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Convergence of Self-Organizing Pulse-Coupled
Oscillator Synchronization in Dynamic Networks

Johannes Klinglmayr, Christian Bettstetter, Senior Member, IEEE , Marc Timme, and Christoph Kirst

Abstract—The theory of pulse-coupled oscillators pro-
vides a framework to formulate and develop self-organizing
synchronization strategies for wireless communications
and mobile computing. These strategies show low com-
plexity and are adaptive to changes in the network. Even
though several protocols have been proposed and theoret-
ical insight was gained there is no proof that guarantees
synchronization of the oscillator phases in general dynamic
coupling topologies under technological constraints. Here,
we introduce a family of coupling strategies for pulse-cou-
pled oscillators and prove that synchronization emerges for
systems with arbitrary connected and dynamic topologies,
individually changing signal propagation and processing
delays, and stochastic pulse emission. It is shown by sim-
ulations how unreliable links or intentionally incomplete
communication between oscillators can improve synchro-
nization performance.

Index Terms—Convergence, distributed algorithms,
pulse-coupled oscillators, self-organization, sensor
networks, synchronization.

I. INTRODUCTION

THE theory of pulse-coupled oscillators [1], [2], inspired
by biology, offers interesting solutions for self-organizing

synchronization suited for large-scale wireless ad hoc and
sensor networks (see, e.g., [3]–[8] and references therein). In
essence, each node of the network contains an oscillator, which
changes its phase at a certain phase rate. All nodes interact with
each other by exchanging pulses [4] or sync words [6], where
the reception of a pulse or sync word may somehow change
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the oscillator’s phase of the receiving node. The goal is that
all nodes eventually end up in the same phase and are thus
synchronized in time. The algorithm is completely flat and
distributed, i.e., there is no need for selection of master nodes,
as done in technologies like Bluetooth.

Almost all work on the application of pulse-coupled oscilla-
tors to real world systems is based on simulations, where the
performance of a particular modification or extension of the
Mirollo–Strogatz coupling scheme [2] is evaluated in terms of
time-to-synchrony and synchronization precision as a function
of network parameters. Analytical results on pulse-coupled
oscillators can be found in physics and other natural sciences.
These results are often based on simplifying assumptions,
which restrict their application to real world networks [2], [7],
[9]–[13]. They do not include at least one of the following
conditions: random individual pulse delays, unreliable links or
pulse emission, or nonfully connected and dynamic networks.
Hence, for applications in real world wireless environments,
theoretical results from other disciplines often cannot be used.

In this paper, we describe a method that proves to achieve full
synchronization under a wide range of system environments,
which narrows the gap to real world settings. We provide four
main contributions: First, by addressing all conditions men-
tioned above simultaneously the proof we provide here substan-
tially backs the fundamentals for applications. Second, while
natural synchronization bounds exist, which state that nodes
cannot align their internal clocks better than the uncertainty in
the transmission delay [14], [15], our proposed algorithm shows
to converge to fully synchronized oscillations in the presence of
arbitrarily distributed propagation delays if there is a nonzero
probability for minimal transmission times. Third, we show that
a reduction of the number of transmissions, which are already
minimized in duration to pulses, further improves the efficiency
for synchornization. Fourth, for specific networks, unreliable
links between oscillators improve synchronization performance
[16]–[18]. These achievements are due to the specific design
of the coupling strategy: We combine refractory, negative, and
positive phase coupling together with stochastic pulse emission
[18]–[22].

This paper considerably extends and generalizes the work
in [18] published by the same authors in a physics journal.
Major differences are as follows: We generalize our proof to
systems which are closer to the real world taking into account
that instantaneous pulse transmissions are impossible and that
network links can dynamically change in time. Our general-
izations include the special case of zero communication delay
and fixed network topologies as in [18]. Including nonzero
minimal transmission delays required a new class of update
functions [compare [18] with (6)], and the introduction of new
mathematical concepts as the complexity of the analysis has
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significantly increased (cf., e.g., example 3 and Lemmata 1,
2, 5–11). Moreover, time varying network topologies required
additional analysis (cf., e.g., Lemma 9) in which we derive
precise analytic conditions on the dynamics of the network
structure under which synchronization is still guaranteed. We
further provide analytic estimates for the speed of synchroniza-
tion (see Section IV) and also explicitly study the robustness
of our method and its resilience to environments for which the
system is not designed for (see Section V).

The article is structured as follows: In Section II we give
background information, define the setting, and present the
individual dynamics. In Section III the main synchronization
proof is given, which is divided into two parts. First, we show
that in an invariant subspace, defined via a synchronization
condition, the phases of all oscillators synchronize. Second,
we show that every initial condition will eventually fulfill the
synchronization condition. In Section IV we give estimates on
the speed of the synchronization process, and in Section V we
support our theoretical results by simulations and demonstrate
fast convergence times, robustness and efficiency. Finally, we
conclude in Section VI.

II. PULSE-COUPLED OSCILLATORS

A. Background and Related Work

Pulse-coupled oscillators (PCO) have been used for several
decades to model synchronization phenomena found in nature,
especially the synchronous flashing of fireflies [1], [23], [24].

The coupling between oscillators in a PCO network is cap-
tured by an update function which determines the oscillator’s
phase change upon reception of a pulse. This function can have
phase advancing (excitatory) [2] or phase retarding (inhibitory)
effects [25], or employs a combination of both [18].

The basis of recent work on pulse-coupled oscillators is the
work by Mirollo and Strogatz [2]. They analyze a set of iden-
tical all-to-all coupled oscillators in a delay-free environment
and prove that all oscillators synchronize from almost all initial
phase positions using excitatory coupling. Follow-up research
takes into account more general modeling assumptions. For
example, delays in the system have desynchronizing effects,
but these effects can be overcome by proper design of the
update function, e.g., by using “refractory” periods (see [3], and
[26]–[28]). The effects of inhibitory coupling or its interaction
with excitatory coupling are studied in [29]–[33].

The application of pulse-coupled oscillators for distributed
synchronization in computer and communication networks is
described, e.g., in [3]–[7], [34], and [35]. The results of these
papers are, however, mainly based on simulations and imple-
mentations or restricted to the theory of two oscillators. In con-
trast to PCO models for biological systems, technical systems
provide the freedom of choosing coupling strategies detached
from biological constraints. In this respect different artificial
coupling schemes show beneficial and remarkable effects, as
they provide synchronization for specific environments (see
[18], [20], [21], [25], and [36]).

The presented article studies the asymptotic oscillator be-
havior with the help of a synchronization condition. In the

related field of continuous phase coupled oscillators systems,
for example contraction theory uses a comparable methodology
(e.g., [37]–[43]). However, most results and analysis methods
on continuous coupling are currently not applicable for pulse-
coupled oscillator systems due to the discrete nature of the
interaction [43].

