Journal of Physics: Complexity

PAPER « OPEN ACCESS You may also like

. . . . - : ication an
Taming travel time fluctuations through adaptive Management of Fnancial Sharing Under

. the Backaround of Big Data Era
stop pooling Lingai Xue
- Research on construction of Railway

. . . Financial Sharing System based on
To cite this article: Charlotte Lotze et al 2024 J. Phys. Complex. 5 025001 Business-financial Integration

Ying Dan and Zhida Guo

- An experiment for observing quantum
gravity phenomena using twin table-top 3D

. . . interferometers
View the article online for updates and enhancements. S M Vermeulen, L Aiello, A Ejlii et al.

This content was downloaded from IP address 141.30.187.143 on 19/07/2024 at 14:51


https://doi.org/10.1088/2632-072X/ad370a
/article/10.1088/1742-6596/1881/3/032024
/article/10.1088/1742-6596/1881/3/032024
/article/10.1088/1742-6596/1881/3/032024
/article/10.1088/1742-6596/1616/1/012013
/article/10.1088/1742-6596/1616/1/012013
/article/10.1088/1742-6596/1616/1/012013
/article/10.1088/1361-6382/abe757
/article/10.1088/1361-6382/abe757
/article/10.1088/1361-6382/abe757

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
22 June 2023

ACCEPTED FOR PUBLICATION
22 March 2024

PUBLISHED
10 April 2024

Original Content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

J. Phys. Complex. 5 (2024) 025001 https://doi.org/10.1088/2632-072X/ad370a

Journal of Physics: Complexity

PAPER

Taming travel time fluctuations through adaptive stop pooling

Charlotte Lotze"* @, Philip Marszal' (©, Malte Schréder' © and Marc Timme'”

! Chair of Network Dynamics, Institute of Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), TUD Dresden
University of Technology, 01062 Dresden, Germany

2 Lakeside Labs, 9020 Klagenfurt am Worthersee, Austria

* Author to whom any correspondence should be addressed.

E-mail: charlotte.lotze@tu-dresden.de and marc.timme@tu-dresden.de

Keywords: human mobility, ride pooling, stop pooling, collective dynamics

Supplementary material for this article is available online

Abstract

Ride sharing services combine trips of multiple users in the same vehicle and may provide more
sustainable transport than private cars. As mobility demand varies during the day, the travel times
experienced by passengers may substantially vary as well, making the service quality unreliable. We
show through model simulations that such travel time fluctuations may be drastically reduced by
stop pooling. Having users walk to meet at joint locations for pick-up or drop-off allows buses to
travel more direct routes by avoiding frequent door-to-door detours, especially during high
demand. We in particular propose adaptive stop pooling by adjusting the maximum walking
distance to the temporally and spatially varying demand. The results highlight that adaptive stop
pooling may substantially reduce travel time fluctuations while even improving the average travel
time of ride sharing services, especially for high demand. Such quality improvements may in turn
increase the acceptance and adoption of ride sharing services.

1. Introduction

In ride sharing systems, on-demand shuttles simultaneously transport multiple users in the same vehicle.
Ride sharing services thus require fewer vehicles and may be ecologically and economically more sustainable
than transport by private cars [1-6]. Yet users incur detours and travel longer than in private cars, especially
if many users share the same vehicle, see figure 1(a) for an illustration. These detours may be reduced by stop
pooling [2, 7, 8], where some users walk a short distance to a neighboring stop such that two or more users
are served together at one pooled stop (figure 1(b)). With stop pooling the ride sharing vehicles, often
(mini)buses, take routes that are more direct, avoiding detours and thereby improving both user experience
and service efficiency. In particular, the average total travel time of users may decrease despite additional
walking times [2].

