
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Complex networks: when random walk dynamics
equals synchronization

Birgit Kriener1,5, Lishma Anand2,3 and Marc Timme2,3,4

1 Institute of Mathematical Sciences and Technology,
Norwegian University of Life Sciences, Ås, Norway
2 Network Dynamics Group, Max Planck Institute for Dynamics and
Self-Organization, Göttingen, Germany
3 Bernstein Center for Computational Neuroscience Göttingen, Göttingen,
Germany
4 Fakultät für Physik, Georg-August-Universität, Göttingen, Germany
E-mail: birgit.kriener@umb.no

New Journal of Physics 14 (2012) 093002 (21pp)
Received 26 April 2012
Published 3 September 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/9/093002

Abstract. Synchrony prevalently emerges from the interactions of coupled
dynamical units. For simple systems such as networks of phase oscillators, the
asymptotic synchronization process is assumed to be equivalent to a Markov
process that models standard diffusion or random walks on the same network
topology. In this paper, we analytically derive the conditions for such equivalence
for networks of pulse-coupled oscillators, which serve as models for neurons
and pacemaker cells interacting by exchanging electric pulses or fireflies
interacting via light flashes. We find that the pulse synchronization process
is less simple, but there are classes of, e.g., network topologies that ensure
equivalence. In particular, local dynamical operators are required to be doubly
stochastic. These results provide a natural link between stochastic processes and
deterministic synchronization on networks. Tools for analyzing diffusion (or,
more generally, Markov processes) may now be transferred to pin down features
of synchronization in networks of pulse-coupled units such as neural circuits.
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1. Synchronization and pulse coupling

Synchronization is the dynamical process of arranging the units of a network to behave in unison.
If there is no central unit or external drive to induce synchronization, the process is called self-
organized as it emerges from the pairwise interactions of the units without reference to the
global state of the system. Diffusion on a network is the process of particles or agents randomly
hopping from unit to unit (or state to state) of a system. In this paper, we show that (and under
which conditions) these seemingly different processes are described by the same mathematics
at long time scales. We explicate this for networks of units interacting via the exchange of
pulses, thus enabling links between the mathematics of random walks and the mathematics of
synchronization for systems such as neural circuits interacting via action potential exchange
or wireless ad hoc communication networks with coupling via electromagnetic pulse exchange.

Synchrony constitutes one of the most common collective dynamics in complex networks.
It prevails across a variety of systems in biology, physics and technology, including networks
as diverse as neural circuits and flashing fireflies, pacemaker cells of the heart, mobile
communication networks and electric power grids [1–3]. Several of these networks exhibit
interactions mediated by exchanging pulses at discrete points in time: neurons send and
receive electrical action potentials (spikes), fireflies interact via light pulses and certain ad hoc
communication networks by sending electromagnetic pulses in the MHz range. These discrete-
time interactions by pulses induce a number of collective phenomena that lie beyond those
known from systems with standard, continuous-time interactions. For instance, delays in pulse-
coupled oscillator systems [4] may induce the persistence of unstable attractors [5–10] (saddle
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periodic orbits with a positive volume basin of attraction), speed limits to synchronization that
are determined by network topology [11] as well as other non-standard dynamics in symmetric
systems [12, 13].

In this paper, we analyze the conditions under which the asymptotic synchronization
process of pulse-coupled oscillator networks is mathematically equivalent to diffusion (random
walks) on the same graphs. In particular, we specify the conditions required for stable
synchronization and derive the stability operators that determine the resynchronization
dynamics in response to instantaneous perturbations away from synchrony. Networks of leaky
integrate-and-fire (LIF) oscillators—that model spiking neural circuits or populations of flashing
firelies and are used for self-organized slot synchronization in distributed communication
networks—play a key role. In particular, we reveal that (re-)synchronization of certain LIF
networks is equivalent to relaxation of diffusion processes on the same underlying graph,
whereas networks of other pulse-coupled (non-LIF) units, in general, do not exhibit this
equivalence. Intriguingly, this is very distinct from networks of phase-coupled oscillators that
with suitably normalized coupling matrices exhibit such equivalence independent of the exact
type of nonlinearity.

This paper is organized as follows: section 2 summarizes key properties of random walks
on graphs. Section 3 presents the phase representation of pulse-coupled oscillators and the
derivation of the stability operators S. In section 4, we derive the conditions that networks W
must fulfil to yield a degenerate doubly stochastic S, while in section 5 we present three example
network classes that comply with these conditions. Section 6 briefly discusses how the results
relate to phase-coupled oscillator networks and continuous-time random walks and section 7
summarizes all the results.

2. Random walks on a graph

Consider particles jumping randomly in discrete time on a graph of N vertices. The vertices here
may represent the nodes of a real physical network or abstract states of a complex stochastic
system. Accordingly, the ‘particles’ may be physical particles, agents, viruses or abstractly
the state of a system. If one particle is at node j ∈ {1, . . . , N } at some time tn−1, n ∈ Z, the
probability of being at some other node i in the next time step tn is given by the transition
matrix element Mi j . We assume a Markov process, such that these transition probabilities are
constant in time and do not depend on the history of the path the particle took to get to node j .
For any given j the total probability to go from j to some state i ∈ {1, . . . , N } is equal to unity,
i.e. ∀ j

∑N
i=1 Mi j = 1. The dynamics is then given by

p(tn) = Mp(tn−1) = Mn p(t0), (1)

where p = (p1, p2, . . . , pN ) are the probabilities of a particle to be in state i = {1, . . . , N } and
p(t0) is the initial state. Note that here we follow the convention common in theoretical physics
to multiply state vectors from the right to transition matrices.