B. System Setting

Work on synchronization for PCOs started with idealized
conditions such as all-to-all networks or instant transmissions
[1], [2]. To better match the theory with technical applications,
coupling specifications were studied. For instance, windows
without phase changes (so called “refractory” periods [26]),
or hybrid coupling (positive and negative coupling, e.g., [19],
[36]) were introduced. These modifications allowed to obtain
synchronization statements while generalizing system require-
ments. Here, we continue this approach. We present a certain
class of coupling and show its synchronization behavior under
the so far largest set of simultaneous constraints that can arise
in real world systems. We first introduce the system setting and
then study its dynamics and behavior.

1) Network: Consider a set of N oscillators indexed by i ∈
I := {1, 2, . . . , N}. The connections between the oscillators at
a given time t are given by on a directed graph G(t). The graph
can vary over time. G(t) is allowed to be disconnected from
time to time, but is assumed to be strongly connected for an
infinite number of time intervals of at least a duration of σG > 0.
At time t, we define the predecessors prei(t) as the set of
oscillators that have a directed link to oscillator i. Accordingly,
the set of all oscillators that oscillator i has a directed link to
are called successors suci(t). Note that prei(t) and suci(t)
may change over time. For a subset S ⊂ I of oscillators and
for a point in time t ≥ 0 (or a time interval T ), the set of all
predecessors preS(t), (preS(T )) of S is defined by

preS(t) := ∪k∈Sprek(t), preS(T ) :=∩t∈TpreS(t). (1)

A similar definition applies for sucS(t) and sucS(T ).
2) Oscillators: Each oscillator i ∈ I is determined by a

phase φi(t) ∈ [0, 1], that changes with constant rate

d

dt
φi = 1 (2)

see, e.g., [2], [20], [36], and [44]. Upon passing the threshold 1,
the oscillator resets its phase to 0, i.e.,

φi(t) = 1 ⇒ φi(t
+) = lim

s↘0
φi(t+ s) = 0 (3)

as in [2], [20], [31], [36], and [44] and emits a pulse with an
emission probability psend ∈ (0, 1), compare [16]. The time at
which the mth pulse of oscillator i is emitted is called tim.
Considering the network of all oscillators we denote tn as the
time of the nth pulse in the entire network.

3) Delays: A pulse emitted by oscillator i at time tn ex-
periences a delay τnij until it is received by oscillator j ∈
suci([tn, tn + τnij ]). The delay is distributed in the interval
[τmin, τmax], where τmin ≥ 0 is the minimal and τmax the
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Fig. 1. Examples of the functions in (6) and (7) that lead to synchrony.
(a) Auxiliary function H̃(φ) with b1 = (1/4) − τΔ and b2 = (3/4) + τδ .
(b) Update function H(φ) with b1 = (1/4) − τmax and b2 = (3/4) +
τmax. Each color represents one coupling function.

maximum possible delay. We assume that delays arbitrarily
close to τmin occur repeatedly: In other words, the probability
for delays occurring in arbitrary small intervals that include
τmin are positive P[τ ∈ [τmin, τmin + ε]] > 0 for all ε > 0.
For technical reasons [see requirements on (7)] we demand
2τmax + τmin < (1/4) and τmax < (1/8).

We further define

τδ := τmax − τmin and τΔ := τmax + τmin. (4)

The reader will notice the technical restrictions on the delay.
Section III-E will show that these are the most general condi-
tions for the presented coupling to achieve synchronization.

We allow for τmin ≥ 0 since delays cannot be arbitrarily
small in technical systems. This is one important difference to
[18], where τmin = 0 was required for analytic tractability.

4) Coupling: Whenever an oscillator j receives a pulse from
oscillator i and is not resetting at the same time, it performs a
phase update according to

φj

(
tn + τn+ij

)
= H

(
φj

(
tn + τnij

))
(5)

where H(·) is the phase update function (equivalently called
coupling function) [7]. We set

H(φ) = H̃(φ− τmin mod 1) + τmin mod 1 (6)

with auxiliary function [18]

H̃(φ) =

⎧⎪⎨
⎪⎩
φ φ ≤ τmax

h1(φ) τmax < φ ≤ 1
2

h2(φ)
1
2 < φ ≤ 1

(7)

where the functions h1(φ) and h2(φ) are smooth and sat-
isfy 0 < (dh1/dφ) < 1 and 0 < (dh2/dφ) < 1; h1(τmax) =
τmax, h1(1/2) ≤ (1/4)− τΔ; and h2((1/2)

+) ≥ (3/4) + τδ ,
h2(1) = 1. We abbreviate ξ := limx↗1 H

−1(x). Examples are
shown in Fig. 1.

Note that the restrictions on h1 and h2 are less constraining
than those in [18] if τmin = 0, which thus generalizes the results
in [18] further.

An oscillator is said to adjust, if it updates its phase such that
φ(t+) �= φ(t) upon receiving a pulse at time t. The adjustment
is called inhibitory if φ(t)∈(τΔ, (1/2)+τmin]∪(ξ, 1] such that
φ(t+)<φ(t) and excitatory if φ∈(0, τmin) ∪ ((1/2) + τmin, ξ]

Fig. 2. Definitions. Examples of dij , γi, dS , Dij , γ top and γbottom, for
a set S := {γ1, γ2, . . . , γ|S|}.

such that φ(t+) > φ(t). The phase interval [τmin, τΔ] with no
adjustments at pulse reception, i.e., φ(t+) = φ(t), is called
refractory period.

Below, we prove that the network dynamical system (2),
(3), (5) for the class of coupling functions (6), (7) implies
synchrony of all oscillators from arbitrary initial conditions
with probability 1.

C. Distances and Boundary Sets

The oscillators can be represented as dots moving counter-
clockwise on a circle with circumference 1 (see Fig. 2). The
natural circular distance is defined by

dij := d(φi, φj) := min (|φi − φj |, 1− |φi − φj |) . (8)

To simplify the formalism we introduce an interval notation
between two points φi and φj on the circle by setting

[φi, φj)1 :=

{
[φi, φj) if φi ≤ φj

[0, 1] \ [φj , φi) if φi > φj

(9)

and analogous for closed and open intervals.
Additionally, let Dkj denote the smallest phase interval on

the circle from φk to φj , i.e., if φk < φj then

Dkj :=

{
[φk, φj ] if φj − φk ≤ 1

2

[φj , φk]1 if φj − φk > 1
2

(10)

and if φj < φk then

Dkj :=

{
[φj , φk] if φk − φj ≤ 1

2

[φk, φj ]1 if φk − φj >
1
2

. (11)

Note that by this definition we have dij = μ(Dij) where μ is
the uniform Lebesgue measure on the circle.

For an index subset S ⊂ I , we define its outer edge set via
∂S(t) := {i ∈ S : ∃j �∈ S s.t. j ∈ suci(t)}. These are all the
nodes in S with a link to nodes outside of S at time t.

For any S ⊂ I we define the diameter of S via

dS := 1− max
i=1,...,|S|

{
φγi+1

− φγi
for i < |S|

1− φγi
+ φγ1

for i = |S|
(12)

where γi, i ∈ {1, . . . , |S|} is an index permutation such that
φγi

≤ φγi+1
for all i.

