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Abstract
Ride sharing—the bundling of simultaneous trips of several people in one vehicle—may help to
reduce the carbon footprint of human mobility. However, the complex collective dynamics pose a
challenge when predicting the efficiency and sustainability of ride sharing systems. Standard
door-to-door ride sharing services trade reduced route length for increased user travel times and
come with the burden of many stops and detours to pick up individual users. Requiring some
users to walk to nearby shared stops reduces detours, but could become inefficient if
spatio-temporal demand patterns do not well fit the stop locations. Here, we present a simple
model of dynamic stop pooling with flexible stop positions. We analyze the performance of ride
sharing services with and without stop pooling by numerically and analytically evaluating the
steady state dynamics of the vehicles and requests of the ride sharing service. Dynamic stop
pooling does a priori not save route length, but occupancy. Intriguingly, it also reduces the travel
time, although users walk parts of their trip. Together, these insights explain how dynamic stop
pooling may break the trade-off between route lengths and travel time in door-to-door ride
sharing, thus enabling higher sustainability and service quality.

1. Introduction

Emergent collective dynamics make it difficult to understand and predict the behavior of complex systems.

[1–9]. For instance in mobility systems, many different agents with various aims interact, which makes it

hard to quantify key indicators like the efficiency. Methods from statistical physics, like network theory [10],

scaling analysis [11, 12], or mean-field theory [13] can help to overcome this challenge.

In human mobility in particular, understanding the efficiency of different services is crucial to enable a

shift towards more sustainable mobility. Individual motorized mobility is highly inefficient with only about

1.3 passengers per car on average [14]. Making human mobility more sustainable requires a reduction of

total route length driven and simultaneously fewer numbers of vehicles. Arguably, the most influential

factor toward achieving this goal is a substantial increase of the average number of passengers per vehicle.

Ride sharing (also called ride pooling) [10, 12, 15–17] constitutes a promising tool to bundle multiple

user trips in a single vehicle—for instance micro- or minibuses with typically 4 to 24 seats [18]. While each

individual user incurs a small detour on their trip, the ride sharing buses serve the users with a significantly

shorter route length than in individual mobility where each user drives in their own car [16] (figures 1(a)

and (b)).

However, many small detours to pickup users individually in door-to-door ride sharing services increase

both the total route length (reduced sustainability) as well as user travel times (reduced service quality).

Stop pooling offers the possibility to reduce these detours: if users walk a short distance to nearby stops (as

in public transportation), the buses stop less often and save some door-to-door detours [19–24].
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Figure 1. Route length and travel time depend on mode of transport. (a) Individual mobility is the fastest mode of transport but
requires longest total route length. (b) Standard ride sharing serves users from door to door. Ride sharing reduces total route
length by combining trips and requires fewer (but larger) buses. Users may become slower due to detours and between stops.
(c) Static stop pooling with fixed stop positions (purple hexagons) reduces the number of stops but requires users to always walk
part of their trip which might increase travel time even further. (d) Dynamic stop pooling with flexible stop positions combines
efficient public transportation and adaptive ride sharing and might thus save both total route length and user travel time despite
users might walk a part of their trip.

Fixed positions of stops as in line bus services enable a simple implementation of stop pooling. Each
user walks to and from the closest stop, reducing the number of possible combinations of trips and thus the
computational effort of the algorithm that bundles the trips. Such a static implementation of stop pooling
with fixed, prescribed stops (figure 1(c)) reduces the relative route length but typically increases the user
travel time [19–22]. To overcome this challenge, we here propose dynamic stop pooling, where both bus
route and user stops are adapted to current demand (figure 1(d)). Two recent algorithmic models on
dynamic stop pooling [23, 24] suggest the possibility for both shorter total route length and simultaneously
shorter travel time but do not analyze the mechanisms underlying this observation.

Most studies of ride sharing services focus on operational aspects, including user behavior and
economics [16, 25–27] or algorithmic optimization [15, 28, 29], especially in contrast to individual
mobility. Recent studies have begun to develop an understanding of the collective dynamics of ride sharing
fleets from a complex systems perspective, revealing how these dynamics impact the efficiency of ride
sharing across settings [10–13]. However, an analysis of the collective dynamics induced by dynamic stop
pooling and their effect on the ride sharing service quality is still missing.