We assume that the walk is aperiodic—meaning that there is no common divisor larger
than 1 that divides the length of all cycles of the graph—and that the underlying graph is strongly
connected, i.e. there is a path from every node j to every other node i ∈ {1, . . . , N }. The latter
is equivalent to the graph having an irreducible adjacency matrix A such that A is a full-rank
N × N square matrix with Ai j = 1 if there is a directed connection from j to i and is 0 otherwise.
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Such a process on a graph belongs to the class of finite, ergodic, time-homogeneous
Markov chains, and its properties are well studied in the literature [15]. In particular,
independent of the initial condition, the fraction of times a particle visits each node converges to
a stationary distribution, the (unique) invariant distribution π with π = Mπ . This distribution
is asymptotically approached exponentially, i.e. p − π ∼ e−n/τrel with relaxation time τrel. By
the Perron–Frobenius theorem (see e.g., [16]), it follows that M has N eigenvalues, whereof
the maximal, λ1, is equal to unity and belongs to the translation invariant (right) eigenvector
v1 = (1, . . . , 1)>. All other λi , i ∈ {2, . . . , N }, have absolute value |λi | < 1. Hence for n → ∞,
Mn is dominated by the largest non-trivial eigenvalue |λm| := maxi{|λi | : |λi | < 1} and we
identify τrel = −1/log(|λm|).

3. Synchronization of pulse-coupled oscillator networks

Another important class of dynamical processes in complex networks is that of synchronization
of the constituent dynamical units (see, e.g., [17] and references therein). In particular, nodes
that interact via discrete pulses are of importance in fields such as neuroscience, behavioral
biology or mobile communication technology, where the nodes and pulses can be such different
entities as neurons and action potentials, fireflies and light blinks, or mobile phones and time
slots for data transmission, respectively [1–3].

The possibly simplest collective dynamical state in such systems is that of global
synchrony, where all oscillators emit pulses in perfect unison. Synchrony can be both beneficial
(e.g. in information transmission or feature binding in sensory processing [18]) or detrimental
(as in epilepsy) for the function of networks, so to understand the dependence of its stability
properties on the properties of the oscillators and couplings is of great interest.

To be specific, we thus consider synchrony in networks of pulse-coupled oscillators
j ∈ {1, . . . , N } whose states are given by a potential function V j(t) such that

dV j

dt
= g j(V j) +

N∑
i=1

∑
k∈Z

W j iδ(t − ti,k − τ j i). (2)

g > 0 is a smooth function that determines the internal dynamics of oscillator j . Whenever Vi

reaches a threshold value θ at time t , a pulse is emitted and Vi is reset to a potential Vi(t+) := VR.
The time t = ti,k indicates the kth emission of a pulse by i . After a transmission delay τ j i , the
pulse is received by oscillator j , inducing a potential jump V j(ti,k + τ +

j i) = V j(ti,k + τ j i) + W j i .
As a consequence, the potential trajectories V j(t) are smooth except at the event times of
pulse emission and pulse reception. The condition g j(V j) > 0 guarantees that in isolation
(∀i, j W j i = 0) the units are periodic oscillators with finite periods T0, j .

The dynamics of the network is equivalently described by time-like phase variables
satisfying the simple linear dynamics

dφ j

dt
=

1

T0, j
(3)

at all but the event times. There is a one-to-one mapping of phases to potentials via
U j(φ j) := Ṽ j(φ j T0, j) such that φ j ∈ (−∞, 1]. Here Ṽ j(t) is the solution of the uncoupled
(Wi j ≡ 0) oscillator j through the initial condition Ṽ j(0) = 0. We require the rise function U to
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Figure 1. Intuitive explanation for the synchronizing effect of inhibitory coupling
for concave upward U : the sketch gives an intuitive explanation of why
synchronization is stable for purely negative interactions if U ′′ < 0, while it is
unstable for purely excitatory interactions: in the first case an original phase
difference |φ1 − φ2| (difference between vertical thin black lines) is decreased
(black dashed lines) due to the concave down shape of U , whereas in the latter
case it is increased (gray dashed lines), hence pushing an initial phase difference
to larger values. For concave up U, the same argument holds for pulses of
opposite sign (stable if the pulse is excitatory and unstable otherwise).

satisfy

(i) U j ∈ C2 (twice continuously differentiable),

(ii) U ′

j > 0 (monotonically increasing),

either (iii a) U ′′

j < 0 (purely concave down)

or (iii b) U ′′

j > 0 (purely concave up),

(iv) U j(0) = 0 and U j(T0, j) = θ, such that θ > 0.

(4)

Condition (4)(iii a), ((4)(iii b)) ensures that incoming pulses with phase retarding (or phase
advancing, respectively) impact decrease the phase difference between receiving oscillators and
thus support synchrony [14], cf figure 1 and section 3.1.

At the phase threshold φ j(t)> 1 a pulse is emitted and the phase is reset, φ j(t+) = 0. The
pulse reception at i at time t + τi j induces a phase jump to a new phase

HWi j (φ j(t
+ + τi j)) = U−1(U (φ j(t + τi j)) + Wi j). (5)

In general, the size of the phase jump HWi j (φ j) − φ j depends nonlinearly on φ j and can be
excitatory (Wi j > 0) or inhibitory (Wi j < 0).

For simplicity of presentation, we assume, in the following, identical oscillators, g j ≡

g, with natural period T0 ≡ T0, j , identical delays ∀i j τi j = τ < T0, and a strongly connected
network graph, and we exclude self-couplings Wi i = 0.

3.1. Conditions for linear synchronization dynamics

The difference between the phases of two oscillators 1i j(t) := |φi(t) − φ j(t)|, measured
circularly, quantifies their degree of synchrony. The synchronous state ∀i, j,t1i j(t) ≡ 0 of a
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network of N pulse-coupled identical oscillators as introduced in the last section exists iff [14]

∀i∈{1,...,N }

∑
j∈Pre[i]

Wi j =: w, (6)

where the sum runs over all presynaptic neurons j . Stability analysis [19] shows that for
potential functions U (φ) that comply with conditions 4(i)–(iv), synchrony is asymptotically
stable if the perturbation to pulse times is smaller than the delay τ and if either

(i) Wi j 6 0 and ∀φ∈(−∞,1] U ′′(φ) < 0

or (ii) Wi j > 0 and ∀φ∈[0,1] U ′′(φ) > 0.
(7)

Intuitively speaking, these conditions ensure that an existing phase difference between
oscillators will decrease, cf figure 1.