We further set top= i∗ and bottom :=(i∗ mod |S|)+ 1 if
i∗ is an index that yields the maximum in the expression in (12).
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The boundary sets that give rise to the diameter in (12) are
defined as

B↑(t) :=
{
j ∈ I : φj(t) = φγtop(t)

}
(13)

B↓(t) := {j ∈ I : φj(t) = φγbottom(t)} . (14)

These concepts are illustrated in Fig. 2 [see also Fig. 4(a) where
we have j ∈ B↑ and k ∈ B↓ and Fig. 4(d) for k ∈ B↑ and j ∈
B↓ and Fig. 5(a) for examples of Dij].

III. PROOF OF CONVERGENCE

For the introduced class of update functions, we now show
their synchronizing effect on the oscillators: We first identify
a contracting subset which eventually leads to synchrony and
then we show that this set is a global stochastic attractor, i.e.,
every set of initial conditions will eventually reach this con-
tracting subset with probability 1.

A. Proof Outline

We prove that any PCO system with dynamics as defined in
(2)–(7) synchronizes with probability 1. This proof is made in
two main steps. First, in Section III-C, we identify a condition
on the diameter dI of all oscillators I and show that once this
condition holds at time point t∗, it will hold for all future times
t ≥ t∗. Moreover, we show that dI(t) ≤ dI(t∗) and employing
stochastic pulse emission that dI(t) reaches 0 with probability 1,
i.e., the fully phase-synchronized state is an attractor of the
stochastic dynamics. Second, in Section III-D, we show that the
condition on the diameter dI will be met at some point in time
with probability 1. We prove this by constructing a sequence of
events that leads to the synchronization condition and show that
this sequence occurs with positive probability at any reception
event, i.e., the synchronized state is a global stochastic attractor
of the system.

Previously [18], we assumed that arbitrary short delays occur
with nonzero probability. We now consider minimal delays that
are nonzero and can vary over time. As a consequence, we
need to design a more general update function (6) as compared
to [18]. This alters the analytic proof substantially, requiring,
e.g., the introduction of boundary sets (used in Lemmata 6–9),
and a different treatment of the effect of phase updates on
the various distance measures with a large variety of subcases
(Lemmata 1, 2, 5–11). Moreover, we here also allow for time
varying directed topologies. This again alters the convergence
proof substantially and reveals conditions on the dynamics of
the network topology necessary for synchronization (see, e.g.,
Lemma 9).

B. Four Lemmata

Lemma 1: The update function H(·) from (6) determines
five update intervals Uk, k ∈ {1, . . . , 5} for the phases, such
that if oscillator j receives an incoming pulse at time t and
φj(t)∈Uk , the updated phase φj(t

+) has the following prop-
erties (see also Fig. 3):

• U1 :=(0, τmin), excitatory phase jumps, φj(t)<φj(t
+) <

τmin and φj(t
+) ∈ U1;

Fig. 3. The update intervals for the different phases. Within each update
interval the phase adjustment is either inhibitory (U3, U5), excitatory (U1,
U4) or refractory (U2).

• U2 := [τmin, τΔ], no phase jumps, φj(t
+) = φj(t) and

φj(t
+) ∈ U2;

• U3 := (τΔ, (1/2)+τmin], inhibitory phase jumps, τΔ <
φj(t

+) < φj(t) and φj(t
+) ≤ (1/4)− τmax, hence

φj(t
+) ∈ U3;

• U4 := ((1/2) + τmin, ξ), excitatory phase jumps, φj(t) <
φj(t

+), φj(t
+) ≥ (3/4) + τmax and φj(t

+) ∈ U4 ∪ U5;
• U5 := [ξ, 1), inhibitory phase jumps, φj(t

+) < φj(t) and
φj(t

+) ∈ U1.

Proof: The properties follow directly from the definition
of H(·) in (6) via the stepwise definition of H̃(·) from (7) and
the modulo operation used in (6), compare Fig. 1. �

Lemma 2: If at some time t′, oscillator i is at the threshold
with φi(t

′) = 1, then for all t ∈ (t′, t′ + τmax], φi(t) ∈ [0, τΔ]
and for all t ∈ (t′ + τmin, t

′ + τmax], φi(t) ∈ U2.
Proof: Take a time t′ and an oscillator i such thatφi(t

′)=1.
Then oscillator i will reset and we have φi(t

′+) = 0. If os-
cillator i will not receive a signal within (t′, t′ + τmax], we
have for all t ∈ (t′, t′ + τmax], φi(t) ≤ τmax, due to (2). If
there is a reception event at some time tr, we see that φi

passes through U1 and U2. U1 can only cause positive phase
jumps, see Lemma 1. Thus the minimum phase that oscillator i
attains at t′ + τmin and at t′ + τmax is bounded from below by
φi(t

′ + τmin) = τmin and φi(t
′ + τmax) = τmax. For an upper

bound, larger phases are obtained if phase updates occur within
U1. Therefore, the maximum phase achievable is φi(t

′+) =
τmin and due to the refractory period and (2) φi(t

′ + τmax) =
τmin + τmax. �

Corollary 1: Whenever a signal is received at some tr, there
is an oscillator i with φi(tr) ∈ U2.

Proof: If an oscillator j receives a signal at tr, there has
to be some oscillator i that emitted the signal and reset at t′ ∈
[tr − τmax, tr − τmin] and we can apply Lemma 2. �

Lemma 3: For all pairs of oscillators (i, j) ∈ I2, any dis-
tance dij only changes due to a reception event.

Proof: At any point in time t′, one of the following
situations occurs: (a) none of the oscillators receives a pulse;
(b) at least one oscillator receives a pulse. Assuming (a), due
to the uniform phase shift (2) and the circular definition of
distance (8) there are no changes in distance. This also includes
situations where oscillators reset. Hence, if a distance between
oscillators changes it has to change via (b). �

Corollary 2: The boundary sets do not change unless a
reception event happens.
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Proof: This is a direct consequence of Lemma 3. Dis-
tances are defined via phase positions as are boundary sets.
Hence they can only change if distances change. �

Lemma 4: For every oscillator i ∈ I , the time of its nth fire
event is finite almost surely, i.e.,

P
[
tin < ∞

]
= 1. (15)

Proof: We first show that every oscillator resets an ar-
bitrary number of times: Assume there is an oscillator i that
does not reset arbitrarily often. Then there has to be a time t′

from which on it does not reset anymore. Since (2) holds for
oscillator i, this can only be achieved by repeated pulse recep-
tions that retard φi. As the frequency of each oscillator, i.e., the
number of resets it experiences per time, is bounded (cf. [45]),
oscillator i receives only a maximum finite number M of pulses
within a unit time interval. As the probability of emission of
each pulse is psend < 1, oscillator i is retarded in a unit time
interval with some probability of at most some ζ < 1. Thus, the
probability that i is repeatedly retarded for m subsequent unit
time intervals is at most ζm, which tends to zero as m → ∞.
Hence, oscillator i reaches threshold and resets within some
finite time, yielding

P [φi(t) < 1, ∀t ≥ t′] = 0. (16)

Thus, oscillator i resets arbitrarily often and emits a pulse with
probability psend whenever it resets. The probability of m resets
of i not emitting a pulse is (1− psend)

m, and thus tin is finite
with probability 1. �

C. Synchronization Condition

An essential building stone for guaranteeing synchronization
is the use of a specific class of system states. It is defined via
the synchronization condition as follows.