However, ride sharing is challenged by demand fluctuations over the day [9, 10]—as demand data for
ride hailing services in Manhattan (New York City, USA) exemplify [11, 12]. Higher demand often provokes
higher travel times for users due to additional detours service vehicles need to make. Ride sharing providers
might respond by adapting their system to maintain roughly constant travel times. One example response
may be to adapt the fleet size [10, 13, 14], but an increase of the fleet size requires additional vehicles and
drivers to be available, often not an economically viable option. Instead, we here propose to adaptively pool
stops in order to reduce travel time fluctuations. The potential of stop pooling to reduce the travel time is
known for steady state operation with constant demand [2]. This potential is higher at higher demand where
it is easier to combine close-by stops [15]. However, the effects of stop pooling on the collective dynamics of
ride sharing systems under varying demand has yet to be understood.

In this article, we demonstrate that stop pooling may reduce travel time fluctuations at a constant fleet
size. Typically, the travel time increases with the demand. Stop pooling absorbs parts of the increase when
users walk further at higher demand. For this purpose, we suggest two simple procedures to adapt the
maximum walking distance, i.e. the maximum distance a user may be asked to walk, to the temporally and
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Figure 1. Ride sharing buses might reduce detours when users accept short walks. (a) Door-to-door ride sharing routes directly
visiting every stop contain large detours when many users share one bus. (b) With stop pooling, buses might serve multiple users
at shared stops. Some users walk a short distance to a nearby stop such that the bus route is more direct.

spatially varying demand. Both procedures significantly reduce the fluctuations of the travel time without
any adaption of the fleet size.

2. Methods

To analyze the qualitative effects of stop pooling on the collective dynamics of ride sharing and in particular
how stop pooling changes fluctuations in the travel time, we introduce an event-based model (details in
supplementary note 1 and 2 citing [16-24] and in [15]) with three different events: (i) users request trips
from an origin to a destination, (ii) ride sharing buses pickup users and (iii) deliver them. New users request
trips while buses serve other users. Finding the bus routes is thus an online-optimization problem [5, 25]. A
simple ride sharing algorithm assigns the users to buses (details in supplementary note 1.C). The algorithm
minimizes the total distance driven by all buses while distributing users over all buses. The algorithm
includes rebalancing [8, 26-28], i.e. sending back idling buses towards a central location to avoid that empty
buses get stuck in regions of low demand (details in supplementary note 1.C.4).

With stop pooling, users might walk at most a maximum walking distance r per stop with user walk
velocity v,,. When a user could walk from their desired stop to the stop of another user within time 7 = r/v,
and (if walking from origin to pickup) arrives at the stop of the other user before the bus, both stops are
pooled. In this way, the algorithm finds locations of the pooled stops dynamically based on the current
demand. If users request a very short trip with trip length ¢ < 2r they walk their complete trip (details in
supplementary note 1.B, see [29]). All in all, the system saves at least one stop compared to standard ride
sharing services if a user walks.

We include street network and request data from an example city into the model for interpretable results
(details in supplementary note 2). We take origins, destinations and request time from a data set of taxi cabs
in Manhattan (New York, USA) as in 2016 [11] (supplementary note 2.E). On a typical day, these requests
are served by 7000—-8000 taxis and even the minimum required taxi fleet would contain almost 6000 taxis
[14]. We simulate a ride sharing service with a much smaller fleet size B = 1500. Buses drive along a directed
street network of Manhattan [30, 31] that is fine-grained analogously to [32] (details in supplementary note
2.D). Buses drive with a mean-field velocity v, = 12 km h™'—a typical average velocity for driving in
Manbhattan [33]. Decelerating, serving users and accelerating is represented by a constant penalty of 10 s per
stop (common for public transport [34]), independent of the number of users entering or exiting the bus at
that stop (details in supplementary note 1.C.3). Users walk on an undirected user network that contains the
same nodes as the bus street network, but allows users to walk into both directions and to cross the street
with a penalty of 10 m at additional nodes (see supplementary note 2.D). Users walk with user velocity
vy = 4 km h™'. The maximum walk distance r is thus equivalent to a walk time limit 7 = r/v,.