In the case of strictly non-negative coupling (equation (7)(ii)), the possible phase values
are bounded below by 0, because this is the reset, there is no negative input in the system and
U(φ) is monotonically increasing, while for strictly non-positive coupling the phases can be
arbitrarily negative depending on the inhibitory input from other oscillators. The constraint that
perturbation size needs to be6τ , on the other hand, stems from the fact that this ensures that all
pulses are emitted before any pulse is received. Thus, all oscillators still emit exactly one pulse
per period.

Since the synchronous state is characterized by zero phase difference 1i j for all pairs
i, j , all phases can be described by the same periodic dynamics ∀i∈{1,...,N } φi(t) = φ0(t) with
φ0(t) = φ0(t + T ), where T is the collective network period,

T = T0(τ + 1 − Hw(τ )). (8)

To assess the impact of small perturbations δ(t0) ≡ φ(t0) − φ0(t0) delivered at some time t0 ∈

(τ, T − τ) after the last common spike emission at t = 0 and the last common spike reception
at t = τ and well before the next threshold crossing, we assume that maxi [δi(t0)] − mini [δi(t0)]
< τ . The evolution of the perturbation δ after 1T = T − T (2)

i , where T (2)

i denotes the first
return time to threshold of oscillator i , is then determined and linearized (for a detailed
derivation see appendix A and [14]) yielding the first-order stability operator

δ(T + t0)
.
= Sδ(t0), (9)

with

Si j :=


pi,n − pi,n−1 if j = jn ∈ Pre[i],

pi,0 if j = i,

0 if j /∈ Pre[i] ∪ {i}

(10)

and

pi,n :=
U ′(U−1(U (τ ) +

∑n
m=1 Wi jm ))

U ′(U−1(U (τ ) + w))
(11)

for n ∈ {1, . . . , ki}, with ki in degree of oscillator i .
S, in general, depends on the rank order, i.e. the resulting temporal order of threshold

crossings of the oscillators due to the applied perturbation, implying that not only each initial
condition δ(t0) induces a different S, but also each iteration can change the rank order and
lead to a new operator S. Hence, in general there is not one particular S(W ) for each network
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realization W that determines the growth or decay of a perturbation, but a whole ensemble
S(W, δ) (multioperator problem [14]).

A class of pulse-coupled units with special relevance to theoretical neuroscience is the class
of LIF oscillators with g(V ) = −γ V + I , where I > γ V denotes a constant input term. Then
U ≡ U j is of the form

U (φ) =
I
(
1 − e−γφT0

)
γ

, (12)

where T0 = log
[
I/(I − γ θ)

]
/γ . For this oscillator type, equation (5) assumes the simple form

HWi j (φ) = −
1

γ T0
log

[
e−γφT0 −

γ Wi j

I

]
. (13)

In particular, the pi,n become linear functions of
∑ j

m=1 Wi j , i.e.

pi,n =
γ
∑n

m=1 Wi j − I e−γ τT0

γw − I e−γ τT0
, (14)

and S(W ) is hence directly proportional to W . As we demonstrate in appendix B, it is indeed
uniquely the LIF class that generically yields exactly one S(W, δ) = S(W ) independent of the
rank order of the perturbation δ for any particular network realization W (cf also [11] for an
earlier discussion of the multioperator problem). In the following, we will thus confine the
analysis to this special oscillator class.

The asymptotic dynamics of the evolution of a small perturbation δ is then dominated by

δ(nT ) ∝ Snδ(0), (15)

where, without loss of generality, we shifted the time axis such that t0 = 0. S has
one unique eigenvalue equal to unity belonging to the time-translation invariant mode
(cf appendix B, (B.6)). If the synchronous mode is stable, all other eigenvalues are smaller than
1 (cf appendix B, (B.7)). Hence, the second largest eigenvalue(s) |λm| := maxi{|λi : |λi |6 1}

determines the asymptotic behavior of the evolution of the dynamics, i.e. (cf appendix B, [11])

1̄(nT ) :=
maxi [ |δ̄i(nT )| ]

maxi [ |δ̄i(0)| ]
∼ e−n/τsync (16)

with

τsync ∝ −1/log[|λm|] (17)

and

δ̄(t) := δ(t) − lims→∞δ(s). (18)

Note, however, that for non-normal matrices S, i.e. SS>
6= S>S, the eigenvectors are not

orthogonal and hence the perturbation can, in principle, grow transiently (see, e.g., [20]).

4. Equivalence of spike synchronization and particle diffusion

What are the conditions for the oscillator synchronization dynamics to be equivalent to the
relaxation of diffusion processes on the same graph? The linear operator S is a row-stochastic
matrix by construction, cf (10).
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If S is, moreover, doubly stochastic, it can at the same time be interpreted as a transition
matrix of a time-homogeneous Markov chain as introduced in section 2 on the same underlying
network graph, meaning that the identical dynamical system describes both the asymptotic
synchronization dynamics of the pulse-coupled oscillator network as well as the relaxation of
particle diffusion,

p(tn) = Sp(tn−1) = Sn p(t0). (19)

S is doubly stochastic if

(i) for all i :
N∑

j=1

Si j = 1,

(ii) for all j :
N∑

i=1

Si j = 1, (20)

(iii) for all i, j : Si j ∈ [0, 1].

Conditions (20)(i) and (iii) are always fulfilled given (10), (7), (B.5), while (20)(ii) is not
satisfied in general.