We say that at a time t∗ the synchronization condition
holds if

dI(t∗) ≤
1

2
− τmax. (17)

Let us note the following consequences:
Lemma 5: If the synchronization condition (17) holds, then

for any pair (j, k) ∈ I2 and an oscillator i ∈ I that “lies in
between” oscillators j and k (cf. Fig. 4), i.e., for which

φi ∈ Djk (18)

we have Djk = Dji ∪Dik and thus

djk = dji + dik. (19)

Proof: Djk is the smallest interval on the circle from k to
j. Take b↓ ∈ B↓ and b↑ ∈ B↑ then μ(Db↓b↑) = dI < (1/2) due
to (17). Moreover, by definition of the diameter we must have
φk, φj ∈ Db↓b↑ and therefore also Djk ⊂ Db↓b↑ , i.e., djk =
μ(Djk)<1/2. As φi∈Djk we thus must have Dji∪Dik= Djk

and Dji ∩Dik = {φi}. Hence also djk = μ(Djk) = μ(Dji) +
μ(Dik) = dji + dik. �

Fig. 4. Representation of oscillators on a circle. Four different arrange-
ments of oscillators. In all four situations oscillator i is “in between”
oscillator j and k, see (18).

Fig. 5. An example for a phase adjustment as considered in lemma 7.
(a) If dI fulfills the synchronization condition (17) then at a reception
event at time tr there is an oscillator i with phase in U2, dI = Db↑i ∪
Dib↓ . (b) If at tr an oscillator j or j′ receives a signal, it adjusts
according to lemma 1, indicated by the colored arrows, and moves
closer to i. In particular, this holds for oscillators in the boundary sets.

Lemma 6: If (17) holds, then at any reception event at time
tr≥ t∗, for all j∈B↑(tr) we have τmin≤φj(tr)≤(1/2)+τmin.

Proof: Let us assume an oscillator j receives a signal at
time tr with j ∈ B↑(tr), and (17) holds. Due to Corollary 1
we have an oscillator i that emitted the corresponding sig-
nal and φi(tr) ∈ [τmin, τΔ]. Let us now consider the extreme
scenarios, when φj(tr) is smallest or largest. If φj(tr) is
smallest, then φj(tr) = φi(tr) ≥ τmin. If φj(tr) is largest, then
dI(tr) = (1/2)− τmax holds, and φi(tr) = τΔ. Then we have
for oscillator j

τmin ≤ φj(tr) ≤ τΔ +
1

2
− τmax =

1

2
+ τmin. (20)

�
We now identify a key observation for the proof of synchro-

nization: The diameter does not increase when the synchroniza-
tion condition holds.

Lemma 7: If (17) holds at time t∗ then for all t ≥ t∗ we have

dI(t) ≤ dI(t∗). (21)

Proof: Due to Lemma 3, a change in the diameter is only
possible via a reception event. Thus, consider such an event at
time tr ≥ t∗ in which oscillator j receives a pulse generated at
time te by oscillator i. By Lemma 2 we have φi(tr) ∈ U2 and
thus by Lemma 1 φi(t

+
r ) = φi(tr). Take b↑ ∈ B↑(tr) and b↓ ∈

B↓(tr). Using the synchronization condition (17) and Lemma 5
we have φj(tr) ∈ Db↑b↓(tr) and also Db↑b↓(tr) = Db↑i(tr) ∪
Dib↓(tr), see Fig. 5(a). Hence either φj(tr) ∈ Db↓i(tr) or
φj(tr) ∈ Dib↑(tr). Moreover, again using the synchronization
condition (17) and φi(tr) ∈ U2 we conclude Db↑i(tr) ⊂ U2 ∪
U3 and Dib↓ ⊂ U4 ∪ U5 ∪ U1 ∪ U2. Using Lemma 1 we have:
in the former case, φj(tr) ∈ U2 ∪ U3 and φj(t

+
r ) ∈ U2 ∪ U3,
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in the latter case, φj(tr) ∈ U4 ∪ U5 ∪ U1 ∪ U2 and φj(t
+
r ) ∈

U4 ∪ U5 ∪ U1 ∪ U2. Applying the phase update statements
from Lemma 1 we arrive at dij(t+r ) ≤ dij(tr) in both situations,
see Fig. 5(b). As other distances do not change we have for all
k ∈ I , dik(t+r ) ≤ dik(tr) and using Lemma 5 with j ∈ B↑(t

+
r )

and k ∈ B↓(t
+
r ) we arrive at (21). �

For the arguments in Lemma 7 the properties of the phase
updates as described in Lemma 1 are crucial. This motivates
the specific design of the update function.

We now show that eventually the diameter dI decays to zero,
by first showing in the next two lemmata that the boundary sets
almost surely lose elements if the diameter stays constant.

Lemma 8: If (17) holds and for all t ≥ t∗ the diameter
dI(t) = c > 0 stays constant the boundary sets B↓ and B↑
can only lose elements, i.e., for all t ≥ t∗, B↓(t) ⊂ B↓(t∗) and
B↑(t) ⊂ B↑(t∗).

Proof: By Lemma 3 the boundary sets can only change
during a reception event at time tr. By Lemma 2 there is an
oscillator i with φi(tr) ∈ U2 and thus by Lemma 1 φi(t

+
r ) =

φi(tr). By the same argument as in Lemma 7 we haveφk(t
+
r ) ≤

φk(tr) for all k ∈ B↑(tr) and thus B↑(t
+
r ) can only contain os-

cillators j �∈ B↑(tr) if for all oscillators k ∈ B↑(tr), φk(t
+
r ) <

φk(tr), such that φj(t
+
r ) ≥ φk(t

+
r ). Via the same arguments

used in Lemma 7 we further conclude that for all l ∈ I the
distances to i do not increase, i.e., dil(t+r ) ≤ dil(tr). This in
total implies a decrease in the diameter dI(tr) < dI(t

+
r ) in

contradiction to our assumption of constant dI . We arrive at
a similar contradiction when considering B↓. �

Lemma 9: If (17) holds and for all t ≥ t∗ the diameter
dI(t) = c > 0 stays constant the boundary sets B↓ and B↑ will
lose elements with probability one.

Proof: We construct a line of events in which B↓ loses
an element and show that it has positive probability. Therefore,
consider a time t′ ≥ t∗ in which the following conditions hold:

1) The network topology is constant in the time interval
TG = [t′, t′′] of length t′′ − t′ ≥ σG > 0. By assumption
on the dynamics of the network structure this event has
positive probability (cf. Section II-B1).