In this article we present, first, a simple multi-agent model for ride sharing that captures the trade-off
between route length and travel time in door-to-door ride sharing; second, include dynamic stop pooling
and show how it may decrease the travel time by reducing detours between stops, and third, demonstrate
how this enables dynamic stop pooling to break the ride sharing trade-off. We conclude that dynamic stop
pooling may improve both route length and travel time simultaneously by adjusting the maximal walk
distance of the users and the number of buses. Dynamic stop pooling could thus allow to establish a fast,
flexible and sustainable ride sharing service.

2. Model

2.1. Ride sharing
The collective dynamics of ride sharing is determined by the interaction of user requests and the buses
serving them. Let us consider the following simple model for ride sharing: users request a service to
transport them from their origin to their destination as soon as possible; the service provider operates a
fleet of B buses to serve these users; when a request is posed, it is assigned to a bus according to an
assignment algorithm (see section 2.3). That is, origin and destination are inserted at appropriate positions
into the current route of the bus as pickup and drop-off stops. In the model the order of the scheduled stops
once assigned does not swap, even if later requests are inserted into the bus route. Over time, the buses
drive with velocity vb and visit all scheduled stops one after each other (figure 2, left panel).

2.2. Dynamic stop pooling
With dynamic stop pooling, users may have to walk a short distance at their origin and destination—at
most pool radius r per stop. Users walk from their origin to a close stop, which has to be already planned, if
they reach it before the bus; similarly, they walk from a close stop to their destination. Thus, the buses can
serve multiple users at one stop and save stops and related door-to-door detours.

Stops are either served directly or indirectly, or rejected (not served). If served directly, the user is picked
up or dropped off directly at their desired stop; if served indirectly, the user walks to or from a close directly
served stop. To avoid users to walk further than their requested trip length and to waste time (both their
own and that of the service fleet), people with requested trip length � < 2r are rejected and walk
completely. In contrast to directly and indirectly served stops, their stops are not served by the buses.

2



New J. Phys. 24 (2022) 023034 C Lotze et al

Figure 2. Dynamic stop pooling avoids door-to-door detours by combining close-by stops. In door-to-door ride sharing (Left),
the bus drives to each stop resulting in an overall route with many small detours (black line). Dynamic stop pooling may avoid
these detours by combining close-by stops, yet keeps the overall route structure similar (compare red line). In detail, some users
walk to a nearby stop closer than pool radius r (Right). Their stops are served indirectly. If origin and destination are closer than
2r, users walk completely and do effectively not use the service. Their stops are rejected. Ultimately, the bus serves only the
remaining stops directly.

Figure 2 illustrates the difference between dynamic stop pooling and door-to-door ride sharing as well as
the resulting stop types. These stop types yield three distinct user types: if both origin and destination are
served directly, users do not walk; if one or two stops are served indirectly, users walk partially; otherwise the
request is rejected and users walk completely.

2.3. Setting
We model the dynamics of the ride sharing service by Monte Carlo simulations [30]. The requests follow a
Poisson process [31] with mean field request rate λ where the position of the origin is distributed uniformly
in a unit square with periodic boundaries. Destinations are distributed uniformly in a disk around the
origin with maximal trip length �max = 1/2 such that diagonal trips are not more probable than others. The
trip length (tl) of all users is thus distributed according to

ρtl(�) =
2

�2
max

�,

∫ �max

0
ρtl(�) d� = 1 (1)

with an average trip length 〈�〉 = 1/3 (see supplementary material A, equation (S2)) (https://stacks.iop.org/
NJP/24/023034/mmedia).