In particular, the relaxation time constant τrel of a particle diffusion system specified by (19)
that was perturbed from equilibrium will be identical to the synchronization time constant τsync

of the oscillator network (cf figures 2(a)–(c)), given that (20) is fulfilled.

5. Network classes

We will now discuss three examples of systems that equivalently describe both relaxation and
resynchronization, and compare analytical results to simulations.

5.1. Fully connected networks with identical weights

We denote the number of connections per neuron by k and assume all coupling matrix entries
to be set to Wi j = w/k if i 6= j and Wi i = 0 if i = j . It follows that

∀i 6= j, Si j = S1 =
γw

k�
, and ∀i, Si i = S0 =

−I e−γ τT0

�
(21)

with � = γw − I e−γ τT0 . For fully coupled networks (without self-connections), k = (N − 1).
The eigenvalues are then the simple root λ1 = 1 and the (N − 1)-fold degenerate root

|λm|
a2a

= −

γw

(N−1)
+ I e−γ τT0

�
= S0 − S1, (22)

and thus τ a2a
sync = −

1
log[S0−S1] (cf (17), figure 3).

5.2. Sparse coupled random networks with identical weights

The second most straightforward network type is the symmetric sparsely coupled random
network ensemble with identical coupling strength for all the connections. The adjacency
matrices A are Erdös–Rényi G(N , E) random graphs [21] with a fixed number of nodes N
and a fixed number E of randomly assigned edges; plus the additional constraint that each node
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(a) (b) (c)

Figure 2. Resynchronization versus relaxation dynamics. (a) The logarithm of
the relative differences of maximal and minimal phases (thick gray line, cf (16))
versus the logarithm of the relative differences of maximal and minimal density
per node (thin black line) over iterations n. Diffusion is an inherently stochastic
process and hence the limit distribution π (cf section 2) is only reached in
expectation with permanent fluctuations around π . The equilibrium state is
estimated either by measuring the density across nodes over long times or,
since the process is ergodic, in the ensemble average. The latter is the approach
used here: m-independent particles were started in the same location and then
diffused randomly over the N node network (here a fully connected network
with the same coupling strength for all connections) with the iterative dynamics
governed by the transition matrix S. Panel (b) shows an example of the estimated
distribution of particles per node (thin black line) after a long time versus
the expected Poisson distribution (dashed line) centered around the expectation
value ∀i∈{1,...,N } πi = m/N for m = 4096 and N = 64. The thin gray lines are the
distributions of the number of particles over time estimated from the individual
nodes. (c) Phase trajectories of N LIF-oscillators after a perturbation at n = 0
on the same underlying graph as in (b). The resynchronization dynamics is
determined by the stability operator S.

has ∀i∈{1,...,N } ki = k < (N − 1) incoming and outgoing edges; hence E = Nk (regular graphs
in both in- and out-degree). The elements Si j = S j i are given by (21). Random matrix theory
(RMT) can then be applied to obtain the expected eigenvalue distribution for N → ∞ [11, 22]
and especially an estimate for the second largest eigenvalue of S|λm|

s, i.e. (cf [11])

|λm|
s RMT

=

√

Nσ 2 = 2(1 − S0)

(
1

k
−

1

N

) 1
2

, (23)

where σ 2 is the variance of the elements of S. Exemplary spectra together with the large-N
prediction are shown in figure 4(a).

The result for asymmetric sparse matrices follows analogously, given that the associated
adjacency matrix A fulfils

∀i, j
∑

i

Ai j =

∑
j

Ai j = k, (24)

however [11, 23]

|λm|
a RMT

= |λm|
s/2. (25)
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(a) (b)

Figure 3. τsync in fully connected networks with identical weights. Panels (a) and
(b) depict τsync measured from simulations of both systems (gray triangle: LIF;
red star: particle diffusion) as a function of network size N and total coupling
strength w < 0, respectively. The theoretical prediction (22) is shown as a black
solid line. Parameters: w = −0.1 mV, γ = 0.05 ms, I = 1.5 A/F, reset potential
U (0) = 0 mV, pulse threshold U (T0) = θ = 20 mV, τT0 = 2 ms.

(a) (b) (c)

Figure 4. τsync in sparsely coupled random networks with identical weights.
τsync for the symmetric (dark red) and the asymmetric (gray) matrix ensemble
for potential functions belonging to the LIF-oscillator class (cf (12)): (a) as
a function of the network size N with k = 0.15N and w = −0.1, (b) as a
function of N with k fixed to 20 and (c) as a function of w with N = 256 and
k = 20. Circles correspond to τsync estimated from simulations of the full LIF-
dynamics, stars correspond to the relaxation time in the particle diffusion systems
measured from simulations, triangles depict −1/log[|λm|] with the second
largest eigenvalue of the actual matrix realizations and the solid lines correspond
to the RMT prediction of the spectral radius −1/log[|λm|

s/a], cf (23), (25). Other
parameters are as specified in figure 3.

This implies for the asymptotic synchronization time scales

τ s
sync = −1/log

[
|λm|

s
]

> τ a
sync = −1/log

[
|λm|

a
]
. (26)

As an important consequence of this analytic prediction, symmetric networks synchronize/relax
more slowly than asymmetric ones.

Figures 4(a)–(c) and 5(a) and (b) illustrate this finding.
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(b)

(a)

Figure 5. Eigenvalue spectra of coupling matrices of sparse random networks
with identical weights. Panels (a) and (b) show exemplary eigenvalue spectra for
the asymmetric and symmetric cases, respectively; solid lines depict the RMT
predictions, where we applied Girko’s circular law (a) [23] and Wigner’s semi-
circle law (b) [22] to the sparse {0, S1}-ensemble with S1 given by (21). For small
N , k the eigenvalue density is low and the N → ∞ limit of the RMT predictions
does not hold very well (cf (a, b), N = 64). This leads to an underestimation of
τsync for small N and k (cf figure 4). Other parameters are as specified in figure 3.

