its curvature.
Systematic numerical investigations indicate a strong

dependence of the network dynamics on the partial reset
strength c: In particular, we find synchronous states, cluster
states, asynchronous states, and a sequential desynchroni-
zation of clusters with increasing c. More detailed, if c is
sufficiently small, the long-term dynamics is dominated by
many coexisting cluster states in which neurons are syn-
chronized to differently sized groups resulting in a periodic
state of the network (cf. Fig. 1). As c increases, less and
less clusters are observed with the maximal number of
units per cluster decreasing. Above a critical value of c
only an asynchronous state remains.

What is the origin of this rich repertoire of dynamics and
which mechanisms control the observed transition? To
answer these questions, we analytically investigate the
existence and stability of periodic states with clusters of
arbitrary sizes. It turns out that the sequence of bifurcations
is controlled by two effects: subthreshold inputs that are
always synchronizing and suprathreshold inputs that may
be synchronizing or desynchronizing depending on the
strength c of the partial reset.

As the first step we show that the fully asynchronous
(splay [9]) state exists and is stable for all c 2 ½0; 1�. It is
defined by identical interspike intervals between each pair

of subsequently and individually firing neurons. A firing
map maps the phases �i of the system just before one
avalanche to the phases just before the next. To construct
this map for the asynchronous state we evaluate the current
spike (a one-neuron ‘‘avalanche’’) and shift all phases by
the same amount � such that the largest of the resulting
phases is at threshold. Without loss of generality, we label
the neurons’ phases in ascending order such that the phases
��

i and the shift�
� uniquely define the asynchronous state;

they are determined self-consistently by ��
1 ¼ �� > 0 and

��
l ¼ U�1½Uð��

l�1Þ þ ~"� þ �� for l 2 f2; . . . ; Ng such

that ��
N ¼ 1. Homogeneity of the network implies invari-

ance of such an asynchronous state under the firing map for

every " < 1. Applying a small perturbation �ð0Þ ¼
ð�ð0Þ

1 ; . . . ; �ð0Þ
N�1Þ to the N � 1 phases which are not at

threshold and linearizing the firing map (cf. [10,11]) yields
the perturbations after the next firing

� ð1Þ ¼ A�ð0Þ: (4)

Here A is a matrix whose only nonzero elements are
Aiþ1;i ¼ ai for i 2 f1; . . . ; N � 2g and Ai;N�1 ¼ �aN�1,

where

ai ¼ U0ð��
i Þ

U0ðU�1½Uð��
i Þ þ ~"�Þ (5)

for i 2 f1; . . . ; N � 1g. Since U0 > 0, U00 > 0, and ~" > 0,

b ca

d

FIG. 1 (color online). Sequential desynchronization transition
in a network of N ¼ 50 neurons (U ¼ Ub, b ¼ �3, ~" ¼
0:0175). The phases �i of all neurons are plotted against the
sth spike of a reference neuron. Starting from a synchronous
state and perturbing at s ¼ 5, the phase dynamics are shown for

(a) c1 ¼ 0:025< cðNÞ
cr (inset: magnification), (b) c2 ¼ 0:5 2

ðcðNÞ
cr ; cð2Þcr Þ, and (c) c3 ¼ 0:7> cð2Þcr . (d) Probability PðaÞ of

observed cluster sizes a in the asymptotic dynamics of 1500
simulations for each c 2 f0; 0:0125; . . . ; 1g starting from random
phases uniformly distributed in ½0; 1Þ. Solid red line: Exact
theoretical prediction (10) above which clusters are unstable.
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we have ai < 1. The Eneström-Kakeya theorem [12] ap-
plied to the characteristic polynomial of A implies that its
eigenvalues satisfy j�ij< 1 for all i � N � 1, showing
that the asynchronous state is linearly stable. The stability
properties of this state are identical for all c 2 ½0; 1� be-
cause all neurons fire individually and do not initiate any
avalanche with suprathreshold inputs.