We conduct simulations with steady state dynamics by randomly sampling requests from all data and
choosing request times from a Poisson distribution with constant request rate A. We conduct simulations
with the actually served taxi trips with varying request rates A(7) as resulting from the data of individual
requests averaged across ten-minute intervals (see figure 2(a) on one example day between 6:00—-24:00
(details in supplementary note 2.E). Besides, the spatial demand pattern deviates in the morning from the
evening [12, 15]. We observe the travel time # that consists of wait time t,,i;, drive time t4,5, and walk time
twalk (details in supplementary note 3.F.1 citing [34,35]). For steady state simulations, we average all
observables over all users. For fluctuating demand, we average all observables within intervals of one hour.
Users contribute to that interval in which they pose their request. In all figures, the averages per time interval
are represented by one data point in the center of the interval. We evaluate only times after one hour of
simulation time, because simulations start with empty buses randomly distributed over all nodes. In the first
hour of simulation time, buses accumulate a planned job list and distribute according to the requests. We
calculate the request rate A for each interval from the number of requests divided by the length of the time
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Figure 2. The travel time in standard ride sharing strongly varies with demand. (a), (b) Trip demand, i.e. the total trip length
requested jointly by all users, varies strongly with the time of day 7. Panel (a) illustrates fluctuating request rate A and (b) varying
average trip lengths (£) for one day of requested trips in Manhattan, New York City (based on taxi requests, see Methods for
details). (c) Consequently, the travel time ¢ for users fluctuates as well, more than doubling from the minimum at 16:30 to the
maximum at 21:30 (red arrow). This variability originates mainly from fluctuations in the average user drive time 45, (blue
shaded) that is much larger than the wait time f,; (pink shaded). X and (¢) averaged across ten-minute intervals; travel times ¢
averaged across one-hour intervals, trips requested in the interval.

interval. Except for the varying demand, input parameters (e.g. fleet size, velocities) are constant over the
simulation.

3. Results

3.1. No stop pooling

First, let us consider the collective dynamics and fluctuations in standard ride sharing without stop pooling,
7=0. As the demand fluctuates over the day, the user travel time fluctuates as well (figure 2). For the
example shown, the request rate \ varies with mean 275 min~! and standard deviation 44 min~! (16% of
mean) between 7:00 and 24:00 (figure 2(a)). At the same time, the average trip length (¢) of the users varies
with mean 2675 m and standard deviation 289 m (11% of mean) (figure 2(b)). We consider demand as
requested trip length characterized by request rate A and average trip length ¢. The demand is particularly
small around 16:00 (neglecting the boundaries) with minimum request rate A = 193 min~' and more than
50% higher around 20:00 with maximum request rate A = 366 min™ .

The resulting travel time ¢ with standard ride sharing fluctuates even more strongly, with mean 29.3 min
and standard deviation 7.3 min (25% of mean). In the example, users who request a ride between 21:00 and
22:00 travel on average twice as long as users who requests a ride between 16:00 and 17:00 (table 1,
figure 2(c), comparable distributions of individual travel times in both intervals, see supplementary note 3.G,
figure S10). Such high fluctuations make the travel time unreliable for ride sharing users.

3.2. Static stop pooling

Static stop pooling, i.e. stop pooling with fixed walk time limits, already influences the collective dynamics of
ride sharing. We thus compare results for different maximum walking distances 7 > 0 with those for standard
ride sharing, 7 = 0 (no stop pooling). We find that with stop pooling, the travel time ¢ may fluctuate less
(figure 3), because (i) stop pooling may reduce the travel time ¢ in general, compare also [2], and (ii) the
reduction is typically higher the higher r at 7 = 0.