5.3. Networks with randomly distributed weights

Given (B.1) and (20), the weights Wi j can be chosen arbitrarily such that (7) (i) or
(ii) is fulfilled. If they are i.i.d. random variables drawn from a probability distribution with
finite variance, the results of sections 5.1 and 5.2 can be generalized to heterogeneously
coupled systems and the synchronization time τsync can be estimated from (empirical) RMT6,
cf figures 6(a) and (b). One possible way to generate fully connected doubly stochastic
heterogeneously coupled asymmetric networks was presented by Diaconis and Sturmfels in [25]
and is outlined in appendix C.3 and can be extended to symmetric networks as described in
appendix C.4. The Diaconis–Sturmfels algorithm (DSA) creates networks with exponentially
distributed entries [25]. After normalization to ensure condition (6) the corresponding
stability matrix S has diagonal entries S0 (cf (21)) and off-diagonal entries following the
distribution

P(Si j,i 6= j) =
N�

γw
exp

(
−

N�

γw
Si j

)
(27)

6 The N → ∞ validity of the RMT predictions for the second largest eigenvalue is proven for the Gaussian
orthogonal ensemble. This ensemble is, however, strictly speaking not applicable here, since there is always a
non-zero probability to have both positive and negative weights, irrespective of the mean. In practice, the mean
can be chosen such that it is very unlikely to draw a weight that does not comply with (7). Moreover, the RMT
predictions empirically hold for a much larger class of probability distributions. For strict mathematical results, see,
e.g., [24].
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(b)

(a)

Figure 6. Eigenvalue spectra of coupling matrices of fully connected networks
with randomly distributed weights. Panels (a) and (b) show exemplary eigenvalue
spectra for the asymmetric and symmetric cases of fully connected networks
with randomly distributed weights, respectively; solid lines depict the RMT
predictions [23] and Wigner’s semi-circle law [22] for the exponentially
distributed weights ensemble.

with mean E[Si j ] = γw/N� and variance E[Si j ]2. Given conditions (4) the second largest
eigenvalue of a network realization can be estimated by RMT to be

|λm|
a,full

'
|w|γ
√

N�
+ S0 (28)

for fully coupled asymmetric networks and

|λm|
a,sparse

'

√
2 − ε

Nε

γ |w|

�
+ S0 (29)

for networks with sparsened connectivity characterized by ε = k/N ∈ [0, 1). For the symmetric
network, the second largest eigenvalue estimate again yields

|λm|
s,full/sparse

= 2|λm|
a,full/sparse, (30)

demonstrating that also for networks with heterogeneous weights, the asymmetric networks
synchronize (or relax) faster. Figure 6 shows examples of a fully coupled network with a
coupling matrix generated with the DSA such that the resulting W is symmetric (figure 6(a)) or
asymmetric (figure 6(b)). The full lines give the Wigner’s semi-circle prediction in figure 6(a)
and Girko’s circular law prediction in figure 6(b) for exponentially distributed random variables
(cf (28)), respectively.

5.4. Comparison of relaxation dynamics

Two main conclusions can be drawn from the network class examples in section 5:

(i) symmetric connectivity leads to slower synchronization/relaxation dynamics than
asymmetric connectivity;
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(ii) sparse networks with fixed in-degree k have finite synchronization time in the N , |w| → ∞

limit, whereas networks where k scales with network size synchronize infinitely fast in this
limit.

The latter point was extensively discussed in [11] for sparse random networks with
identical weights, where τsync with a fixed k yielded (cf (23), (25))

|λm|
|w|,N→∞

∼
√

1/k (31)

⇒ τ |w|,N→∞

sync →
2

log[k]
> 0, (32)

while for the fully coupled networks with k = N − 1 or sparsely coupled networks with
k = εN , ε < 1 [11]

|λm| = S0 − S1
|w|→∞

→ ∼

√
1

N
(33)

⇒ τ |w|→∞

sync ∼
2

log[N ]
N→∞

→ 0.

Here we find that the same result holds for networks with a arbitrary continuous distribution of
entries with finite and fixed variance such as the example presented in section 5.3, assuming
that RMT is applicable: let the coupling matrix have entries Wi j (Wi i = 0 for all i) such
that (20) holds and such that they follow a distribution P(Wi j) with finite mean µW = w/N
and raw second moment µ′2

W :=
∑N

j=1 W 2
i j/N . Then the elements of the shifted stability matrix

S̄ := (S − S0 I ), with identity matrix I , are S̄i j = γ Wi j/�, with mean µ = γw/N� and raw
second moment µ′2

= γ 2µ′2
W /�2. Si i = S0 as given in (21). It follows that lim|w|→∞S0 = 0.

In the case when the number of connections k scales with network size such that k =

εN (ε ∈ [0, 1), ε = (N − 1)/N for global coupling), the second largest eigenvalue and hence
relaxation time are estimated to be

|λm|
ε fixed

= S0 +
√

Nσ 2 = S0 +
√

Nε(µ′2 − εµ2) (34)

⇒ τ ε fixed
sync/rel

|w|→∞

−→
2

log[Nεµ′2
W ]

N→∞

−→ 0.

For sparsely connected networks with a fixed k however, τsync/rel stays finite, i.e.

τ k fixed
sync/rel

|w|,N→∞

−→
2

log[kµ′2
W ]

> 0. (35)

6. Continuous-time random walk and coupled phase oscillators

The findings presented above are not limited to discrete-time problems. Under relatively
weak conditions, continuous-time synchronization is equally locally equivalent to relaxation
of continuous-time diffusion processes on the same graph.