Next we investigate the stability properties of a periodic
cluster state under the return map, i.e., the mapping of all
phases just before the triggering of an avalanche � of size
a1 ¼ j�j to all phases just before the same avalanche
reoccurs. Such a cluster state exists (i.e., is invariant)
unless the maximal cluster size is too large such that this
cluster absorbs neurons not belonging to it or is absorbed

by other clusters. Given that the specific neuron N 2 �ð0Þ
stays in the triggering set of the avalanche, the return map
M equals the map defined from the hyperplane �N ¼ 1 to
itself. It is fully specified by the number m of avalanches,
1 � m � N, by the number as, s 2 f1; . . . ; mg, of neurons
spiking in each avalanche, and by the subsequent phase
shifts�s that fix the time lags between the avalanches. This
information is determined from the initial phase vector
(�1; . . . ; �N�1; 1) and grouped into a firing sequence F ¼
½ð"s; �sÞ�ms¼0, setting "s ¼ as~". For givenF the return map

then reads

MF ð�iÞ ¼ S�m
�H"m � � � � � S�2

�H"2 � S�1
� J"1ð�iÞ

(6)

for i 2 �. Here S�ð�Þ ¼ �þ � mediates a pure phase
shift, Hxð�Þ ¼ U�1½Uð�Þ þ x� specifies the subthresh-
old response to an incoming spike, and Jxð�Þ ¼
U�1ðR½Uð�Þ þ x� ~"� 1�Þ represents the partial re-
sponse R to suprathreshold input. By definition we have
MF ð1Þ ¼ 1. For an avalanche of size a1 to not decay into

smaller subclusters, all neurons which were excited above
threshold by a < a1 preceding spikes in this avalanche [cf.
(2)], i.e., with phases in the interval Ia ¼ ½U�1ð1� a~"Þ; 1�,
have to be excited above threshold again in the avalanche
after return. Thus the conditions

MF ðIaÞ � Ia (7)

for all a 2 f1; . . . ; a1 � 1g and all admissible firing se-
quences F with initial avalanche size a1 ensure a cluster
of size a1 to not split up. For general R and U these
conditions for most synchronizing and most desynchroniz-
ing firing sequences F yield upper and lower bounds on
the maximal size of a cluster to be invariant under the
return map [10]. Here we focus on the specific rise function
Ubð�Þ and on the linear partial reset Rð�Þ ¼ c� to obtain

explicit equations for the bifurcation points cðaÞcr [(10) and
(12) below]. For U ¼ Ub the change of phase differences
due to subthreshold inputs is independent of the phase, i.e.,
H"ð�Þ �H"ðc Þ ¼ H" � S�ð�Þ �H" � S�ðc Þ for � � 0.
Using this property in (6) after determining �m from
MF ð1Þ ¼ 1 the return map (6) for i 2 � becomes inde-

pendent of F and simplifies to

MF ð�iÞ ¼ S �� �HðN�a1Þ~" � Ja1 ~"ð�iÞ; (8)

where �� ¼ 1�HðN�a1Þ~" � Ja1 ~"ð1Þ. Since M0
F � 0 condi-

tions (7) simplify to MF ½U�1
b ð1� a~"Þ� � U�1

b ð1� a~"Þ
for a 2 f1; . . . ; a1 � 1g. Using convexity M00

F � 0 these

further reduce to the single condition for a ¼ 1

MF ½U�1
b ð1� ~"Þ� � U�1

b ð1� ~"Þ; (9)

where a single unit triggers the avalanche. Conversely, a
generic perturbation will disturb the cluster such that it gets
triggered by a single unit only. Thus condition (9) is
sufficient and necessary for avalanches of size a1 to be
invariant under the return map. Using equality in (9), the

bifurcation values cðaÞcr above which a cluster state with
maximal cluster size a becomes unstable are then deter-
mined implicitly by the equation

ebð1�½ðN�aÞþcðaÞcr ða�1Þ�~"Þðe�b~" � 1Þ ¼ ðe�bcðaÞcr ~" � 1Þ: (10)

Figure 1 shows an explicit example of these theoretical

predictions for the bifurcation values cðaÞcr which well match
the numerical results.
In general, we infer from (10) that

