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Abstract. Is a periodic orbit underlying a periodic pattern of spikes in a
heterogeneous neural network stable or unstable? We analytically assess this
question in neural networks with delayed interactions by explicitly studying
the microscopic time evolution of perturbations. We show that in purely in-
hibitorily coupled networks of neurons with normal dissipation (concave rise

function), such as common leaky integrate-and-fire neurons, all orbits under-
lying non-degenerate periodic spike patterns are stable. In purely inhibitorily
coupled networks with strongly connected topology and normal dissipation
(strictly concave rise function), they are even asymptotically stable. In con-
trast, for the same type of individual neurons, all orbits underlying such pat-
terns are unstable if the coupling is excitatory. For networks of neurons with
anomalous dissipation ((strictly) convex rise function), the reverse statements
hold. For the stable dynamics, we give an analytical lower bound on the local
size of the basin of attraction. Numerical simulations of networks with different
integrate-and-fire type neurons illustrate our results.

1. Introduction. Stable and unstable invariant sets are fundamental for the time
evolution of nonlinear dynamical systems [20]. In particular, stable invariant sets
constitute attractors and thus characterize the long time behavior of such systems.
Unstable invariant sets also have a strong impact onto a system’s dynamics. For
instance, chaotic saddles [14] may control transient dynamics, and unstable peri-
odic orbits constitute the skeleton of chaotic attractors (and chaotic saddles) and
determine the statistical and geometrical properties of their dynamics. Moreover,
pulse-coupled systems may even be dominated by invariant sets that are unstable
periodic orbits, yet attractors in the sense of Milnor [36, 37, 4]. Whereas stability
of invariant sets in low-dimensional systems such as one- and two-dimensional maps
and certain continuous time systems is well studied, stability properties of invariant
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sets in higher-dimensional systems are typically hard to access. Here we analyt-
ically study the stability of periodic orbits in networks of spiking neuron models
with delayed interactions and arbitrary, generally complicated network connectiv-
ity. Periodic orbits in these systems imply that the generated patterns of spikes
repeat periodically.

Recently, neurobiological experiments yield increasing evidence for the presence
of precisely timed, often repeating patterns of spikes in different neuronal systems
[3, 32, 30, 15, 23, 2, 12, 31]. Their dynamical origin, however, is still unknown. In
models, patterns of precisely timed spikes occur, e.g., as attractors of the dynamics
of recurrent, essentially inhibitory neural networks with non-delayed interactions,
if they are designed in a special way [24] or fully coupled [19]. In two recent
publications [28, 27], we presented a method to design neural networks with delayed
couplings and arbitrary connectivity that exhibit an arbitrary predefined periodic
pattern of spikes as invariant dynamics. This naturally raises the question whether
the invariant dynamics and hence the stored patterns are stable or unstable against
dynamical perturbations.

For spiking neural networks, stability has mostly been analyzed in small systems
with a few neurons [29, 41, 10, 39, 11] or for relatively simple collective states, such
as oscillatory and synchronous [38, 10, 11, 8, 7, 35] or asynchronous states [1, 8, 16, 7,
40, 21]. Only a few studies assess the stability properties of more complex invariant
precise spiking dynamics in larger networks. The stability of a near-synchronous
periodic pattern of spikes was shown in inhibitory networks with normal dissipation
and in excitatory networks with anomalous dissipation in [9]. For homogeneous,
fully connected inhibitorily coupled networks of common leaky integrate-and-fire
neurons without delay, the stability of the ‘splay state’ [33], characterized by evenly
spaced spike times of all network neurons, was analytically demonstrated recently
[45]. Numerical investigations of weakly diluted networks show convergence of the
dynamics to stable periodic orbits. Moreover, in globally coupled networks of leaky
integrate-and-fire neurons with essentially inhibitory interaction and without delay,
any non-degenerate periodic pattern of spikes has been shown to be stable [19]. In
ref. [24], for a more general class of neuron models without delay, it was shown
that a stored simple periodic pattern of spikes is even a global attractor. Finally,
for networks with mixed excitatory and inhibitory couplings we showed numerically
that the same spike pattern can be stable or unstable, depending on the specific
network it is realized in [28, 27].

In the present article, we analyze the stability of arbitrary non-degenerate peri-
odic spike patterns, i.e. of patterns without simultaneous spike sendings and recep-
tion. Our results apply in particular to purely inhibitorily and purely excitatorily
coupled neural networks with invariant periodic dynamics that give rise to such
periodic spike patterns. We show that the patterns are either all stable or all un-
stable, depending only on the inhibitory or excitatory character of the couplings
and the type of dissipation but not on the network connectivity. For asymptotically
stable orbits, we present an analytical lower bound of the size of the basin of at-
traction. For inhibitory coupling this estimate depends on the spike timings only,
while for excitatory coupling it is also influenced by the subthreshold dynamics of
the network’s neurons.