Consider, on the one hand, an ergodic continuous-time Markov chain on a graph where
inter-event times are distributed exponentially. The Kolmogorov forward equation7 for the

7 Note that we deviate from the notation convention used in mathematical stochastics, as above.
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transition probability function P(t) is given by Ṗ(t) = LP(t) with the Laplacian

Li j =

{
−
∑

i Wi j if i = j,

Wi j if i 6= j.
(36)

Here, Wi j quantifies the transition rate from node i to j and ∀i, jWi j > 0. The solution to the
Kolmogorov equation is of the form P(t) = Ht P(0), where Ht = eLt determines the dynamics
and steady-state distribution π = Htπ of the system. Ht is column-stochastic with the largest
eigenvalue λ1 = 1 and all other eigenvalues |λi |6 1, i ∈ {2, . . . , N }. In particular, the relaxation
time τrel after a perturbation of the Markov chain from the steady state is hence given by the
eigenvalue second largest in magnitude |λm|.

Consider, on the other hand, a strongly connected network of N phase-coupled Kuramoto
oscillators such that the phases φi(t) change according to

φ̇i(t) = ω0 +
N∑

j=1

Wi j sin(φ j − φi), (37)

where ω0 is the natural frequency of the oscillators i ∈ {1, . . . , N } and Wi j , ∀i, j Wi j > 0, is the
coupling strength from j to i . To assess local stability of the fully synchronous state (where
∀i φi(t) ≡ φ0(t)) to small perturbations δi(t) = φi(t) − φ0(t), the system is linearized [26],
yielding

δ̇i(t) =

N∑
j=1

L′

i jδ j , (38)

where the Laplacian L′ now reads

L′
i j =

{
−
∑

j Wi j if i = j,

Wi j if i 6= j.
(39)

The resynchronization dynamics can again be expressed by a stroboscopic map δ(T ) = ST δ(0)

with row-stochastic St = eL
′t , where the eigenvalues of St are given by λ′

1 = 1 and |k′

i |6 1, i ∈

{2, . . . , N } [26]. For the resynchronization time, this yields ssync ∼ 1/|k′

m|, |k′

m| := maxi{|k′

i |:
|k′

i |6 1}.
Hence, if Ht = St is a doubly stochastic matrix, the relaxation dynamics of continuous time

random walks is mathematically equivalent to the local resynchronization dynamics of coupled
phase oscillators. This, in particular, implies that the time scales of resynchronization τsync and
relaxation τrel are identical. We remark that for such continuous-time systems the equivalence is
much simpler and, moreover, holds under weaker conditions: equivalence can hold independent
of the specific nonlinear interactions between oscillators and even when the summed weights
at each node are inhomogeneous, i.e. node dependent, in contrast to pulse-coupled systems,
where both the summed weights and the nonlinear interactions need to fulfil specific additional
constraints.

7. Discussion

In summary, we have demonstrated under which conditions and how two seemingly unrelated
network phenomena—the resynchronization dynamics in networks of pulse-coupled units and
particle diffusion on a graph—can be described by the same dynamical equation. For the class
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of LIF units, if (a) all Wi j 6 (>) 0 if the potential function of the neurons U fulfils U ′ > 0, U ′′ <

(>) 0 and (b) the coupling matrix W is doubly stochastic, the asymptotic dynamics of these two
processes are mathematically identical.

A necessary condition for the local stability of global synchrony in a network of identical
oscillators is that all eigenvalues of the linear stability operator S have an absolute value of at
most unity. It is uniquely the LIF oscillator that leads to one single S (cf appendix B) and hence
determines local stability for all possible small perturbations.

The linear stability matrix S then, and only then, inherits the symmetry properties of the
coupling matrix W and is thus also doubly stochastic if W is. S is thus both row- and column-
normalized to one and if it is, moreover, positive definite it can equivalently be viewed as a
transition matrix for a particle diffusing on the same underlying network graph. This implies
the equality of the time scale τsync of the asymptotic resynchronization process and the time
constant τrel of relaxation to the equilibrium distribution of a particle diffusing on a random
graph.

We presented several network class examples for which such systems can be constructed
and gave explicit expressions for the expected τsync and τrel, which are directly related to the
second largest eigenvalue of S, i.e. |λm|. For coupling matrices with elements drawn from
a random distribution, we made use of Wigner’s semi-circle law and Girko’s circular law to
estimate |λm| [22, 23]. As is to be expected, the circle law predictions improve with increasing
network size N .

We showed, moreover, that in symmetrically coupled networks resynchronization/

relaxation takes longer than in asymmetrically coupled networks if in both cases matrix elements
are drawn from the same statistical distribution. This is a direct consequence of the nature of the
eigenvalue spectra for symmetrical and asymmetrical random matrices [27]. In this context,
it is interesting to note that recent studies of small world spectra [28] revealed that small
world synchronization time scales are almost independent of whether the networks are directed
or undirected for rewiring probabilities of up to about q = 0.1, whereas in the regime q = 1
(random networks) our above results point to a pronounced difference between synchronization
times for directed and undirected graphs.

Sparse networks in which the number of edges scales with the network size have infinitely
fast synchronization time in the limit of infinite coupling strength and network size, while
τsync remains finite if the number of edges is fixed and independent of N [11]. Here, we
generalized that result to networks with arbitrary continuous weight distributions with finite
variance. Our more general results can now be used to find topologies and weight distributions
that ensure optimal, that is, fastest synchronization time by maximizing the gap 1 − |λm|. In
this line, Donetti et al [29] discussed how a large spectral gap favors synchronizability of
phase-coupled oscillators, as well as fast diffusion on random graphs, and presented a more
general mathematical analysis of topologies that maximize this gap. In [30], on the other hand,
the effect that symmetry versus asymmetry has on the synchronizability and critical coupling
strength of phase-coupled oscillators was analyzed; however, the authors do not comment on
synchronization speed.