When users walk at most 7 = 3.75 min per stop (intermediate walk limit), the travel time ¢ reduces
compared to standard ride sharing at most times 7 of the day (figure 3(a)) and also on average (table 1). This
reduction might seem counterintuitive, because stop pooling requires additional time #,,x for walking
(figure 3(b)). However, the reduction is explained by a trade-off of additional walk time and reduced drive
time: With a fixed walk limit 7, the walk time #,,,1x is roughly constant despite fluctuating demand
(figure 3(c)). Indeed, users walk on average less than the maximum 27 (7 at origin and destination) and even
less than 7 (table 1). When some users walk to pooled stops, ride sharing buses drive to fewer stops and
reduce some detours such that the bus routes become more strongly directional. Users profit from such more
direct bus routes due to shorter average drive times tgy;, (figure 3(b)). A sufficiently large reduction of t4y;,
overcompensates additional walk times (figure 3(c)). The reduction is higher at high demand, because many
users share one bus. With many users, bus routes in standard ride sharing contain many small detours that
stop pooling might save. There is a high potential to reduce #4,;,. In the example, the travel time reduction is
particularly high in the demand peak in the evening and rather small in the demand minimum around 16:00
(figure 3(c)). In consequence, the travel time ¢ varies less with stop pooling (standard deviation 5.4 min, 21%
of mean at 7 = 3.75 min) than with standard ride sharing, 7 = 0 (table 1).
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Figure 3. A fixed maximum walking distance does not use full potential at fluctuating demand. (a) The travel time ¢ reduces with
stop pooling compared to standard ride sharing (blue line), but which walk limit 7 yields the shortest travel time changes across
the day? Until 18:00, an intermediate walk limit 7 = 3.75min yields best travel time ¢ (orange). During the evening peak, a high
walk limit 7 = 7.5 min yields the best travel time ¢ (green). (b) A fixed walk limit 7 = 3.75min adds an almost constant walk time
twalk throughout the day (light green dotted). (c) The drive time #4y, that fluctuates strongly with the demand (cf figure 2) reduces
with stop pooling [while the wait time #,,i; is roughly constant] such that the overall travel time ¢ reduces (orange solid line) and
fluctuates less compared to standard ride sharing (compare panel a, ¥ = 3.75 min).

Moreover, the results demonstrate that a constant maximum walking distance does not use the full
potential of stop pooling at fluctuating demand, because different maximum walking distances yield the
shortest travel time ¢ at different times of day 7. At low demand, small reductions in t4,, buffer only a short
walk time #,1k. At high demand, a high reduction in #4,;, buffers much longer walk times #,;,1x. Longer walks
save more stops and are thus more efficient in reducing t. In the example, an intermediate walk limit
7= 3.75 min yields the shortest travel time t before 18:00 while a high walk limit 7.5 min yields the shortest
travel time ¢ after 18:00 (figure 3(a)). Can we adapt the maximum walking distance to the instantaneous
demand to increase service efficiency?

3.3. Adapting the maximum walking distances in time

To study how temporally adapting the maximum walking distance to the instantaneous global demand
changes the travel times, we first perform an analysis for steady states that reveals the best suitable maximum
walking distance for any given, temporally fixed demand. We realize constant demand for the steady state
analysis by sampling requests from the example data set. In our analysis, the demand is represented by the
product A\(¢) of request rate A and average trip length (¢), i.e. the total travel distance requested per unit
time. In the model, stop pooling reduces the travel time  at constant demand A (¢) up to some best walk limit
Trest (figure 4(a)). A bisection method finds 7y, for different settings with reduced computation effort
(details in supplementary note 3.F.2). Fyes increases with the demand \(¢) (figure 4(b)), because more users
per bus yield more small detours that determine the potential of reduced t,,i; and t4,, to buffer additional
walk time #,,,x (cf previous section). For the example setting, this increase roughly fits to a linear function,

Toest (A(€)) =aA(l) + D, (1)

with a = [1.9540.18] x minhkm ™', b = [~2.26 +0.71] x 10*min and coefficient of determination [36]
R*=0.92.

Using this steady-state analysis, we suggest a simple procedure to adapt the walk limit 7 to the
instantaneous demand: When a user requests a trip, the global demand at the request time defines their
maximum walking distance. In the example, this global walk limit 7y, reads

7’glob (Trequest) =al (Trequest) <£> (Trequest) +b. (2)

for a user with request time Trequest- This global walk limit 740, (7) varies over the day following the
fluctuations of A(¢) (figure 4(c)). Again, users walk less than the walk limit 7y, (7) on average (table 1,
figures 4(c) and (d)).