As a particular result, any non-degenerate pattern is stable in networks of purely
inhibitory neurons with normal dissipation (such as the common leaky integrate-
and-fire neuron) as well as in networks of purely excitatory neurons with anomalous



PERIODIC ORBITS IN COMPLEX NETWORKS 1557

εml

τ(t+     )

Um

τ(t+     )(             )−

U,mΘ

mΘmlmφmφ
0

ml

Figure 1. Phase dynamics in response to an incoming spike and
interpretation of the transfer function Hm

εml
(φm). The rise function

Um of neuron m is plotted as a function of its phase φm. In the
absence of interactions, φm(t) increases uniformly with time t ac-
cording to Eq. (1). If neuron l sends a spike at time t, neuron m
receives this spike at time t+τml and in response experiences a jump
Um(φm((t+τml)

−)) → Um(φm((t+τml)
−))+εml = Um(φm(t+τml))

in its membrane potential. Solving for the phase after the inter-
action yields the phase jump φm((t + τml)

−) → φm(t + τml) =
U−1

m (Um(φm((t + τml)
−)) + εml) = Hm

εml
(φm((t + τml)

−)), medi-
ated by the transfer function Eq. (5).

dissipation. The central idea underlying the proofs is that interactions between neu-
rons cause weighted averaging of perturbations. The extremal perturbations then
cannot increase in absolute value and the spike pattern is stable. If the network is
strongly connected, i.e. its adjacency matrix is irreducible, the averaging takes place
among the state variables of all the neurons. Therefore, the neurons’ perturbations
converge to the same final value and the sequence of spikings converges towards a
sequence which is only shifted in time with respect to the original one: The spike
pattern is asymptotically stable.

In contrast, all non-degenerate periodic patterns in purely excitatory networks
with normal dissipation or in purely inhibitory networks with anomalous dissipation
are unstable. Here, the central idea is to track some particular arbitrarily small ini-
tial perturbation and to show that it grows in magnitude until it is larger than some
positive predefined constant value independent of its original size. We illustrate our
results by numerical simulations of networks of leaky integrate-and-fire neurons [22]
and biological oscillators as proposed by Mirollo and Strogatz [29]. Parts of the
results were presented in [26].

2. The model.

2.1. Neuron model. Consider a network of N ≥ 2 oscillatory neurons interacting
via directed delayed connections. The state of a neuron l ∈ {1, . . . , N} at time
t ∈ R is characterized by one variable φl(t) ∈ (Bl, Θl], the phase of neuron l, that
is piecewise affine in time and has a lower bound Bl ∈ R

− ∪ {−∞} and a finite
upper bound, the threshold Θl ∈ R

+. In addition, there are state variables σl(t)
that carry information about the sending times of spikes; these will be introduced
below.
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In the absence of interactions, the phase of each neuron l ∈ {1, . . . , N} increases
uniformly in time obeying

dφl/dt = 1. (1)

The membrane potential of neuron l is computed from the phase by a strictly mono-
tonic increasing rise function Ul as Ul(φl) [29] which maps (Bl, Θl] bijectively onto
(BU,l, ΘU,l], BU,l ∈ R ∪ {−∞}, ΘU,l ∈ R, BU,l < ΘU,l with BU,l = limφlցBl

Ul(φl)
and ΘU,l = Ul(Θl), the threshold of the potential. We assume that for all neurons l
in the network, Ul is a C1-diffeomorphism that is concave, strictly concave (normal
dissipation), convex or strictly convex (anomalous dissipation). When φl reaches
its threshold, i.e.

φl(t
−) = Θl, (2)

it is reset,

φl(t) = 0, (3)

and a spike is emitted that travels to the postsynaptic neurons. The phase thresh-
old Θl therefore equals the free period of the neuron in the absence of recurrent
interactions.