We emphasize that the results presented here can be extended to phase-locked patterns in
pulse-coupled oscillator networks. As was shown in [31], periodic patterns due to heterogeneity
in the input wi =

∑N
j=1 Wi j can be stably sustained in pulse-coupled oscillator networks with

instantaneous pulse transmission (τ = 0). In [32], the analysis was extended to networks with
delayed interactions and the results for global synchrony presented here generalize to this
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case: patterns that have a near-synchronous orbit with a total phase spread smaller than or
equal to the delay τ are stable to small perturbation. In [33], it was shown that it is, moreover,
possible to predefine a pattern and find all possible coupling matrices producing that given
pattern in dependence on system parameters (e.g. weights, delays or oscillator types). This
approach could be extended to find coupling matrices with distributed wi (which are then no
longer row- or column-normalized) or non-identical oscillators that still yield doubly stochastic
associated stability operators S.

Finally, because the LIF oscillator is one of the most commonly used neuron models
in computational neuroscience, these generalizations and, in particular, the equivalence
to diffusion processes raise hope that some of the mathematical tools for analyzing diffusion
(or, more generally, Markov processes) may now be transferred to help understand the features
of synchronization in neuronal networks.
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Appendix A. Derivation of the stability matrix S for general pulse-coupled oscillators

In this appendix, we derive the stability operator S for general pulse-coupled oscillators.
We assume that the oscillators are in a synchronous orbit with phases ∀i φi(t) = φ0(t) and
φ0(t) = φ0(t + T ) with the global oscillation period T . A perturbation δ(0) =: δ = (δ1, . . . , δN )

to the phases is then defined by

δi = φi(0) − φ0(0), (A.1)

where we assume the perturbation to be small such that

maxi [δi ] − mini [δi ] < τ and w.l.o.g. ∀i δi > 0. (A.2)

Moreover, we assume the perturbation to affect the oscillator phases at some time after all
signals have been received and well before the next threshold crossing, i.e. at a time t ∈

[t0 + τ, T − τ ], where t0 was the last common firing time. Assumption (A.2) then implies that
all oscillators will next send their pulses before any pulse is received by any of the neurons. The
neuron with the largest phase perturbation maxi [δi ] := δ1 will reach threshold first; all others
follow in the corresponding rank order δ1 > δ2 > · · ·> δN := mini [δi ]. Not all neurons receive
inputs from all other neurons; networks such that ∃i 6= jWi j = 0 we call sparse. Each neuron
thus receives ki = |Pre[i]| ∈ {1, . . . , N − 1} inputs in the order 1i,1 >1i,2 > · · ·>1i,ki , where
1i,n = δ jn(i)∈{1,...,ki } and 1i,0 = δi . Note that every perturbation, in general, induces a different
rank order. For a fixed arbitrary perturbation, such that assumption (A.2) holds, we moreover
define

Di,n := 1i,n−1 − 1i,n. (A.3)

The time evolution δi 7→ δi(T ) = T − T (0)

i of the perturbations, with T (0)

i denoting the first
return time of oscillator i , can then be derived as given in table A.1, where we arbitrarily chose
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Table A.1. The return map describing the temporal evolution of a small
perturbation as specified by (A.1) and (A.2). The first line sets the initial
condition of oscillator i between emission of a pulse with corresponding reset
and reception of pulses after a delay τ . The most advanced presynaptic neuron
of i is at phase 1i,1 at time 0 and its pulse will hence arrive at i after a period
s − 1i,1. At that time the phase φi is retarded (advanced) if the pulse is inhibitory
(excitatory) by an amount specified by equation (5). The next event of pulse
reception will analogously take place at τ − 1i,2 and so forth till all ki pulses
are received at t = τ − 1i,2 and i is at phase βi,ki (penultimate line). The time to
the next threshold crossing T (0)

i is then given by the current time τ − 1i,ki plus
the distance of φi = βi,ki to threshold, i.e. 1 − βi,ki (last line).

t φi

0 1i,0 = δi

τ − 1i,1 HWi1(τ + Di,1) =: βi,1

τ − 1i,2 HWi2(βi,1 + Di,2) =: βi,2
...

...

τ − 1i,ki HWiki
(βi,ki −1 + Di,ki ) =: βi,ki

τ − 1i,ki + (1 − βi,ki ) := T (0)
i reset : 1 7→ 0

t = 0, such that φi(0) = 1i,0. The last line of table A.1 together with equation (8) gives

δi(T ) = T − T (0)

i = βi,ki − Hw(τ ) + 1i,ki . (A.4)

Expansion of the nested nonlinear expression βi,ki in Di,n yields to first order (cf [14])

βi,ki

.
= Hw(τ ) +

ki∑
n=1

pi,n−1 Di,n (A.5)

with

pi,n :=
U ′(U−1(U (τ ) +

∑n
m=1 Wi jm ))

U ′(U−1(U (τ ) + w))
(A.6)

for n ∈ {1, . . . , ki}. Substituting equation (A.5) into equation (A.4) together with equation (A.3)
then gives

δi(T )
.
= pi,01i,0 +

ki∑
n=1

(pi,n − pi,n−1)1i,n. (A.7)

This represents a linear map

δ(T )
.
= Sδ, (A.8)

with

Si j :=


pi,n − pi,n−1 if j = jn ∈ Pre[i],

pi,0 if j = i,

0 if j /∈ Pre[i] ∪ {i}.

(A.9)
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Equations (A.6) and (A.9) imply that S is row normalized to 1:
N∑

j=1

Si j = Si i +
∑
j 6=i

Si j = Si i +
ki∑

n=1

Si jn

= pi,0 +
ki∑

n=1

(pi,n − pi,n−1) = pi,ki = 1. (A.10)

Appendix B. Degeneracy of the multi-operator problem

A different perturbation will induce a different rank order and hence a different stroboscopic
T -map and linear operator S, such that, in general, for each coupling matrix W there is a
multitude of possible maps given by (A.8), the number µ of which is bounded by (maxi [ki ])!6
µ6 (N − 1)! [14]. Also, in general, each iteration of the perturbed dynamics can induce a new
linear operator, because it can change the rank order of the perturbation.