The global walk limit 7y, (7) yields the shortest travel times £ at almost all times of day 7. Small
deviations from the shortest travel time # might result from the fluctuating spatial demand patterns, because
the steady state analysis uses a constant mean-field demand pattern. In the example, the travel time has a
smaller mean (table 1) and fluctuates less (standard deviation 4.7 min, 19% of mean) than with standard
ride sharing (6% less) or stop pooling with an intermediate fixed walk limit (2% less).
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Figure 4. Temporally adapted maximum walk distance achieves consistent travel time reduction. (a) With constant demand A\(¢),
stop pooling reduces the travel time ¢ up to a best walk limit 7, (black crosses). (b) This best walk limit 7y increases
approximately linearly with the demand. (c) Applying the linear fit to the fluctuating demand data (brown shaded area) yields a
variable walk limit 7y, (7) between 3.1 min and 7.4 min walk per stop (black line). (d) This time-adaptive stop pooling
consistently achieves the shortest travel time t at almost all times of the day (thick orange line).

Table 1. Comparison of four different settings in walk time limit 7, travel time ¢ and walk time f,, averaged over all time intervals
(second column) and for two example time intervals (third and fourth column).

Overall Average 16:00-17:00 21:00-22:00
7 3 Lwalk 7 3 Twalk 7 3 Falk
min min min min min min min min min
No stop pooling (7 = 0 min) 0.0 29.3 0.0 0.0 20.3 0.0 0.0 45.3 0.0
Static stop pooling (7 = 3.75 min) 3.8 25.7 2.2 3.8 19.6 1.8 3.8 36.0 2.4
Time-adaptive stop pooling (7giqb) 5.3 25.2 3.9 3.0 19.4 1.3 7.4 34.1 6.4

Spatio-time-adaptive stop pooling (7ioc) 4.6 24.8 5.0 2.0 18.6 2.3 5.3 33.0 6.3

Adaptive stop pooling efficiently reduces the travel time at fluctuating demand while simultaneously
reducing the travel time fluctuations. For this result it is sufficient to adapt the maximum walking distance in
time. However, stop pooling is a local interaction compared to the size of a typical service region, because
stops might only be pooled with nearby users. Thus, only the local demand around a user influences their
efficient stop pooling setting. Typically, the local mobility demand does not only vary in time but also in
space (like the taxi demand, cf figure 5(a) and [12]). For this reason, let us consider spatio-temporal demand
fluctuations for adapting the maximum walking distance instead of using the global time varying demand
alone.

3.4. Adapting the maximum walking distance in time and space

In principle, the local demand adaption in time and space could work analogous to the global adaption in
time introduced above: (i) find the best walk limit for steady states in each local region (e.g. taxi zones) and
(ii) adapt the maximum walking distance accordingly. However, the effort of pre-processing for each local
region is very high as the region size should reflect the maximum overall acceptable walk time of a few
minutes walk. We thus suggest a dynamic online adaptation according to the number of users that requested
their ride in a local region of the service area. When a user i requests a trip, we count all N users j

e With origin o; or destination d; within a walk distance 7ax /v, around #’s origin o; and destination d; and
e Whose request is at most a maximum overall acceptable walk time 7,y ago:

Trequest(i) — Trequest (]) < ;max-
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Figure 5. Spatio-temporally adapted walk limit further reduces travel times. (a) The demand is heterogeneous in space as well as
in time, illustrated by the daily average request rate per taxi zone. (b) Spatially localized adaptations of the walk limit i, (7) only
require users to walk in regions with high demand. (c), (d) With this spatio-temporally adapted walk limit, the travel time is
further reduced compared to a fixed walk limit by up to 5.8% (=1.5 min difference). The resulting additional walk time depends
on the time of day 7 (green dotted area in panel (c)).