2.2. Network interactions. The spike arrives at some postsynaptic neuron m ∈
Post(l) after a delay time τml, at time θ = t+ τml, inducing an instantaneous phase
jump

φm (θ) = Hm
εml

(

φm

(

θ−
))

, (4)

mediated by the transfer function Hm
εml

. Here, εml denotes the strength of the
coupling from neuron l to m, which equals the jump in neuron m’s membrane
potential in response to the incoming spike, cf. Fig. 1. The coupling is called
inhibitory if εml < 0 and excitatory if εml > 0. If there is no connection from
neuron l to neuron m, we have εml = 0. We will sometimes concentrate on purely
inhibitory networks with εml ≤ 0 and purely excitatory networks with εml ≥ 0
for all m, l ∈ {1, ..., N}. For both positive and negative ε, the transfer function is
defined as

Hm
ε (φ) = U−1

m (Um(φ) + ε) for Um(φ) + ε < ΘU,m, (5)

Hm
ε (φ) = 0 for Um(φ) + ε ≥ ΘU,m. (6)

Equation (5) ensures that for sub-threshold input the jump in the phase φ(θ−) →
φ(θ) evokes a jump of size ε in the potential Um(φ(θ−)) → Um(φ(θ)) = Um(φ(θ−))+
ε, cf. Fig. 1. Equation (6) covers supra-threshold input possible for positive ε. The
neuron is immediately reset and a spike is emitted.

Together with Um and U−1
m , for subthreshold input the transfer function Hm

ε (φ)
is strictly monotonic increasing and differentiable both as a function of ε and of φ,

(Hm
ε )′(φ) =

U ′
m(φ)

U ′
m(U−1

m (Um(φ) + ε))
=

U ′
m(φ)

U ′
m(Hm

ε (φ))
> 0, (7)

∂Hm
ε (φ)

∂ε
=

1

U ′
m(U−1

m (Um(φ) + ε))
=

1

U ′
m(Hm

ε (φ))
> 0, (8)

where (Hm
ε )′(φ) denotes the derivative with respect to φ.

To avoid technicalities that are not essential for the stability properties of pe-
riodic orbits, we focus on homogeneous delays τml = τ for m, l ∈ {1, . . . , N}. In-
homogeneous delays complicate the indexing of spike patterns and the tracking of
perturbations.
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2.3. Examples. This general scheme covers as a special case the leaky integrate-
and-fire neuron that is described by a rise function UIF(φ) = I/γ(1 − exp(−γφ)),
where I > 0 is a constant external input and γ characterizes the dissipation, γ >
0 for normal dissipation (UIF strictly concave), γ < 0 for anomalous dissipation
(UIF strictly convex). Another important model covered is the biological oscillator
model introduced by Mirollo and Strogatz [29] and generalized in ref. [27], with rise
function UMS(φ) = b−1 ln(1+a−1φ), where ab > 0. UMS is strictly concave for b > 0
and strictly convex for b < 0 [27].

2.4. Dimensionality. Due to the delay, the state space is formally infinite di-
mensional. However, under weak conditions there is a finite time t′ after which it
becomes finite-dimensional [4]. We here therefore consider times t > t′ where the
network dynamics is completely determined by the phases φi(t) and by the spikes
in transit. We assume that the spiking frequency of the neurons in the network
is bounded above, in particular there are no “Zeno”-states [43]. This ensures that
φl(t) is indeed piecewise affine in time and that a neuron can only send a limited
amount of spikes within a time interval of length of the delay time τ . Consequently,
the number of spikes which have been sent at some time t, but have not been re-
ceived, the spikes “in transit” at time t, is bounded above by some Nsp ∈ N, cf. [4].
The state space has thus a finite topological dimension bounded above by N + Nsp,
where Nsp is the finite maximal number of spikes in transit.

2.5. Patterns of spikes. Sending and receiving of spikes are the only “events”
occurring in these systems. These events interrupt the continuous linear time evo-
lution and also constitute the only nonlinearities of the system. We here focus on
the stability properties of periodic spike patterns with non-degenerate events, i.e. (i)
all spikes are sent at non-identical times and (ii) received at non-identical times and
(iii) neurons receiving a spike do not generate a new spike at the same time.

This covers almost all periodic patterns of spikes in the following sense: We
consider the set of periodic spike patterns of length T > 0 containing M ∈ N

spikes each of which may be emitted by one of the N ∈ N neurons. There is a
natural mapping from [0, T )M × {1, ..., N}M to this set of spike patterns, where
the first components denote the times of spikes and the second components denote
the sending neuron. We assume that [0, T )M × {1, ..., N}M is endowed with a
continuous probability density which gives for each subset of patterns the probability
that an element of this subset is randomly chosen to be realized in a network. The
degenerate patterns then are a null subset, a random spike pattern is non-degenerate
with probability one. We will thus concentrate on these non-degenerate patterns
in the following. This in particular excludes spikes generated by supra-threshold
excitation. Patterns including such spikes need to be studied separately, cf. [27].
Furthermore, for brevity of presentation, we exclude neurons that do not spike in
the pattern.