2) Set B↓(TG) := ∩t∈TG
B↓(t). Then using the definition

from (14), B↓(t) is never empty and by Lemma 8 B↓(TG)
is also non empty. Due to 1.) and the assumption that the
network is strongly connected we have that prek(TG)
is non empty for all k ∈ B↓(TG). Moreover, as the di-
ameter is positive, dI > 0, and again due to the strongly
connectedness of the network there is a k ∈ B↓(TG) and
i ∈ prek(TG) and ε > 0 such that dik(t′) = ε > 0.

3) We choose oscillators k and i as in 2.) and assume that i
emitted a pulse at some time te ≤ t′ which is received at
time tr ∈ [te + τmin, te + τmin + ε] ∩ TG by oscillator k.
By Lemma 4 and using the assumption that delay times
arbitrary close to the lower bound τmin have positive
probability this event in total has positive probability, see
Figs. 6 and Fig. 7 for illustration.

Analog to the reasoning in Lemma 7 we have φk(tr) �∈ U3

and hence dik(t+r ) < dik(tr). By assumption the diameter stays
constant and by using Lemma 8 this is only possible if k �∈
B↓(t

+
r ), i.e., B↓(t

+
r ) has lost at least one element. �

Fig. 6. A zoom onto the circle around 0. We show an example for the
phase update as in lemma 9.

Fig. 7. Example of a time line according to the construction of conditions
in lemma 9 that lead to a decrease in the size of the boundary set. The
gray shaded area indicates the time window in which there is a positive
probability to decrease the distance between the two oscillators i and k.

Lemma 10: If (17) holds, then

P

[
lim
t→∞

dI(t) > 0
]
= 0. (22)

Proof: Assume (22) does not hold. Since Lemma 7 holds,
there is a t′ such that for all t > t′ we have dI(t) = c. If so,
Lemma 8 says |B↓(t)| cannot increase with time, and Lemma 9
says it decreases with positive probability, which means |B↓(t)|
vanishes with time which is a contradiction to its definition in
(14). Hence (22) has to hold. �

D. Inevitable Synchronization

So far we showed, that synchrony is achieved if the synchro-
nization condition holds. We now show that the synchronization
condition is always reached with probability 1 for all initial
conditions:

Lemma 11: There is a time t∗ with 0 ≤ t∗ < ∞ such that

P

[
dI(t∗) ≤

1

2
− τmax

]
> 0. (23)

Proof: Assume at time t′, (17) does not hold for I . We de-
fine a subset S ⊂ I with dS(t

′) ≤ (1/2)− τmax. In the follow-
ing, we show that there is a positive probability that for some
t′′ ≥ t′, S(t′′) = I is achieved: Take S �= ∅. As dS(t

′) = 0
for S = {i}, i ∈ I , this is always possible. For any finite time
interval TS , there is a positive probability that no pulse from
preS(TS) \ S is received by all members of S, since psend < 1.
For that time we can then consider the oscillators in S as
a subnetwork not receiving any pulses from the oscillators
in the complement of S, and thus for this subnetwork (17)
applies. Therefore Lemma 10 applies and there is a positive
probability that for some t′′ > t′, dS(t′′) ≤ τmin. With some
positive probability an oscillator i from the edge set ∂S fires at
te > t′′ and the pulse is received by all k ∈ suci at tkr ∈ [te +
τmin, te + τmax], and no other oscillator emits a pulse within
[te, te + τmax]. If φk(t

k
r ) ∈ U2 ∪ U3 we apply Lemmas 1 and 2
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Fig. 8. An example of the synchronization process with, |I| = 30.
On the top half we plot the phase positions at individual fire events
tn according to φ̃i := (φi + 0.5 mod 1) − 0.5) for all i ∈ I. As time
evolves the phases gather around 0 and thereby synchronize. On the
bottom half we show the evolution of the diameter dI and consider a
maximal set S such that dS satisfies (17). We see that as soon as the
synchronization condition (17) is fulfilled for all oscillators (S = I), dS
monotonically decreases.

and see dik(t
k+
r ) ≤ (1/4)− τmax − τmin. If φk(t

k
r ) ∈ U4 ∪

U5 ∪ U1 we see with Lemma 1 dik(t
k+
r ) ≤ 1/4. Hence with

Lemma 5 we have

dsuci∪{i}
(
tr + τ+max

)
≤ 1

2
− τΔ. (24)

This yields, defining S ′ = S ∪ suci ∪ i

dS′
(
tr + τ+max

)
≤ dS

(
tr + τ+max

)
+ dsuci∪{i}

(
tr + τ+max

)
≤ τmin +

1

2
− τΔ =

1

2
− τmax. (25)

We augment S to S ′ and see that condition (17) has a positive
probability to hold on dS′ for all t > tr + τmax > t′′. We hence
repeat this argument for S ′ until (17) holds for dI . Every as-
sumption within this proof holds with some positive probability.
Since we only need finitely many steps to reach S = I , the
whole process has positive probability. �

Theorem 1: Any self-organizing oscillator system with dy-
namics given by (2)–(7), with individual delays and connected
dynamic networks as described in Section II-B1 and B2, syn-
chronizes almost surely, i.e.,

P

[
lim
t→∞

max
i,j∈I

dij(t) = 0

]
= 1. (26)

Proof: Lemma 11 ensures a positive probability that for
all elements in the system and for some point in time t∗, (17)
and hence Lemma 10 holds. Thus, the probability that (17) does
not occur within the time interval TI is some β < 1 and hence
for n ∈ N such time intervals, it is less or equal to βn. This
yields P[limn→∞ t∗ �∈ nTI ] = 0 and hence (26). �

Fig. 8 shows an example of such a chain of synchronizing
events.

E. Limitations for Further Generalizations

Theorem 1 guarantees synchronization with probability 1.
This statement is optimal in the following sense: We demon-
strate via Examples 1 and 4 that a stronger statement cannot be
made, via Example 3 how critical the requirements are and via
Example 2 that a more general statement has to be weaker:

Example 1: Take a set of N > 4 oscillators on a static star
graph, i.e., a central oscillator c is linked to any other oscillator
in the system and no further links exist, hence for all i ∈ I with
i �= c we have for all t, suci(t) = {c}. Assume psend = 1 and
τmin = 0, τmax ≤ 1/8. Furthermore we assume that at t0 all
phases are equally spaced with φc(t0) = 0. If no interactions
happen we have for all fire events tn+1 − tn ≤ 1/N . After
the first fire event we have φc(t1) < (1/2)− τmax and after
the reception time tr,1 we have φc(t

+
r,1) ≤ (1/4)− τmax. At t2

we have φc(t2) ≤ (1/4)− τmax + (1/N) < 1/2 and after the
reception time tr,2 φc(t

+
r,2) ≤ (1/4)− τmax. Hence, for all t >

t0, we have φc(t) < (1/2). Therefore oscillator c will never
fire, and no other oscillator than c adjusts. Hence synchroniza-
tion does not emerge.