We introduce stop pooling with the same pool radius for all users, independent of their trip length. To
avoid that users walk further than their trip length, we reject users with � < 2r, where the factor 2 captures
the fact that users may walk a distance r from their origin as well as to their destination. We rescale the pool
radius as

r̃ =
2r

�max
, (2)

to better reflect the effect on the users. For minimal relative pool radius r̃ = 0 (r = 0), users do not walk
(door-to-door ride sharing). For 0 < r̃ < 1, the relative pool radius r̃ gives the percentage of the maximal
trip length that users are required to walk. For maximal relative pool radius r̃ = 1 (r = �max/2) all users
walk completely and no ride sharing takes place anymore.

As the pool radius increases, more users are not served and walk completely. The ratio ωr of rejected
stops, which is similar to the ratio of rejected users, follows directly from the fraction of trips with lengths
� < 2r by integrating the trip length distribution ρtl(�) only for rejected users, i.e. from 0 to 2r, as

ωr( r̃) =

∫ 2r

0
ρtl(�) d� =

(
2r

�max

)2

= r̃ 2. (3)

It only depends on the relative pool radius r̃.
When a request arrives, we assign it to one of B buses and insert pickup and drop off stops (unless the

user walks to other stops) into the current route of the bus. We determine the assignment and routing
according to a simple algorithm that exclusively minimizes the bus route length, i.e. the sum of the distances
of all subsequent stops in its route. When a request appears, the algorithm calculates for each bus how to
insert the origin and destination with minimal additional route length. For this purpose, it iterates over all
currently planned stops in the bus route to check whether the user could be served indirectly via this
planned stop (if r̃ > 0) or, if not, how much an insertion of the new stop would increase the route length.
In the end, the algorithm assigns the request to the bus with shortest route length after inserting the request.
If origin and destination are far from planned stops, the bus would pick up and deliver the user directly
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from and to their requested location. If there are planned stops near the origin or destination, the algorithm
favors stop pooling to minimize the route length.

The buses drive with velocity vb on the shortest path from stop to stop, serving all assigned users. Users
walk to and from their pooled stops or their whole trip on the shortest path with velocity vp = vb/10. For
simplicity, we consider buses with infinite capacity c = ∞ and zero time to decelerate, park, serve users
and accelerate again at each stop (zero stopping time). This setting marks a lower bound for the efficiency
of stop pooling because it can only save route length but no stopping time.

For all simulations illustrated in the figures, we take a constant request rate λ = 540 and bus velocity
vb = 1 (vp = 0.1)and vary the number of buses B ∈ [30, 35, . . . , 60] and the relative pool radius
r̃ ∈ {0, 0.1, . . . , 1} to analyze the influence of dynamic stop pooling on door-to-door ride sharing, modeled
by r̃ = 0. All other parameters are kept constant. In particular, we use exactly identical requests (request
times, origins and destinations) in the different simulations, not only similar request distribution. In this
way, we show how stop pooling can help to improve a certain service with given demand—e.g. in a given
city.

Clearly, stop pooling can only take place with stops of other users. Thus, users first have to share rides,
before they can pool stops. The service is in the ride sharing regime, i.e. it has to bundle user trips, if more
trip length is requested than the buses can travel per time. The load

x =
λ〈�〉
vb B

(4)

defined by Molkenthin et al [12] characterizes the ride sharing regime by x > 1. Here, λ 〈�〉 is the average
trip length requested per time and vbB the maximal distance all buses can travel together per time. The load
is a lower bound for the average occupancy of the buses [12]. As long as x > 1, the buses are on average
always occupied by at least one user and are almost never idle.

The higher the load x, the more user trips need to be bundled to serve all requests. However, high loads
come along with high computation cost (of the assignment algorithm), high occupancy, and high user
travel time and are unfeasible and unrealistic. To be well in the ride sharing regime without too high loads,
we choose initial loads (door-to-door ride sharing) x0 ∈ [3, 6] (compare parameters above). That means,
three to six times more route length is requested than the buses can serve. In consequence, on average at
least three to six users are in a bus per time step who can pool their stops. Due to detours and longer travel
times, the actual occupancy is typically much larger, especially in settings with only few buses.