2.6. Phase space. We now define the phase space similar to [4]. The state of the
system at time t is characterized by the phases of the neurons at time t, φl(t) ∈
(Bl, Θl], l ∈ {1, . . . , N} and the spikes sent by each neuron in the past. We number
the sending times with respect to the order of their occurrence, ti, i ∈ Z, where
ti < tj for i < j and denote the neuron sending the ith spike by si. The arrival
time of the jth spike is denoted by

θj = tj + τ. (9)
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In fact, not all sending times ti ≤ t are necessary to characterize the state at time
t but only those with t − τ < ti ≤ t, or, in other words, the at most Nsp spikes in
transit at time t. We introduce additional variables

σj(t) := t − tj (10)

within [0,∞), which track the time elapsed since the sending of the jth spike until
its arrival: When the spike is sent at time tj ,

σj(tj) = 0. (11)

For times t with tj < t < θj and t > θj , σj(t) increases uniformly with unit
derivative,

dσj/dt = 1. (12)

In particular,
σj(θ

−
j ) = τ (13)

holds just before spike arrival. At t = tj + τ ,

σj(θj) = τ + 1, (14)

i.e. the variable jumps about one. The original definition in [4] does not include such
a jump. However, we will consider small perturbations, that are in maximum norm
smaller than one. This definition of σj(t) together with the definition of the norm
in phase space ensures that trajectories in which the number of spikes in transit is
different have large distance (at least one). If necessary, an arbitrarily large jump
can be introduced.

We tag the index of the spike arriving first after t by

κ0(t) = min{j|θj − t > 0} (15)

and the index of the spike sent latest before t as

κ1(t) = max{j|t − tj ≥ 0}. (16)

Then, κ1(t)−κ0(t)+1 is the number of spikes in transit at t and if κ1(t)−κ0(t)+1 >
0, κ0(t), κ1(t) label the spikes in transit to arrive first and latest after t. The future
of the system is therefore fully determined by the phases φ1(t), ..., φN (t) at time t
and, if present, by the spikes in transit described by σκ1(t)(t), ..., σκ0(t)(t) together
with the neurons sκ1(t), ..., sκ0(t) that sent them. From our assumption we have
maxt(κ1(t) − κ0(t) + 1) ≤ Nsp, therefore we can define:

The state of the system is given by the state space vectors

x(t) := (φ1(t), ..., φN (t), σκ1(t)(t), ..., σκ1(t)−Nsp+1(t),

sκ1(t), ..., sκ1(t)−Nsp+1) (17)

in the state space X = (B1, Θ1] × ... × (BN , ΘN ] × R
Nsp

+,0 × {1, . . . , N}
Nsp with the

neurons’ phases as first N entries, the times since each of the past Nsp spikes has
been sent as entries N + 1, ..., N + Nsp and the indices of the neurons which sent
these spikes as entries N + Nsp + 1, ..., N + 2Nsp. Addition and Subtraction in the
latter set of indices are defined modulo N . The number of variables which certainly
define the state of the system is N +2Nsp. The topological dimension is N +Nsp, as
the finite discrete set of indices does not contribute to it. We endow the state space
with the maximum norm || . ||, which is in particular also taken over the last Nsp

entries. Deviations in the discrete indices generate differences between state space
vectors of at least one. This will be considered as large perturbation. If necessary,
the norm can be given arbitrary large weight in the last Nsp entries. The norm
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Figure 2. Sample spiking and reception of neuron l. Neuron l
sends the ith spike at time ti and receives it at time θi = ti + τ . In

the perturbed dynamics (red), neuron l has perturbation δ
P (i)
l rel-

ative to the unperturbed dynamics (gray) before and after sending

the spike. Due to δ
P (i)
l < 0 and the free linear time evolution with

slope one, the spike is sent about −ζi = −δ
P (i)
l later than in the

unperturbed case, at t̃i = ti − ζi. It therefore also arrives about
−ζi later than θi = ti + τ , at θ̃i = θi − ζi. Assuming a strictly
concave rise function, due to the inhibitory coupling, neuron l’s
perturbation after the spike arrival is a weighted mean of the per-
turbation δi−1

l before the interaction and the spike’s perturbation

ζi, δi
l = cliδ

i−1
l + (1 − cli)ζi, where 0 < cli < 1, cf. Eqs. (58, 76).

ensures together with Eq. (14) that states with small distance at time t have the
same number and kind of spikes in transit: The senders of the last Nsp spikes have
to be identical, otherwise the perturbation is large due to our definition of the phase
space norm. If some spike has arrived in the one state and not yet arrived in the
other state, the perturbation is large due to Eq. (14).

The considered neural networks are autonomous systems with impulse effect
which can be described by equations

dx(t)

dt
=f(x(t)), x(t) ∈ X\M, (18)

x(t) =I(x(t−)), x(t−) ∈ M, (19)

where f : X\M → R
n, I : M → N , with state space X and M, N ⊂ X (cf. [5, 6]).