0< cðNÞ
cr < cðN�1Þ

cr < � � �< cð2Þcr < 1; (11)

independent of specific parameters b, ~", and N. First, this
implies that the entire sequence of bifurcations is guaran-
teed to occur in the physically relevant open interval c 2
ð0; 1Þ. Second, with increasing c, states with larger clusters
become unstable before states with smaller clusters. In
particular, the synchronous state becomes unstable first
and cluster states with at most two synchronized neurons
become unstable last. Third, for a ¼ 2 we find that the
largest bifurcation point

cð2Þcr ¼ 1

b~"
ln½1� eb½1�ðN�1Þ~"�ð1� eb~"Þ� (12)

can be arbitrarily small, e.g., as b ! �1. Thus the entire
sequence of desynchronizing bifurcations can occur for
arbitrary small c.
The form (8) of the return map reveals the mechanisms

underlying the desynchronization transition as the inter-
play between synchronization due to subthreshold inputs
mediated by HðN�aÞ~" [cf. Fig. 2(a)] and further synchroni-

zation or desynchronization due to suprathreshold inputs
and partial reset mediated by Ja~", depending on the
strength of the partial reset [cf. Figs. 2(b) and 2(c)]. The
large clusters get unstable first since they receive less
synchronizing subthreshold inputs from the other smaller
clusters and additionally the desynchronization due to the
reset is stronger in larger avalanches.
The observed desynchronization transition prevails for

networks of inhomogeneously coupled units and neurons
with rise functions of mixed convex and concave curvature,
as, e.g., characteristic for quadratic integrate-and-fire neu-
rons [13], the normal form of type I excitable neurons.
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Moreover, our simple model system can be connected to
biophysically more detailed type I models by comparing
spike time response curves that encode the shortening of
the interspike intervals (ISI) following an excitatory input
at different phases of the neural oscillation. An excitatory
stimulus that causes the neuron to spike will maximally
shorten the ISI in which the stimulus is applied.
Additionally the following ISI is typically affected as
well. This effect can be characterized by an appropriately
chosen partial reset in our simple system [10]. Networks of
two-compartment conductance based neurons indeed ex-
hibit similar desynchronization transitions when varying
the coupling between soma and dendrite (not shown)
which in our simplified model controls the partial reset.

In summary, we introduced a simple model of spiking
neurons with partial reset to investigate collective network
effects of possible residual charges that may be important
after somatic reset. Already for globally and homogene-
ously coupled networks we find that residual charges
present after spike generation drastically affect the network
dynamics. We revealed a new desynchronization mecha-
nism that controls a sequential destabilization of cluster
states. For no or only small fractions of conserved charge,

c 2 ½0; cðNÞ
cr Þ, the synchronous state and cluster states with

many different cluster sizes coexist, whereas for large

fractions, c 2 ðcð2Þcr ; 1�, only the asynchronous state is

left. For intermediate c 2 ½cðNÞ
cr ; cð2Þcr � there is a sequence

of bifurcations, each destabilizing the largest stable cluster.
Interestingly, this entire sequence may occur in an arbi-
trarily small interval near c ¼ 0.

The mechanism for neural desynchronization discussed
above differs strongly from known mechanisms that are
based, e.g., on heterogeneity, noise, or delayed feedback
[14,15]. Possibly, the mechanism uncovered here may also
be used in modified form to prevent synchronization in
neural systems like in Parkinson tremor or in epileptic
seizures [15]. This calls for a future systematic study of

the impact of c and related parameters that modulate local
response properties and thus synchronization [16]. The
simple model system introduced above offers the first
example of an analytically tractable network model which,
based on partial reset, characterizes an essential feature of
biophysically detailed compartmental models [5,17].
M. T. acknowledges support by the Federal Ministry of

Education and Research (BMBF), Germany, under Grant
No. 01GQ0430. C. K. acknowledges financial support by
the German Academic Exchange Service (DAAD).