2.4. Observables
We start our simulations with B empty buses randomly distributed in the unit square and wait for some
time T0 = 100 until the bus occupancy and the length of the planned routes have equilibrated. We measure
our observables in a fixed observation window ΔT = 100, t ∈ [100, 200], in the steady state after
equilibration. In this window, approximately P ≈ λ ΔT = 5 × 104 users are served. We consider only
request with delivery in the observation window. Because we simulate for such a long time and so many
users, we observe well defined average values. The standard error of the mean for our observables is very
small and thus negligible in the figures presented below.

2.4.1. Route length
The total route length L is the sum of all bus route lengths. The route length Li of bus i is the sum over all
stop distances of the route of the bus. We normalize L by the ideal total route length in individual mobility
Lind, the sum of all P user trip lengths �j. The rescaled observable relative route length

L̃ =
L

Lind
=

B∑
i=1

Li

P∑
j=1

�j

=
BvT

P〈�〉
(
1 − 〈pidle〉

)
. (5)

quantifies how much longer/shorter the buses drive to serve the users compared to each user going by car
individually. Here, 〈pidle〉 is the average probability for the buses to become idle. For L̃ > 1, the buses would
in total drive further than cars in individual mobility. For 0 < L̃ < 1, the service requires less bus route
length to serve all users than individual mobility and is 1/ L̃ times more efficient in route length. For L̃ = 0,
no buses drive at all, the service does not serve anyone. This only occurs for r̃ = 1 when all users walk
completely.

Over a constant observation time T, the total route length by the bus fleet is directly proportional to the
idle time of the buses. In particular, if buses are never idle due to sufficiently high load, pidle → 0 for
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Figure 3. Trade-off between relative route length and relative travel time in door-to-door ride sharing. (a) The relative route
length L̃ increases approximately linearly with increasing number B of buses because x ∈ [3, 6] for constant λ = 540 are
sufficiently high that buses are almost never idle (〈pidle〉 ≈ 0, compare equation (5)). (b) At the same time, the relative travel time
t̃ decreases. The fewer buses, the more route can be saved but the longer do users travel. (c) Relative travel time (from panel (b))
vs route length (from panel (a)) joined by similar B encoded by small numbers beneath the curve. If reducing the relative travel
time, the relative route length increases in return and vise versa. It is hence impossible to improve both at the same time by just
varying the number B of buses in door-to-door ride sharing. Black dashed lines are guides to the eye.

x →∞, the total route length L → B vbT does not change with the relative pool radius r̃ or the load x.
Similarly, the total sum of the user trip distance Lind depends on the request rate λ and the trip length
distribution but not on r̃ such that the relative route length is independent of r̃ in the ride sharing regime.

We take energy required and emissions caused to be proportional to the total route length driven,
neglecting the influence of vehicle size or capacity compared to private vehicles. The relative route length L̃
thus quantifies the energy consumption and emissions of a ride sharing system compared to ideal individual
mobility. For L̃ < 1, we thus consider the system to be ecologically more sustainable.

2.4.2. Travel time
Usually, users pay for the reduced relative route length with longer travel times than in individual mobility.
We measure the average of all P user’s travel time, which is the time between request and arrival at the
destination. We normalize this average travel time by the ideal average travel time in individual mobility
when all users are served immediately, without detour and with bus velocity vb. This relative travel time t̃
reads

t̃ =
〈t〉
〈tind〉

=

1
P

P∑
j=1

(
tarrival,j − trequest,j

)
〈�〉
vb

. (6)

The relative travel time measures how much slower users are compared to the ideal travel time. Because we
measure a user related observable, we include all users into the relative travel time. Rejected users simply
contribute their walk time t = �/vp. The minimal possible relative travel time in ideal individual mobility
equals one. For t̃ > 1, users are t̃ times slower than in individual mobility. In the example study below we
have t̃max

walk = vb/vp that measures the relative travel time when all users walk completely.

3. Results

3.1. Door-to-door ride sharing
First, we analyze how door-to-door ride sharing without stop pooling, r̃ = 0, with fixed request rate scales
for different fleet sizes B. Relative travel time and relative route length scale oppositely: the relative route
length increases with increasing number B of buses (figure 3(a)); the relative travel time decreases with
increasing B (figure 3(b)). Joining these findings for similar B shows that ride sharing services pay with
increased relative travel time when reducing the relative route length by varying and vice versa (figure 3(c)).
We thus identify a trade-off between relative route length and relative travel time for door-to-door ride
sharing. For given requests we cannot improve both at the same time (in analogy to [32]).