Between hits of the trajectory x(t) on the set M , it follows a smooth time evolution,
this corresponds to the time evolution of the neural network between spike sendings
or spike arrivals. When the trajectory hits the set M at times t = um, e.g. when a
neuron reaches the threshold or a spike reaches the end of its run time given by the
delay of the coupling, some jump event occurs.

3. Notation. We now characterize the network dynamics underlying a non-
degenerate periodic spike pattern and its perturbation.

3.1. Unperturbed dynamics. First, we consider the unperturbed dynamics gen-
erating a non-degenerate periodic spike pattern of period T . The periodicity of
the pattern implies that the phase dynamics is periodic with the same period [27].
Without loss of generality we can assume that the delay τ is smaller than T , oth-
erwise we choose some sufficiently large integer multiple of T as new period of the
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pattern. The periodic spike pattern is characterized by the sending times ti ∈ [0, T ),
i ∈ {1, ..., M} of the M spikes within the first period and the corresponding sending
neurons si. Sending events in different periods are related by ti + nT = ti+nM and
si = si+nM , where n ∈ Z. We further define P (i), which is essentially the index of
the spike arriving last before the sending time ti as

P (i) := max(κ0(0) − 1, max{j|ti − θj > 0}). (20)

It will prove useful to define P (i) as being at least as large as the index of the last
spike to arrive before t = 0, since we will mainly consider the dynamics with t ≥ 0.
Definition Eq. (20) also applies if εisP (i)

is zero.

3.2. Perturbed dynamics. We now consider another trajectory defined by the
state at time t = 0 ∈ (t0, t1) that we name perturbed dynamics. (Without loss of
generality, we choose t = 0 to lie between t0 and t1.) t = 0 is chosen so that there
is no event precisely at this time. We denote the perturbed phases by

φ̃l(t) := φl(t) + δl(t), (21)

for l ∈ {1, . . . , N} and specify them by the phases φ̃l(0). The phase perturbations
are δl(t). Further, we denote the perturbed spike variables by

σ̃j(t) := σj(t) + ζj(t), (22)

where the spike perturbations are ζj(t). The specification of the perturbed state
at time t = 0 is completed by fixing σ̃j(0) for j ∈ {κ1(0) − Nsp + 1, ..., κ1(0)}.
We want to study the future evolution of trajectories close to each other at some
point of time. So, the state of the perturbed dynamics should have small distance
to the unperturbed dynamics at time t = 0. Changes in the last Nsp discrete
variables would imply large distances in the maximum norm on state space. Indeed,
the perturbed dynamics should be interpretable as generated by applying a small
perturbation to all phases and to all spikes in transit at time t = 0. (Perturbations to
already arrived spikes still present in x(t) do not influence the future time evolution
and can thus be specified arbitrarily.) Changes in the last Nsp variables, i.e. changes
in the neurons that sent spikes, would be changes in the past and thus non-physical.
We therefore consider perturbed trajectories where the neurons which sent the last
Nsp spikes j ∈ {κ1(0) − Nsp + 1, ..., κ1(0)} are the same as in the unperturbed
dynamics. Perturbations of the spike variables change the future spike arrival times.
Thus they are taken into account. The theorems and corollaries proven in the
present article also hold when initial perturbations in the spike arrival times are
excluded.

To track the future evolution of the perturbations after t = 0 and to compare
it to the unperturbed trajectory, we now introduce some additional concepts and
notations. Together with the phases φ̃l(t) and spike-in-transit variables σ̃i(t), the

sending times t̃i and the arrival times θ̃i of the perturbed system are distinguished
from the unperturbed ones by superscribing a tilde. Analogously, κ̃0(t), κ̃1(t) denote
the spikes in transit to arrive first and latest after t in the perturbed system. As
long as the perturbations are small, they do not alter the order of events, so this
notation is appropriate and we need not introduce an extra symbol for the neuron
that sent the ith spike in the perturbed dynamics. The perturbed trajectory

x̃(t) :=(φ̃1(t), ..., φ̃N (t), σ̃κ̃1(t)(t), ..., σ̃κ̃1(t)−Nsp+1(t),

sκ̃1(t), ..., sκ̃1(t)−Nsp+1) (23)
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for t ≥ 0 evolves according to the network time evolution described in the model
section.