Example 1 shows that if we want to guarantee synchroniza-
tion for a coupling strategy as proposed in (6) and (7) that
works for all connected networks, we need psend < 1. Hence,
the synchronization guarantee for arbitrary network topologies
can only hold in a probabilistic sense.

Example 2: Assume a set I of oscillators with inhomoge-
neous phase rates, i.e., for all i ∈ I: (dφi/dt)(t) = κi, with
κi ∈ [1− ε, 1 + ε], 0 < ε � 1. Assume psend < 1 and for a
time t > 0, dI(t) = 0. Due to the different phase rates and the
probabilistic pulse emission, there is always a point in time
t′ > t, such that with positive probability dI(t

′) > 0 holds.
Example 2 shows that a synchronization guarantee with

probability 1 is infeasible. If we want to additionally consider
heterogeneous phase rates the convergence statement would
need to be relaxed.

Example 3: Assume homogeneous phase rates again but
consider the case that the delays assumed to lie within τmin and
τmax actually lie between different extremes τ̃min and τ̃max. For
a firing event of φi at time t′ with dI(t

′) = 0 and a receiving
oscillator j, we get at the reception time tr > t′:

1) if τ̃max > τmax and τij ∈ (τmax, τ̃max) then dI(t
+
r ) > 0

which contradicts Lemma 7;
2) if τ̃max < τmax then Theorem 1 holds;
3) if τ̃min < τmin and τij ∈ (τ̃min, τmin) then dI(t

+
r ) > 0

which contradicts Lemma 7, see also Fig. 17 for
illustration;

4) if τ̃min > τmin then Lemma 9 does not hold.

All delay information except for 2) are hence critical to guaran-
tee synchronization.

Example 3 shows that a certain knowledge about the delays
in the system is necessary for the synchronization proof to
work. However, despite the randomly distributed delays con-
sidered here, and in contrast to [14], [15] where uncertainty in
the delay results in natural bounds for the minimal achievable
phase separation this information here is sufficient to achieve
full phase synchronization.
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Moreover, as we will see in Section V, numerics show
robustness of the synchronization process against deviations of
the delay distribution from the assumed one.

Example 4: Take a set of three oscillators with the following
graph properties: pre2 = {1, 3} and pre1 = pre3 = ∅. The
network is weakly connected and has two sources. Since both
oscillator 1 and 3 have no possible inputs, they operate as if
isolated. Hence, it is impossible for them to synchronize.

Example 4 shows that it is not possible to synchronize all
weakly connected networks. Hence, our assumption on strongly
connected networks cannot be generalized further.

IV. SYNCHRONIZATION SPEED

Our convergence proof gives a qualitative statement that
synchrony is reached using the given PCO synchronization
scheme. Its power lies in its generality as it is applicable to a
wide range of systems with time-varying topology, unreliable
pulse emission, and arbitrarily distributed transmission delays.
Because of this generality, the proof does not provide precise
statements for the time needed to achieve synchronization. Here
we derive estimates for the speed of synchronization.

We define the synchronization time T (α) as the time it takes
a system to reach synchrony with a precision α, i.e.,

T (α) := inf
t

{t ∈ R+ : dI(t) ≤ α} . (27)

In general, this time depends on the network properties and
individual realization of the dynamics, i.e., on the initial phase
positions, the network topologies and their changes, the pulse
propagation times and their stochastic emissions. Thus, a full
analysis of this synchronization time is beyond the scope of this
work. In the following we provide estimates on how fast the
system synchronizes. We therefore concentrate on three net-
work topologies:

• all-to-all connected graphs (A2A), where all units are
connected with each other;

• undirected Erdós-Rēnyi random graphs (ERG), where
a link between two nodes exists with probability plink
[46];

• undirected random geometric graphs (RGG), where nodes
are randomly distributed, sampling from a uniform distri-
bution on the unit square, and an undirected link between
two nodes exists if the nodes are at Euclidean distance of
at most r [47].

To compare the latter two network types we use the average
node degree μ, given by μ = Nplink for ERGs and by

μ = Nr2π

(
1− 8

3π
r +

1

2π
r2
)

(28)

for RGGs [48].
Starting from uniformly distributed initial phases, the syn-

chronization condition (17) is generally not fulfilled and the
system has to reach that condition first. In A2As and ERGs this
step is fast and a few initial pulses are sufficient (cf. Fig. 8).
Due to the coupling functions considered here a single pulse

is typically sufficient to reduce the distance between the send-
ing oscillator i and receiving one j below dij ≤ 1/2− τmax.
Hence, given a pulse sending probability of psend and average
number of μ receiving oscillators it approximately takes about
N/psendμ oscillators to cross the threshold in order to reach a
state in which the synchronization condition holds and thus

T (1/2−τmax) ∝ N

psend μ
=

1

psend plink
. (29)

This time will further increase with the length of the minimal
paths between any two nodes in the network. It will also depend
on 1− psend as there are certain topologies that do not give rise
to synchrony when psend = 1, e.g., as discussed in Example 1.
See also Fig. 13 and Section V-D below for a detailed analysis
of those effects.

Once the synchronization condition (17) is reached the diam-
eter dI will only decrease. There are two factors that determine
the speed of this process: First, if a pulse is received within
the refractory period U2 or by oscillators not in the boundary
sets there is no change in the diameter. Let us call pulse recep-
tion events in which the diameter actually decreases beneficial
events (compare Lemma 9). Note that by Lemma 1 at a pulse
reception event there is an oscillator in U2. Thus, the smaller
the diameter the more likely it becomes that the entire set of
oscillators is found in U2 at pulse reception. The rate for a
beneficial event thus is expected to scale with the current di-
ameter, or alternatively the time Δt to the next beneficial event
becomes inversely proportional to dI

Δt ≈ β

dI
, β ∈ R. (30)

Second, once the system encounters a beneficial event the
magnitude ΔdI by which the diameter is decreased will also
scale with dI , i.e.,

ΔdI ≈ δdI (31)

for some 0 < δ < 1. In total, we thus expect the diameter of the
system to decay according to

˙ΔdI ≈ −ΔdI
Δt

≈ −δdI
dI
β

= −λd2I (32)

and solving this we find

ΔdI(t) ≈
dI(0)

dI(0)λt+ 1
(33)

i.e., for large time periods the diameter decays algebraically
as (λt)−1 where λ = δ/β. This form well matches numerical
simulations for the considered network topologies as shown
in Fig. 9(a).

The constant λ depends on various network parameters: Note
that if dI is small, all oscillators will approximately fire with
their intrinsic oscillation rate 1. The rate of beneficial events
is then proportional to the number of pulses sent, i.e., to psend
and to the number of oscillators by which this pulse is reached,
i.e., to μ. Following Lemma 1, pulses are not beneficial when
received within the refractory period U2. If the oscillators are
close to synchrony dI < τδ , for an oscillator j to adjust is
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Fig. 9. Dynamics of the diamter dI and scaling of λ with τ−1
δ .