3.2. Ride sharing with dynamic stop pooling
With dynamic stop pooling, users may walk to and from a close stop. For r̃ = 0, users do not walk
(door-to-door ride sharing); for r̃ = 1, all users walk completely. Below, we explore the influence of any
r̃ ∈ [0, 1] on ride sharing in the model.

5
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Figure 4. Relative route length stays roughly constant although dynamic stop pooling saves stops. (a) The ratio ωd of directly
served stops decreases monotonically with r̃, faster than the served stop ratio ωs (blue line, see equation (7)), which divides the
saved stops into rejected ωr (shaded grey) and indirectly served stop ratio ωi (shaded orange). (b) The indirectly served stop ratio
ωi first increases and then decreases again with increasing r̃. Moreover, ωi increases with decreasing B (and constant λ) for
0 < r̃ < 1. That is, the more users share one bus, the more stops can be pooled. In general, stop pooling is only feasible for small
pool radii r̃ 	 1 where most users are served (ωs, blue line) and the minority of users is rejected (ωr, shaded grey). (c) Rejections
reduce the load x . For sufficiently small r̃, the load (black dashed lines according to equation (8)) is high, x < 1, and the system
is in the ride sharing regime, such that all buses are busy at all times. For very high r̃, the load decreases to x < 1 and almost no
rides are served anymore. Buses have to wait for incoming requests. (d) Roughly constant relative route length L̃ for small r̃ due
to busy buses for x > 1 (cp equation (5)). Only for sufficiently large r̃, the load falls below 1 (see panel (c)) and the route length
decreases to zero when all users walk completely for r̃ = 1.

3.2.1. Fewer stops
The number of stops reduces in two ways: if users are served indirectly and walk to a nearby stop or if users
are rejected and walk completely. The second form of stop reduction is clearly undesirable for the users.
Thus, the ratio of rejected users, which is the same as the ratio ωr of rejected stops relative to the total
number of stops, should be rather small, ωr 	 1.

The ratio ωr of rejected stops is proportional to the fraction of requests with destination in a circle with
radius 2r around the origin, because these users are rejected and walk completely. With a uniform request
distribution (see section 2), ωr grows quadratically in r and is exactly equal to r̃2 in terms of the normalized
pool radius (see section 2, equation (3)). The ratio ωs of served stops, which consists of the ratio ωd of
directly served stops and the ratio ωi of indirectly served stops, thus decreases quadratically with r̃ as

ωs( r̃) = ωd( r̃) + ωi( r̃) = 1 − ωr( r̃) = 1 − r̃ 2. (7)

For minimal relative pool radius r̃ = 0 (door-to-door ride sharing), the buses serve all stops directly:
ωs = ωd = 1. For maximal pool radius r̃ = 1, the buses serve no stops ωs = ωd = 0 and all users walk
completely, ωr = 1. Consequently, only small relative pool radii r̃ 	 1 are feasible so that most users are
served.

Simulations show that the ratio ωd of directly served stops reduces with increasing relative pool radius
faster than the ratio ωs of served stops (figure 4(a)). The remaining fraction ωi of stops is served indirectly.
This ratio ωi of indirectly served stops quantifies the degree of actual stop pooling: how many stops are
combined with others (instead of how many stops are rejected). For small pool radii, it increases and then
decreases again with the relative pool radius when complete walking dominates (figure 4(b)). First, more
and more users walk to close stops with increasing relative pool radius. When the relative pool radius
increases further, more and more of these users are rejected and walk their whole trip. Rejected stops replace
indirectly served ones.

The potential of stop pooling increases with fewer buses. Since more users share a bus, the bus visits
more stops that are on average closer together and can be pooled easier. Overall the more users share a bus,
the higher is the potential of dynamic stop pooling.