The walk limit 71, for user i depends on N and a threshold N.:

- . T, N(@) =N,
Toc (Trequest (Z)) = Omax other;iisec (3)

When i has sufficiently many neighboring users, the walk limit is set to the maximum overall acceptable walk
time 7pax. If not, the walk limit is set to zero. The user i might only walk with sufficiently many neighboring
users to potentially pool a stop with, but almost never needs to walk the full distance since a suitable stop is
likely to be closer. For the example setting, we define 7, = 10 min (also used for the iterative optimization
Of Phest € [0, Fmax])- A threshold N, = 1000 yields best results.

With this simple adaption scheme, the users walk only in the regions and during times of high demand
(figures 5(a) and (b)), cf supplementary note 3.G, figure S11). The adaption scheme avoids that users walk in
sparse demand regions while all other users are allowed to walk a maximum acceptable walk limit 7p,y. In
practice, the stop pooling algorithm determines how far each user walks, often much shorter than 7.«

(table 1, figure 5(c). Users walk on average longer than 7 (maximum is 27—once at origin and once at
destination) and longer than with exclusive temporal adaption (table 1). Nonetheless, spatio-temporal
adaptive stop pooling reduces the travel time t even more than stop pooling with exclusive temporal
adaption (table 1, figures 5(c) and (d)). In the example, it yields on average 1.5% and at most 5.8% smaller
travel times ¢ (cf figures 5(c) and (d)). The mean travel time is smaller than with a global walk limit 7,
with standard ride sharing, ¥ = 0, or with intermediate fixed walk limit, 7 = 3.75 min,

(t) (Froc) < (t) (?glob) < () (F=3.75min) < (1) (=0) . (4)

In the example, the spatio-temporal adaption yields on average 13.4% and at most 24.7% smaller t compared
to standard ride sharing. Moreover, the travel time fluctuates less (standard deviation 4.8 min, 19.5% of
mean) than with standard ride sharing or stop pooling with intermediate fixed walk limit, 7 = 3.75 min. A
user who requests a ride between 21:00 and 22:00 travels on average less than twice as much than users who
requests a ride between 16:00 and 17:00 (table 1). The fluctuations are slightly higher than with a global walk
limit 7y, Still, adaptive stop pooling efficiently reduces the travel time at fluctuating demand while
simultaneously reducing the travel time fluctuations.

All in all, stop pooling reduces fluctuations of the average travel time of ride sharing users at a constant
fleet size. In the given example, this is true no matter if the walk limit is adapted in time or in time and space
or not at all (figure 6(b)). In addition, stop pooling consistently reduces the travel time when the maximum
walking distance is adapted to the instantaneous demand. In the example, a spatio-temporal adaption yields
a slightly higher reduction of the travel time than a purely temporal adaption (figure 6(a)).
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Figure 6. Stop pooling reduces travel time and travel time fluctuations. (a) Adaptive stop pooling significantly reduces the travel
time compared to standard ride sharing. The effect is larger when travel times are high, e.g. during high demand in the evening.
Local adaptation of the walk limit 7, further improves travel time saving. (b) With stop pooling, the travel time fluctuates less.
The mean travel time ¢ (horizontal bar) is smaller with adapted 7o, and 7o, than with a fixed walk limit 7. The local walk limit 7.
yields the smallest mean t. Furthermore, the averages of ¢ in one-hour-intervals spread in a smaller range with adapted 7g}, and
Tloc than with standard ride sharing ¥ = 0, making ride sharing travel times more reliable.

4, Discussion

Ride sharing users might experience unreliable, highly fluctuating travel times over the day induced by
fluctuating demand. We here propose to reduce these travel time fluctuations by adaptive stop pooling,
requiring some users to walk a short distance and pool their stops with other users. Interestingly, some ride
sharing services already include short walks from exact locations to close-by virtual bus stops [37—41].
Instead of sending users to the closest virtual bus stop, the proposed stop pooling scheme combines user
stops flexibly, which might be particularly efficient when adapting the maximum walking distance to the
current demand.