Because the order of events stays unchanged for the future evolution from t = 0
as long as the perturbations remain small, it is convenient to work with reduced
phase space vectors

y(t) := (φ1(t), ..., φN (t), σκ1(t)(t), ..., σκ1(t)−Nsp+1(t)), (24)

where the unchanged part, containing the indices of sending neurons, is left out.
We collect the perturbations of reduced vectors at time t into the reduced per-

turbation vector

δ(t) = (φ̃1(t), ..., φ̃N (t), σ̃κ̃1(t)(t), ..., σ̃κ̃1(t)−Nsp+1(t))

−(φ1(t), ..., φN (t), σκ1(t)(t), ..., σκ1(t)−Nsp+1(t)), (25)

and tag the minimal and maximal entries

δmax(t) = max(δ(t)), (26)

δmin(t) = min(δ(t)). (27)

It is of particular interest to consider unperturbed and perturbed trajectories with
the same spikes in transit, where δ(t), δmax(t), δmin(t) are given by

δ(t) = (δ1(t), ..., δN (t), ζκ1(t)(t), ..., ζκ1(t)−Nsp+1(t)), (28)

δmax(t) = max{δ1(t), ..., δN (t), ζκ1(t)(t), ..., ζκ1(t)−Nsp+1(t)}, (29)

δmin(t) = min{δ1(t), ..., δN (t), ζκ1(t)(t), ..., ζκ1(t)−Nsp+1(t)}. (30)

In particular, the initial perturbation vector reads by definition

δ(0) = (δ1(0), ..., δN (0), ζκ1(0)(0), ..., ζκ1(0)−Nsp+1(0)). (31)

3.3. Event based perturbations. The perturbations do not change in the inter-
vals between events due to the piecewise linear time evolution. It is therefore conve-
nient to introduce some notion of event based perturbation tracking for i ≥ κ0(0)−1
and sufficiently small perturbations that leave the order of events unchanged.

We first define event based expressions for the perturbations of the spike vari-
ables, ζi(t), where i ≥ κ1(0)−Nsp + 1. We note that these definitions are extended
to time points before t = 0, where the trajectories are not necessarily close to each
other but the single events considered are already similar because the trajectories
will be close at t = 0. Since the ζi(t) are constant except for time intervals be-
tween their reception in the perturbed and the unperturbed dynamics, we define
ζi := ζi(t) for t ∈ [max(ti, t̃i),∞)\[min(θi, θ̃i), max(θi, θ̃i)) and note that

θ̃i = t̃i + τ = θi − ζi, (32)

holds, cf. Fig. 2.
We now consider i ≥ κ0(0) and the perturbations of the phases, δl(t). We denote

the perturbation of neuron l’s phase after the ith spike has arrived in both the
perturbed and the unperturbed dynamics by

δi
l = φ̃l(max(θi, θ̃i)) − φl(max(θi, θ̃i)). (33)

The spike which arrives last before t = 0 is the spike labeled with κ0(0) − 1. We
define

δ
κ0(0)−1
l :=δl(0). (34)
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The perturbation can change if neuron l sends or receives a spike. If neuron l sends
a spike the perturbation is changed for the interval [min(tj , t̃j), max(tj , t̃j)) because
the neuron is reset in one, e.g. the unperturbed, system, while it is not yet reset in
the other, e.g. the perturbed, system. After it is reset in both systems, the original
perturbation is recovered. We conclude that except for intervals between unper-
turbed and perturbed spike sendings of neuron l, the perturbation δl(t) remains
constant and equals δi

l until the next spike arrives, so for i ≥ κ0(0) we have

δi
l = δl(t) for t ∈ R+,0 ∩ [max(θi, θ̃i), min(θi+1, θ̃i+1))

\
⋃

j:tj∈[θi,θi+1)∧sj=l

[min(tj , t̃j), max(tj , t̃j)). (35)

For i = κ0(0)−1, θi and θ̃i can be replaced by 0. If some neuron si has perturbation

δ
P (i)
si , with i > κ1(0) before it sends a spike at ti > 0, the spike inherits this

perturbation since

t̃i = ti − δP (i)
si

, (36)

which implies that

ζi = δP (i)
si

, (37)

cf. Fig. 2. We note that this definition implies the minus sign before ζi in Eq. (32)
or Fig. 2. This convention is important for the subsequent considerations. If ζi was

defined as ‘ζi = −δ
P (i)
si ’ complications would arise, e.g., from maximal perturbations

in the phases that are transformed into minimal perturbations in the spikes.
The event based perturbation vector δi and the extremal perturbations δi

max, δ
i
min

are taken directly after the arrival of the ith spike in both the perturbed and the
unperturbed dynamics, for i ≥ κ0(0),

δi = (δi
1, ..., δ

i
N , ζκ1(θi), ..., ζκ1(θi)−Nsp+1), (38)