6
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Figure 5. Dynamic stop pooling reduces relative travel time and occupancy for sufficiently small r̃. (a) The relative travel time is
minimal for some intermediate relative pool radius (0 < r̃ < 1). This minimal relative travel time is lower than the relative travel
time for door-to-door ride sharing (̃r = 0) and lower than the relative travel time t̃max

walk (dashed line) when all users walk
completely ( r̃ = 1). In general, the relative travel time decreases with B (as shown in figure 3). (b) The relative travel time splits
into drive, wait and walk time, shown here for B = 40 (cp panel (a)). The wait and drive time decrease for increasing r̃. This
effect is only partially explained by rejected users who walk completely and do not drive/wait. Additionally, buses avoid
door-to-door detours, further reducing the drive and wait time of the remaining users. Reduced drive and wait time
overcompensate the increasing walk time for small enough r̃ such that the overall relative travel time decreases. For large r̃, the
walk time dominates and the relative travel time increases up to t̃max

walk. (c) The average occupancy 〈o〉 decreases with increasing r̃
and B. Dynamic stop pooling thus allows to use smaller buses than door-to-door ride sharing.

3.2.2. Constant route length
The load x measures how much trip length is requested compared to how far the buses can drive in total per
time step (see section 2, equation (4)). It is a lower bound for the average occupancy 〈o〉 of the buses
[12]—the average number of users per bus at any point in time. Because rejected users do not contribute to
the load x, it depends on the relative pool radius as (derivation in supplementary material A)

x(r) = x0

(
1 − r̃3

)
, (8)

where x0 denotes the load for door-to-door ride sharing with r̃ = 0. The load decreases with increasing
relative pool radius (see figure 4(c)). Due to the high initial values x0 ∈ [3, 6], the load stays larger than one
for most feasible pool radii. Consequently, the buses are typically occupied and thus remain busy almost all
the time (〈pidle〉 ≈ 0, compare equation (5)). Because they move with constant velocity, the buses drive the
same route length in this time (observation window). Since the requests and their ideal total route length
also stay the same, we measure a constant relative route length (figure 4(d)). Only for (infeasibly) high
relative pool radii close to one, the load falls below one. Buses become idle from time to time and wait for
new requests without driving. The relative route length decreases until buses do not drive at all when all
users walk at r̃ = 1.

3.2.3. Faster users
A constant relative route length despite saved stops might initially seem counter-intuitive. But the route
length stays only constant from the point of view of the buses. Users see less of this route length, since they
are faster and spend less time waiting for and driving in the buses (figures 5(a) and (b)). The relative travel
time becomes minimal for some intermediate pool radius 0 < r̃ < 1 where neither all users are served from
door to door ( r̃ = 0) nor everyone walks ( r̃ = 1).

Dynamic stop pooling can reduce the relative travel time by making few users walk partially or
completely and in turn reducing the drive and wait time. This reduction on average overcompensates the
additional walk time for sufficiently small r̃ (figure 5(b)). This comparison not only holds for the averages,
but extends to the full travel time distributions as well (cp supplementary material B 2).

3.2.4. Lower bus occupancy
Since users spend less time in the buses (see figures 5(a) and (b)), the average occupancy 〈o〉 of the buses
reduces with dynamic stop pooling (figure 5(c)). Fewer buses may serve the same requests with the same
average occupancy that would have been impractically high for door-to-door ride sharing. For example 45
buses require on average 〈o〉 = 30 seats with r̃ = 0, but only 〈o〉 = 18 with intermediate relative pool radius
r̃ = 0.2, which could be served by a minibus.

The magnitude of this effect increases the more users initially share a bus and goes beyond the pure
rejections due to users walking completely (see supplementary material C). When fewer buses serve the
same requests, more users share the same bus such that dynamic stop pooling saves more stops, relative
travel time and occupancy (figures 4(a) and 5(a) and (c)).