In this article, we study the qualitative collective influence of stop pooling in basic models of ride sharing
fleets operating at fluctuating demand using event-based simulations. We find that stop pooling may reduce
the user travel time, because buses drive along more direct routes. The reduction is larger the higher the
travel time initially. Consequently, stop pooling also reduces travel time fluctuations. The optimal maximum
walking distance depends on the demand: Users should walk further for higher demand, where higher time
savings buffer higher walk times. We demonstrate this with two example procedures of adaptive stop pooling
adjusting the maximum walking distance to the current demand: (i) setting the maximum walking distance
to the best suitable distance for the current global demand or (ii) deciding if a user walks or not based on the
local demand around the user. With both procedures, the travel time is on average smaller and fluctuates less
than with standard ride sharing.

In general, ride sharing operators have different options to suitably design their service to adapt to
fluctuating demand. A common strategy is to adapt the fleet size [10, 14] requiring to provide additional
vehicles and drivers which increases the overall carbon emissions and costs of the ride sharing system.
Alternatively, providers may adapt their dispatcher which requires less effort and allows finer and faster
adaptation. For instance, dynamic pricing [42, 43] might increase the user incentive for sharing trips [44] if
necessary, but dynamic pricing has already been misused by drivers to artificially increase the cost for a ride
[45]. As demonstrated above, adaptive stop pooling requires only a straightforward adaption of the
dispatcher, without requiring additional or higher-capacity vehicles (details in supplementary note 3.G,
figure S12). Adaptive stop pooling may thus contribute to cheap and sustainable ride sharing with reliable
travel times.

Our analysis has focused on qualitative effects of adaptive stop pooling. The quantitative results depend
on parameters like fleet size or vehicle velocity (supplementary note 4.H) and should be seen as examples.
For instance, the model uses a constant mean-field velocity. Typically, vehicle velocities reduce during times
of high demand (rush hour), further contributing to high travel times. However, stop pooling reduces travel
times more strongly compared to standard ride sharing when the difference between driving and walking
velocity is smaller, since longer walk times are possible (see supplementary note 4.H). Consequently, we
expect the potential of stop pooling to reduce variability of travel times across the day to remain robust.
Moreover, the model uses a simple assignment algorithm, but we show that the result is robust for a more
complex algorithm (supplementary note 4.1 citing [46—55]): When limiting the user travel time by a maximal
delay, providers have to reject users if the demand exceeds the supply. Then, the rate of rejected users
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fluctuates instead of the travel time and adaptive stop pooling reduces the fluctuations of the rejection rate.
Besides, the model does not include that short user walks might reduce the perceived service quality. In
general, walk time is typically valued less than waiting for or driving in the vehicle [56], walking might
provoke safety risks (especially at night) and walking might not even be possible for some users. However,
stop pooling requires only some users walk while others are served from door to door. Further research
questions result from the suggested methods to adapt the maximum walking distance to current demand.
For example one might avoid repeated pre-processing when discovering universal scaling laws either for the
best maximum walking distance or for the optimal minimum number of neighbors to pool stops with. We
found this threshold by trial and error, but results are robust for slight deviations N, € [750,1250]. In
addition, one may further develop the adaption methods themselves. For example, the spatio-temporal
adaption might improve by differentiating between the local demand around the origin and that around the
destination of a user, or by taking the age of stops into account.

The results in this article contribute to a fundamental understanding of the collective dynamics of ride
sharing systems under conditions of fluctuating demand. Moreover, the results might motivate (i) ride
sharing providers to include stop pooling into their service, because the service may become more efficient,
and (ii) users to participate in a stop pooling service, because their total travel time
may—counterintuitively—decrease. The presented basic stop pooling algorithm that includes two
procedures to adapt the maximum walking distance to the current demand might serve as a basis for future
adaptive dispatchers. Such ride sharing services including adaptive stop pooling may contribute to
sustainable and reliable human mobility.
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