δi
max = max{δi

1, ..., δ
i
N , ζκ1(θi), ..., ζκ1(θi)−Nsp+1}, (39)

δi
min = min{δi

1, ..., δ
i
N , ζκ1(θi), ..., ζκ1(θi)−Nsp+1}. (40)

We note that the event-based perturbation vector δi equals the time-based pertur-
bation vector δ(t) in general only within the interval

δi = δ(t) for t ∈ R+,0 ∩ [max(θi, θ̃i),

min(min{tk′ |tk′ > θi}, min{t̃k′ |t̃k′ > θi}, θi+1, θ̃i+1)), (41)

because as soon as spikes have been newly sent, the spike variables are changed.
For i = κ0(0)− 1 an analogous expression with θi, θ̃i replaced by 0 holds. Equality
of the phase perturbations holds up to the next spike arrival, cf. Eq. (35).

4. Estimation of the order preserving neighborhood.

4.1. Approach. We determine the maximal perturbations of phases and spikes
in transit so that the perturbed dynamics keep the same order of events as the
unperturbed dynamics. In other words, we determine the maximal perturbations
of phases and spikes in transit so that the order of events is preserved whenever
and to whatever neurons or spikes in transit they are applied. This is just half
the minimal distance between possible events in the unperturbed dynamics. We
concentrate on events after t = 0. There are only two types of events, spike arrivals
and spike sendings. So, the order of events will change (or two events will overlap)
for the first time in the dynamics due to a too early spike arrival or due to a too
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Figure 3. Perturbations that cause the event order to change for
inhibitory inputs. Sample time evolution of neuron l’s phase shown
for the perturbed (red) and the unperturbed dynamics (gray). a)
The order of two arrival times θi, θi+1 is not preserved in the per-

turbed dynamics, i.e. θ̃i ≥ θ̃i+1 , if ζi+1−ζi ≥ θi+1−θi, cf. Eq. (42).

b) A spike sending at t̃j is passed by an early spike arrival θ̃i if

−(δi−1
l − ζi) ≥ θi − tj , where i = P (j) + 1, cf. Eq. (43). c) An

early spike sending occurs instead of some spike arrival θ̃i, if the
perturbed dynamics reaches the threshold before the spike arrives
at θ̃i, i.e. if δj−1

l − ζj ≥ Θl − φ(θ−j ), cf. Eq. (45).

early spike sending. In both cases, the early event can happen instead of a spike
arrival or instead of a spike sending event. To avoid these changes on the order of
events, restrictions on the size of the perturbations are to be imposed. The strictest
restrictions arise from avoiding changes in the order of subsequent events. If the
order of any pair of subsequent events is conserved, also the order of every pair of
events (not necessarily subsequent) is conserved. There are four possible violations
of the order conservation:

i) a spike arrives where in the original order of events a different spike
arrives,

ii) a spike arrives where in the original order of events a spike is sent,
iii) a spike is sent where in the original order of events a spike arrives,
iv) a spike is sent where in the original order of events a different spike is

sent.

The first three cases are illustrated in Fig. 3 for an inhibitory network. In the fourth
case, the spikes of two different neurons interchange, besides it is analogous to the
first case.

4.2. Case i). To avoid the occurrence of case i) in subsequent arrivals, it is sufficient

to ensure that the perturbations of spikes in transit are so small that θ̃i < θ̃i+1.
Together with Eq. (32) this leads to the restriction

ζi+1 − ζi < θi+1 − θi (42)

on the perturbations of spikes arriving at θi, θi+1 for all i. As an example, we here
note that conditions (42) imply that also exchanges of higher order are excluded,

e.g. θ̃i+1 > θ̃i for all i implies that θ̃i+2 > θ̃i for all i, since θ̃i+2 > θ̃i+1.

4.3. Case ii). To avoid case ii), the perturbed spike times and the perturbed sub-

sequently arriving spikes must satisfy t̃j < θ̃P (j)+1. This implies together with

Eqs. (36, 32) that the perturbation of the neuron’s phase δ
P (j)
l before spiking and
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the perturbation of the spike arriving at θP (j)+1 have to obey

ζP (j)+1 − δ
P (j)
l < θP (j)+1 − tj . (43)

4.4. Case iii). This case leads to different restrictions for inhibitory and for exci-
tatory spikes. For inhibitory spikes, the perturbed trajectory must not reach the
threshold before the spike arrives due to the intrinsic increase of the phase with
time. If we first do not include a reset due to the possible reaching of the threshold,
the perturbed phase of neuron l just before the arrival time θ̃j of the perturbed
spike is

φ̃l(θ̃
−
j ) = φl(θ

−
j ) + δj−1

l + θ̃j − θj , (44)

because the phase increases with slope one. To indeed avoid passing the threshold,
Θl > φl(θ