7
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Figure 6. Stop pooling breaks the ride sharing trade-off between relative route length and relative travel time. With fixed relative
pool radius r̃ (shades of blue), the service shows the same trade-off between the relative travel time and the relative route length
when varying B (denoted by the small numbers beneath the data points), e.g. for (i)→ (ii) (cp figure 3). However, the increase in
the relative travel time is lower for higher relative pool radii. Increasing r̃ shifts the service to a lower relative travel time for
sufficiently small r̃ (cp figure 5). Together, increasing both r̃ and reducing B results in decreased relative route length while
keeping the relative travel time approximately constant, (i)→ (iii). Stop pooling thus breaks the ride sharing trade-off. Detailed
data on the scenarios (i), (ii) and (iii) is given in the table on the right. Scenarios (i) and (ii) yield bad relative route length or
relative travel time (red background), respectively. Scenario (iii) with dynamic stop pooling yields better results for both (green
background).

In summary, with increasing (small enough) relative pool radius while keeping all other parameters
constant (I) buses drive the same total route length because they are still busy all the time, (II) buses stop
less often because more stops are pooled, thus (III) reducing the waiting time and detour for users and
ultimately (IV) resulting in smaller average travel times for users despite walking further.

3.3. Dynamic stop pooling breaks trade-off
With fixed relative pool radius r̃, lowering B reduces the relative route length (figure 4(d)) but increases the
relative travel time (figure 5(a)). The door-to-door ride sharing trade-off between relative route length and
relative travel time when only varying B persists with dynamic stop pooling for constant r̃ (figure 6).
Raising the relative pool radius r̃ with fixed B decreases the relative travel time but keeps the relative route
length roughly constant (as long as r̃ is feasibly small). However, in combination, it is possible to decrease
the relative route length while keeping the relative travel time constant by reducing B and raising r̃
simultaneously. We no longer pay automatically with higher relative travel times for shorter relative route
lengths. Dynamic stop pooling breaks the ride sharing trade-off between route length and travel time.

This breaking of the trade-off is a qualitative novelty of dynamic stop pooling as opposed to static stop
pooling or door-to-door ride sharing. Existing studies of static stop pooling (that focus on reduced route
length and increases shareability) observed longer travel times [19–21]. So far, only studies with dynamic
stop pooling (including this article) have observed reduced travel times [23, 24].

Instead of trading short bus route lengths for high user travel times, it is sufficient to let users walk a
short part of their trips if both bus route and stop positions are flexible.

To better understand this effect, consider the three scenarios illustrated in figure 6. In scenario (i), a
door-to-door ride sharing service delivers the users with 45 buses. If the service provider decides to only use
40 buses (scenario (ii)), the route length reduces by 11%, but users travel on average 23% longer due to the
ride sharing trade-off. The provider risks losing users. In scenario (iii), 40 buses with dynamic stop pooling
serve the users at the same speed as in scenario (i), if the users walk up to 10% of their maximal trip length.
Both relative route length and relative travel time are smaller than in scenarios (i) and (ii) (figure 6). The
provider saves 11% route length, and 11% of the buses without increasing the relative average travel time or
requiring much larger buses. The same holds for the distributions of the user travel times (see supplementary
material B 2).

In return, only one percent of the users walk completely. Around half of the users do not walk at all, and
the remaining partially walking users walk on average 8% of their trip. Averaged over all users, they walk
only 5% of their trip, thereby enabling a more sustainable ride sharing service with slightly faster users.
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4. Discussion

The simple model introduced above captures fundamental spatio-temporal interaction of various agents of
ride sharing systems with dynamic stop pooling. We systematically analyzed the collective system dynamics
for varying pool radius r and number B of buses. Other parameters like the average bus velocity, the request
rate and the average requested trip length are summarized in a system-wide load x (equation (8)), cf also
[12]. The results demonstrate that dynamic stop pooling may break the trade-off that is prevalent in
door-to-door ride sharing systems between reducing relative bus route length and reducing relative user
travel time (figure 6 and section 3.1).