[1] C. Koch, Biophysics of Computation (Oxford University,
New York, 1999); L. F. Abbott and P. Dayan, Theoretical
Neuroscience (MIT , Cambridge, MA, 2001).

[2] I. Segev, J.W. Fleshman, and R. E. Bruke, in Methods in
Neuronal Modeling, edited by C. Koch and I. Segev (MIT,
Cambridge, MA, 1998).

[3] P. C. Bressloff, Physica (Amsterdam) 80D, 399 (1995).
[4] J. P. Rospars and P. Lansky, Biol. Cybern. 69, 283 (1993).
[5] Z. F. Mainen and T. J. Sejnowski, Nature (London) 382,

363 (1996).
[6] J. J. Hopfield and A.V.M. Herz, Proc. Natl. Acad. Sci.

U.S.A. 92, 6655 (1995); P. C. Bressloff, S. Coombes, and
B. de Souza, Phys. Rev. Lett. 79, 2791 (1997); P. C.
Bressloff, Neural Comput. 12, 91 (2000); W. Gerstner
and J. L. van Hemmen, Phys. Rev. Lett. 71, 312 (1993).

[7] A. Pikovsky, O. Popovych, and Yu. Maistrenko, Phys.
Rev. Lett. 87, 044102 (2001); K. Kaneko, Phys. Rev.
Lett. 78, 2736 (1997).

[8] R. E. Mirollo and S.H. Strogatz, SIAM J. Appl. Math. 50,
1645 (1990); U. Ernst, K. Pawelzik, and T. Geisel, Phys.
Rev. Lett. 74, 1570 (1995).

[9] S. H. Strogatz and R. E. Mirollo, Phys. Rev. E 47, 220
(1993); R. Zillmer, R. Livi, A. Politi, and A. Torcini, Phys.
Rev. E 76, 046102 (2007).

[10] C. Kirst and M. Timme, arXiv:0812.1786v1.
[11] M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 92,

074101 (2004); S. Jahnke, R.M. Memmesheimer, and
M. Timme, Phys. Rev. Lett. 100, 048102 (2008).

[12] For all zeros � of pnðzÞ ¼
P

n
i¼0 ciz

i, ci > 0, cnþ1 ¼ 1,
j�j � max0�i<nfci=ciþ1g. R. A. Horn and C. R. Johnson,
Matrix Analysis (Cambridge University Press, Cambridge,
England, 1996).

[13] B. Ermentrout, Neural Comput. 8, 979 (1996); D. Hansel
and G. Mato, Phys. Rev. Lett. 86, 4175 (2001).

[14] C. van Vreeswijk, L. F. Abbott, and G. B. Ermentrout,
J. Comput. Neurosci. 1, 313 (1994); C. van Vreeswijk,
Phys. Rev. Lett. 84, 5110 (2000).

[15] Y. Maistrenko, O. Popovych, O. Burylko, and P. A. Tass,
Phys. Rev. Lett. 93, 084102 (2004); I. Z. Kiss et al.,
Science 316, 1886 (2007); O.V. Popovych, C.
Hauptmann, and P.A. Tass, Phys. Rev. Lett. 94, 164102
(2005); O. E. Omel’chenko, Y. Maistrenko, and P.A. Tass,
Phys. Rev. Lett. 100, 044105 (2008).

[16] C. Kirst and M. Timme, Phys. Rev. E 78, 065201(R)
(2008).

[17] A.M. Oswald, B. Dorion, and L. Maler, J. Neurophysiol.
97, 2731 (2007).

0 1
0

1

0 1 0 1

a b

phase φ 

u
c

FIG. 2 (color online). Coacting synchronizing and desynchro-
nizing mechanisms underly the desynchronization transition.
The phase-potential relations are shown as solid black curves.
The phase differences before (��) and after spike reception
(�þ) are indicated. (a) Synchronization due to subthreshold
inputs coacting with either (b) synchronization for strongly
refractory partial resets (c 	 0) or (c) desynchronization for
sufficiently conservative partial resets (c 	 1) determine the
invariance of clusters under the return map (6).
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