(a) Diameter dI as a function of time t. Lines are fits of (33) with
parameter λ to the numerical data (N = 100, μ = N/2) for the three
different network topologies. (b) λ as a function of τ−1

δ for an all-to-all
network and linear fit (line) (N = 100).

only possible if this oscillator received a beneficial pulse within
the current round of threshold crossings with φj > τmax or
φj < τmin. For small dI the rate of beneficial pulses is small
so that most of the pulses are actually received in the interval
[τmin, τmax] ⊂ U2. Thus the bigger this interval, the less likely
an oscillator will receive a pulse in U1 or U3 necessary for
a beneficial event. Thus, λ ∝ 1/τδ. This scaling is shown
if Fig. 9(b).

In total, we arrive at

λ ∝ psend μ

τδ
. (34)

We also note that if the system is close to synchrony, i.e.,
dI < τδ and dI < τmin, it is more likely for an oscillator that
is leading the group to trigger a beneficial event as it is for
an oscillator that lags behind. These lagging oscillators are
more likely to receive a beneficial pulse in U1 while not having
entered U2 yet. In contrast, for pulses from lagging oscillators
it is more likely to be received once the entire set of nodes is in
the refractory period U2.

V. PARAMETER DEPENDENCIES

The above convergence proof gives a qualitative statement
that synchrony is reached using the given PCO synchronization
scheme. We gave estimates on the synchronization speed in the
previous section. Here we provide more details on the speed
and robustness of the mechanism using numerical simulations.

Fig. 10. Mean synchronization time decreases with increasing network
size (μ = N/2).

We focus on the synchronization time (27) and investigate
how this time depends on network size, average node degree, dy-
namic network topology, synchronization precision, and signal
emission probability. We also compare the synchronization be-
havior of our algorithm with that of Pagliari and Scaglione [7].

A. Definitions and Modeling Assumptions

Numerically we estimate the mean synchronization time by
〈T (α)〉 := (1/M)

∑M
i=1 T

(α)
i where M is the number of real-

izations. In the figures we also indicate the standard deviation
of this estimate via error bars.

The synchronization precision is set to α = 0.02 and the
signal emission probability to psend = 0.5 unless mentioned
otherwise. We use the phase update function (7) with h1 =
0.3261φ+ 0.0270 and h2 = 0.46φ+ 0.54 [see red line in
Fig. 1(a)]. The delay is modeled to be randomly distributed
uniformly within [0.02, 0.04]. A simulation runs for 2 · 104
cycles and we choose M ≥ 103.

B. Effect of Network Size and Node Degree

Let us consider static networks first. Fig. 10 shows the mean
synchronization time as a function of the number N of network
nodes. For both network types, ERGs and RGGs, the larger N
the faster synchrony is reached, representing a very favorable
scalability property. In a network with N = 100 nodes, the
synchronization time is below 10 cycles. We use μ = N/2 in
Fig. 10 which is consistent with the scaling behavior derived
in (34). The synchronization speed saturates for larger N to a
single cycle.

Even though the synchronization time decreases with in-
creasing N , the number of fire events needed to reach that goal
increases, as shown in Fig. 11.

Fig. 12 shows the mean synchronization time as a function
of the average node degree μ for a network with 100 nodes.
The synchronization time decreases with increasing μ, again
consistent with the scaling in (34).

C. Effect of Pulse Emission Probability

Theorem 1 guarantees synchrony for arbitrary positive
psend < 1. We investigate a favorable parameter value that
minimizes the number of fire events 〈F (α)〉 needed to achieve
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Fig. 11. Moderate increase of the mean number of total fire events
〈F (α)〉 to reach synchronization dI ≤α=0.02 with increasing network
size (μ = N/2).

Fig. 12. Decreasing mean synchronization time 〈T (α)〉 with increasing
average node degree μ (N = 100).

synchrony. This is important as the number of fire events relates
to signaling overhead needed for synchronization, in terms of
messages and energy. Fig. 13(a) shows the results. Interestingly,
the smaller psend the less fire events are needed. However, as
shown in Fig. 13(b), this comes at the cost of increasing syn-
chronization time, which follows our estimates (29) and (34).
The optimal parameter setting for technical systems depends
on the trade-off between the amount of energy spent on pulse
emission and the need of fast convergence.

When psend approaches 1, certain network topologies can
increase the synchronization time as the probability for a chain
of events that achieve the synchronization condition can be-
come very unlikely (cf. Lemma 9 and Example 1). In Fig. 13
this effect becomes visible in the larger standard deviation
for the synchronization time. For psend = 1 not all simulation
runs synchronized in the given maximal time frame again
demonstrating the need for probabilistic fire events to achieve
reliable synchronization.

D. Effect of Desired Precision in Synchronization

We terminate all simulations once the desired precision α is
reached, i.e., dI < α. Fig. 14 shows how 〈T (α)〉 scales with de-
creasing α, confirming the algebraic decay as estimated in (33).

E. Effect of Dynamic Network Topologies

To explore the effect of dynamic network topologies on the
synchronization process, we consider graphs that change every

Fig. 13. Synchronization performance depending on the pulse emission
probability psend, in terms of: (a) mean fire events; and (b) mean syn-
chronization time. For psend = 1 we only consider simulations runs that
synchronized (for all other parameters psend < 1 all runs synchronized).
(N = 100, μ = 50).

Fig. 14. Mean synchronization time as a function of the precision of
synchronization α (N = 100, μ = 30).

σG time units. In other words, a new network topology with the
same statistical parameters for the random or random geometric
graphs is created, every σG time units. We assume that a signal
emitted by oscillator i at time tn is received at oscillator j only
if j ∈ suci(t) for all t ∈ [tn, tn + τij ].

Fig. 15 illustrates how the dynamics of the network topolgy
influences the synchronization time. For quasi static networks
σG ≥ 〈Tα〉 the synchronization time is independent of σG . If the
network changes more frequently, as σG decreases, the synchro-
nization time can significantly decrease. Dynamic networks can
hence support synchronization. In Fig. 15(a), synchronization
occurs faster in RGGs; in Fig. 15(b), synchronization occurs
faster in both network types.

The decrease in 〈Tα〉 stops once σG ≈ 1, i.e., the network
topology changes on a time comparable to the rate with which
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Fig. 15. Mean synchronization time 〈Tα〉 as a function of the graph
renewal time σG , which is the length of the time intervals after which
the network topology changes. (a) Networks with N = 100 and μ = 50.
(b) Networks with N = 10 and μ = 5.

the oscillators cross the threshold. If the network topology is
changing extremely fast, such that σG < τmax, the synchroniza-
tion time increases sharply, as the probability for a signal not to
be received increases.

The swift change in links increases the pool of pulse emission
chains and hence the likelihood of finding a way to reach
condition (17) (compare the constructive way in Lemma 11).
Moreover, once this condition is reached, only beneficial events
(cf. Section IV) will contribute in decreasing the diameter
further and those beneficial events are more likely to occur
for pulses emitted from oscillators close to the boundary. In
particular, pulses from leading oscillators are most likely to
trigger diameter decreases by pulling forward lagging oscilla-
tors. A changing network topology after each cycle ensures that
such leading pulses are received by changing sets of lagging
oscillators. This is process is most efficient after all oscillators
have fired once, i.e., σG ≈ 1.