The stability operator does not depend on the rank order of the perturbation f (x) :=
U ′(U−1(U (τ )+x))

U ′(U−1(U (τ )+w))
iff

∀x,a f (x + a) − f (x) = constant(a). (B.1)

By definition (cf (4)) the derivative of f exists and it follows that

∀x,a f ′(x + a) = f ′(x) ⇔ f ′(x) = constant (B.2)

⇔ f (x) = c1x + c2

with constants c1, c2 ∈ R, as can be seen as follows: The ‘⇐’-direction follows trivially; for
the ‘⇒’-direction note that f ′(x) = constant ⇔ ∀x, y f ′(x) = f ′(y), then choose y = x + a.
The class of functions f for which the multi-operator problem is degenerate is thus uniquely
given by the affine functions given by (B.2). To obtain the functional form of U , we exploit
f ′(x) = constant (cf [14]), i.e.

f ′(x) =
U ′′(U−1(U (τ ) + x))

U ′(U−1(U (τ ) + x))
= constant (B.3)

⇒ U ′′
= constant U ′

⇒ U (φ) = c̃1 ec̃2 φ + c̃3

with constants c̃1, c̃2, c̃3 ∈ R. With the normalization conditions given by (4)(iv) and the
substitutions c̃1 = c̃3 = I/γ and c̃2 = log[1 − γ θ/I ], we identify U (φ) = ULIF(φ) (cf (12)) and

f (x) =
γ x − I e−γ τT0

γw − I e−γ τT0
. (B.4)

The stability matrix elements yield

∀i 6= j Si j = f

(
j∑

m=1

Wi j

)
− f

(
j−1∑

m=1

Wi j

)

=
γWi j

γw − I e−γ τT0
(B.5)

and Si i = S0 := f (0) =
−I e−γ τT0

γw − I e−γ τT0
.
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From (B.5), it moreover follows directly that W and (S − f (0)I ), where I is the identity
matrix, have the same underlying strongly connected graph. Hence, with (7), S is a non-negative
row-stochastic irreducible matrix, such that the Perron–Frobenius theorem [16] yields

(i) S has a spectral radius λ1 = 1,

(ii) λ1 is unique,

(iii) the right eigenvector v1 = (1, . . ., 1)>.

(B.6)

Application of the Gershgorin disc theorem (cf, e.g., [16]) gives the non-negativity of the
eigenvalues of S:

1 = λ1 > |λm|> · · ·> |λN |> 0. (B.7)

λ1, v1 thus belong to the invariant sub-space Sv1 = v1, while the second largest eigenvalue
will determine the asymptotic exponential decay of a small perturbation Snδ ∼ |λm|

nδ, hence
with (16), (17):

τsync ∝ −1/log[|λm|]. (B.8)

Appendix C. Methods for generating doubly stochastic matrices

C.1. Symmetric sparse random matrices with homogeneous weights

The aim of this section is to create sparse random matrices A, i.e. matrices A with a finite
number of zero elements Ai 6= j = 0. All other elements shall be 1. The positions of the zero
and one elements shall be random. Moreover, for each row i ∈ {1, . . . , N } and for each column
j ∈ {1, . . . , N }, we demand that

∑
j Ai j = k and

∑
i Ai j = k. To achieve this we start with

A =O, the matrix with all elements equal to 0. The first row i = 1 is filled with k 1’s at
random positions j 6= i . The first column j = 1 is then set to ∀m∈{2,...,N } Am1 = A1m . For all
m ∈ {2, . . . , N } we proceed the same way with the all-zero minors A(m)

i j = {Ai j}i, j∈{m,...,N }, just
that the probabilities to add a 1-entry at A′

mj are weighted according to the presence of 1’s
in the j th column of the full (N × N )-matrix A. In the end, every row/column of matrix A
is normalized, i.e. Anorm

i j = ε Ai j/k. If k > N/2 we proceed as before, but distribute zeros in a
matrix that initially has all elements equal to 1.

C.2. Asymmetric sparse random matrices with homogeneous weights

Proceed as in appendix C.1 without the copy step in the nth iteration, i.e. without
∀m∈{1,...,N } Amn = Anm .

C.3. All-to-all asymmetric random matrices with heterogeneous weights

To obtain doubly stochastic fully occupied random matrices, we follow a scheme introduced
in [25]. Let the initial matrix be A =

1
N−1(I− Id). At every iteration, randomly sample four

matrix elements such that for the indexes it holds: i, m 6= { j, n} (additionally, we impose on
diagonal elements to never be changed from 0).

Let B be the set of bounds

B = {max[−Ai j , −Amn, Ain − 1, Amj − 1], min[1 − Ai j , 1 − Amn, Ain, Amj ]}.
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Then if B(2) > B(1):

r = B(1) + (B(2) −B(1)) + rand,

Ai j → Ai j + r,

Ain → Ain − r,

Amj → Amj − r,

Amn → Amn + r,

(C.1)

where rand ∈ [0, 1] is a uniform random variable. The final distribution of matrix elements
is exponential [25], and the algorithm in our implementation stops when the empirical
distribution satisfies statistical testing for the exponential distribution P(x) = N exp[−N x] (the
Anderson–Darling test, cf [34]). Finally, Anorm

i j = ε Ai j .

C.4. All-to-all symmetric random matrices with heterogeneous weights

Proceed as in appendix C.3, with the additional operations

r = B(1) + (B(2) −B(1)) + rand,

Ai j → Ai j + r and A j i → A j i + r,

Ain → Ain − r and Ani → Ani − r,

Amj → Amj − r and A jm → A jm − r,

Amn → Amn + r and Anm → Anm + r.

(C.2)
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