Dynamic stop pooling increases ride sharing efficiency by reducing the number of directly served stops
(section 3.2.1). It thereby avoids many small door-to-door detours and decreases the occupancy of the buses
if some users walk a short distance to a dynamically determined stop, in contrast to static stop pooling
where every user would have to walk to a prescribed stop. Dynamic stop pooling thereby decreases the
relative travel time (section 3.2.3) while keeping the relative route length constant (section 3.2.2)—a novel
quality for ride sharing systems (section 3.3). As a consequence, upon increasing the maximum walk
distance of dynamic stop pooling, a smaller number of buses may serve the same number of requests
without longer travel times and without needing larger buses (section 3.3). Dynamic stop pooling may thus
help to make ride sharing ecologically more sustainable by reducing the number of buses, resulting in lower
energy consumption and emissions, without negatively impacting flexibility, service quality and travel
times.

The general mechanism of breaking the ride sharing trade-off relies on the interplay of two general
conditions: first, dynamic stop pooling is only possible in the ride sharing regime, x > 1, where buses do
not serve all users one after another, because (in a given time) the sum of the trip length of all users is larger
than the distance that the buses are able to drive. Thus, multiple users share a bus, which allows to pool
their stops. Since stops close to each other (in space and time) may be pooled, dynamic stop pooling
becomes more efficient for higher loads x (i.e. for fewer buses or higher request rate) with many stops per
bus, whereas the influence of dynamic stop pooling vanishes for small loads x with few stops per bus.

Second, to neutralize the increase in the travel time with reducing B (negative effect of the trade-off) the
travel time needs to decrease enough with r̃. The travel time only decreases for small enough r̃ and up to
some minimal value for each B. If reducing B too much, even the maximal decrease of the travel time for
optimal r̃ might not neutralize the increase in the travel time due to reduction of B completely. For instance
when reducing B in the above example from 60 to 30, which would half the relative route length, however
much increasing r̃ will yield a higher travel time (all t̃ with B = 30 are higher than t̃ with B = 60 and
r̃ = 0, cp figure 5). Dynamic stop pooling is unable to completely neutralize this high decrease in B and
only buffers it. But for small reduction in B, we can observe a shorter route length (due to B reduction)
without longer travel time when increasing r̃. The same effect could be observed if a shorter route length
compensates an increasing travel time (cp [23, 24]). This condition is typically fulfilled for small pool radii
where the service avoids small door-to-door detours without rejecting a large fraction of users due to
additional benefits to the remaining users (see supplementary material C). High pool radii are not feasible
since most users walk, increasing their travel time, and almost no served stops remain to be pooled.

These arguments hold under more general conditions than those studied in our simplified model. First
of all, different assignment algorithms and different delay or capacity constraints may reduce the options to
pool stops. Similarly, walking may not be possible for all users. While these aspects may limit the overall
potential of dynamic stop pooling, it does not affect the qualitative mechanisms described above. Moreover,
additional aspects including substantial stopping times, deceleration and acceleration, and the influence of
traffic density on lane-switching, overall vehicle velocity and stopping times may even increase the benefits
of stop pooling in terms of added comfort and security. (For a more detailed discussion of the robustness,
see supplementary material D.)

Our simple model setting may represent real world urban centers with high request densities at highly
frequented locations although the continuous space strongly reduces the overlap of requested trips resulting
in high relative travel times (see supplementary material section B 1). Equating the length and time scales in
our model to typical conditions in Manhattan with a total area of 59 km2 (8 km per length unit) and
average velocity 10 km h−1 [33], the simulated request rate corresponds to 11.25 requests per minute or less
than 5% of the typical taxi request rate in Manhattan (approximately 400 000 daily [10]). Already for such a
small fraction of requests and number of buses—chosen for the sake of computational feasibility—dynamic
stop pooling may break the ride sharing trade-off. Furthermore, our results remain robust for larger request
rates and numbers of buses. Indeed, sharing rides and pooling stops becomes even easier resulting in
shorter relative travel times for comparable loads and similar relative savings from stop pooling (see

9
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supplementary material D for supporting simulations). Moreover, we find the same qualitative result even if
rejected users drive individually instead of walk (see also supplementary material D).

Overall, we have identified the joint dynamic interaction of walking, routing buses, and dynamically
pooling stops as the core mechanism to break the ride sharing trade-off. Better understanding the influence
of dynamic stop pooling and the underlying mechanisms may thus help to enable simultaneously more
sustainable and more flexible shared mobility.
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