F. Robustness to Minimal Delay Assumptions

We assumed the delays to be distributed in a bounded interval
with reoccurring delays arbitrarily close to the lower bound. In
technical systems, it might not be possible to identify such a
definite minimum delay. Hence, we here study the synchro-
nization performance and robustness of the proposed algo-
rithm if the theoretical assumed delays are within [τmin, τmax]
whereas the delays of the system are actually distributed within
[τ̃min, τmax] with τ̃min < τmin.

In Fig. 16 we show an example of a synchronization process
when the assumption on the minimal delay is violated by

Fig. 16. Example of a convergence process with minimal transmission
delay τ̃ = 0.01, whereas the theoretical delay is assumed to be τmin =
0.02. We show a close up when a certain level of synchrony is achieved.
Due to the inaccurate delay bounds that enter H(·) we see that dI can
increase. Note the small scale of fluctuations. Notation as in Fig. 8 (N =
100, μ = 30, ERG).

the system. We observe that dI fluctuates and can increase
from time to time, hence (9) is no longer valid and syn-
chronization to an arbitrary precision can not be guaranteed.
Numerically, however, we find that a certain level of synchrony
is still obtained. In Fig. 17(a) we see that for α ≥ 5 · 10−3

the synchronization time is showing similar behavior and that
the mean synchronization time for τ̃min < τmin is even a bit
faster. For smaller α, however, the synchronization time for
environments with τ̃min < τmin increases much faster than that
for the correct minimum possible delay. Fig. 17(b) supports the
resilient behavior for mismatched parameters. The fraction ρ of
simulation runs that synchronize is 1 as long as α ≥ 5 · 10−3,
for lower α the resilient behavior is lost.

We interpret the beneficial impact of τ̃min < τmin for α ∈
(0.0050.1] as follows. By moving the lower bound τ̃min below
τmin, the likelihood for delays around τmin increases (as it shifts
from the border to the interior-assuming uniform distribution,
cf. also Section IV). The improvement in probability decreases
the time to reach condition (17). For α ≤ 0.005 we see the
negative effects of inaccurate delay bounds, compare also
Example 3.

G. Comparison With Pagliari–Scaglione Approach

We compare our work with that of Pagliari and Scaglione
[7]. The authors did analytical and simulation studies on a PCO
system with stochastic pulse reception but with less general
system assumptions. For a comparison, we have to restrict our
system settings by demanding that τmin = τmax = 0.02. The
phase adjustment in [7] works as follows: Assume oscillator i
receives a signal at time t then

φi(t
+) =

{
φi(t) φi(t) ≤ φref

min (1, a1 · φi(t) + a2) φi(t) > φref

(35)

with a1 = exp(ε) and a2 = (exp(ε)− 1)/(exp(1)− 1). We
use ε1 = 1 and ε2 = 1 + 1/(Nplink) as in [7]. Note that this
algorithm was designed for stochastic pulse reception and
positive probability for any link within the network. Here, we
use arbitrarily connected and static networks, stochastic pulse
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Fig. 17. The different synchronization performances if delays in practice
(τ̃ ) match or mismatch the theoretical ones (τ). (a) We plot the synchro-
nization time for synchronizing simulation runs. (b) The fraction ρ of all
simulations that synchronize shows that both parameter settings provide
synchrony for α ≥ 0.005. For lower α the fraction drops significantly for
mismatched parameters (N = 10, μ = 5, τ̃min = 0.01, ERG).

emission, and ensured pulse reception. The achievable close-
to-synchrony state for this algorithm is bounded by φref with
φref ≥ 2τmax. Better synchronization than maxij dij ≤ φref is
impossible in general. Fig. 18(a) compares the synchronization
time for realizations that synchronize for different synchroniza-
tion bounds α. The figure only depicts simulation runs that
actually synchronized. The version with ε1 synchronizes faster,
the version with ε2 synchronizes slower than the introduced
algorithm. The parameter ε1 refers to extreme coupling, which
makes the algorithm fast but not robust.

Fig. 18(b) shows the fraction of simulations ρ that syn-
chronize within the observation window of 20.000 cycles. For
α < 0.06, ρ decreases drastically, hence the Pagliari–Scaglione
algorithm is not able to synchronize most networks under
investigation. The synchronization method proposed here, how-
ever, still synchronizes all networks. The shown comparison
is limited, however, it demonstrates the main improvement of
the coupling scheme combining both inhibitory and excita-
tory coupling and stochastic pulse emission. It synchronizes
arbitrary networks to arbitrary synchronization precision and
any connected topologies. This convergence is proven for very
general conditions and also works for individual random delays,
a major difference to [7].

VI. CONCLUSION

In this paper, we introduced a class of update functions
for pulse-coupled oscillators and showed their synchronizing

Fig. 18. Performance of the combined inhibitory and excitatory stochas-
tic coupling scheme proposed in this paper (IES) in comparison to the
algorithm of Pagliari and Scaglione in [7]. In (a), the synchronization time
of all synchronizing simulation runs and in (b), the fraction of simulations
that synchronize is shown. For readability the standard deviation in (a)
is dropped. (N = 10, μ = 5 ERG).

properties. The proposed update function consists of excitatory
and inhibitory parts together with a refractory period.

We prove that under the proposed coupling scheme pulse-
coupled oscillators fully synchronize with probability 1. The
synchronization is guaranteed for all of the following condi-
tions: 1) in environments that experience nonnegligible de-
lays, these delays may be constant or vary within an interval;
2) for arbitrary connected networks whose topology can even
change dynamically in time; 3) on systems with probabilistic
signal loss such as fading. These general system requirements
are intended for making our theory applicable to real world
environments.

In addition to our analytical results, which constitute the
main contribution of this work, we further estimated how
the speed in synchronization scales with the various system
parameters and in addition used numerical studies to identify
the following properties: 1) The synchronization algorithm
scales well with growing network size. If sufficiently dense
connected, a larger number of nodes speeds up the synchroniza-
tion process. 2) For random geometric graphs, synchronization
time is achieved faster if the network is dynamically chang-
ing. Changing the network topology faster than the intrinsic
oscillation frequency of the network is however not improving
the synchronization speed further. Hence, synchronization time
is optimal if the network topology changes on intermediate
timescales. 3) For the systems considered, energy efficiency
can be improved by reducing the number of exchanged pulses
and still achieve the desired synchronization level. A smaller
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number of exchanged pulses is balanced by a larger expected
time to synchrony. 4) The system is robust against delays
outside of the considered range of delays.

These results highlight a number of advantages of the intro-
duced algorithm and coupling scheme compared to previous
work. The scheme is of low complexity and can be imple-
mented in already existing slot synchronization strategies with
finite synchronization words (cf. [6]). A testbed implementation
recently made [49] supports the theoretical results of this article.
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