−
j ) + δj−1

l + θ̃j − θj must hold, or, equivalently,

δj−1
l − ζj < Θl − φl(θ

−
j ). (45)

For excitatory spikes, also supra-threshold excitation can take place and thus lead
to an overlap of spike arrival and spike sending. Therefore, the phase may not have
reached the minimal phase U−1

l (ΘU,l − ε) at which a supra-threshold excitation
takes place when a spike with strength ε arrives. This is guaranteed by replacing
Θl in Eq. (45) by U−1

l (ΘU,l − ε) which leads to the condition

δj−1
l − ζj < U−1

l (ΘU,l − εlsj
) − φ(θ−j ) (46)

for the jth spike arrival.

4.5. Case iv). The change of the order of two spike sendings, can be inferred
analogously to case i). Two subsequent spike times ti, ti+1, where i > κ1(0) sent by
any two neurons k, l ∈ {1, . . . , N} do not interchange their order if t̃i < t̃i+1, i.e. if

the perturbations of the neurons’ phases δ
P (i)
k , δ

P (i+1)
l before sending obey

δ
P (i+1)
l − δ

P (i)
k ≤ ti+1 − ti, (47)

cf. Eq. (36).

4.6. Restriction from a lower bound for the potential. There is an additional
restriction to the perturbed dynamics in networks with inhibition where the neurons
have a lower bound for the potential. Here, we have to ensure that also in the
perturbed dynamics the inputs do not force the membrane potential below the
lower bound, i.e.

Ul(φ̃l(θ̃
−
j )) + εlsj

> BU,l, (48)

where εlsj
< 0. This yields using Eq. (44)

ζj − δj−1
l < φl(θ

−
j ) − U−1

l (BU,l − εlsj
). (49)

4.7. Order preserving neighborhood. Taken together, Eqs. (42, 43, 45, 47, 49)
imply for purely inhibitory networks that the order of events does not change and
the dynamics does not fall below the lower threshold for a perturbation applied at
any time t as long as ‖δ(t)‖ < dIn

max, with

dIn
max =

1

2
min

{

min
l,j

[Θl − φl(θ
−
j )], min

j
(tj+1 − tj), min

j
(θP (j)+1 − tj),

min
l,j

(φl(θ
−
j ) − U−1

l (BU,l − εlsj
))

}

, (50)
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where l ∈ {1, ..., N}, j ∈ {1, ..., M} and we used that tj+1 − tj = θj+1 − θj due
to the homogeneous delay. We note that for many neurons models BU,l = −∞, so

that no restrictions arise from taking minl,j(φl(θ
−
j )−U−1

l (BU,l − εlsj
)). For purely

excitatory networks, Eq. (45) has to be replaced by Eq. (46) and Eq. (49) can be
omitted so that the order is guaranteed for ‖δ(t)‖< dEx

max, with

dEx
max =

1

2
min

{

min
l,j

[U−1
l (ΘU,l − εlsj

) − φl(θ
−
j )], min

j
(tj+1 − tj),

min
j

(θP (j)+1 − tj)

}

. (51)

We computed the size of the order preserving neighborhood for purely inhibitory
and purely excitatory networks. However, the generalization for mixed networks is
straightforward. In considerations applying to purely excitatory, purely inhibitory
and mixed networks, we write the upper bound of the order preserving neighborhood
as dmax. We note that dmax > 0 holds due to the requirement that the spike pattern
is periodic and non-degenerate.

In the following, we consider perturbations smaller than dmax, so that the order
of events is preserved. In particular, we show below that for asymptotically stable
spike patterns the open cubic neighborhood ||δ(0)|| < dmax of dimension N + Nsp

is contained in the basin: Since t = 0 was arbitrary (without an event at this
time), a trajectory reaching this neighborhood at any time will not leave it again
and approach the periodic spike pattern. Thus, dmax yields a lower estimate of the
linear extension of the basin in the reduced phase space. For unstable spike patterns,
we will show that we can find arbitrarily small perturbations with ||δ(0)|| < dmax

which grow and finally leave any d1-neighborhood with d1 < dmax (if different parts
of the periodic orbit have sufficient distance).

5. Propagation of the perturbation. We study how perturbations change when
interactions take place under the condition that they are smaller than dmax before
interaction.

We explicitly compute the perturbation δj
l of some neuron l after the reception

of spike j, j ≥ κ0(0) in terms of its perturbation δj−1
l , |δj−1

l | < dmax, before the
reception and the perturbation ζj , |ζj | < dmax, of the spike times. We do not include

a reset due to possible reaching of threshold between min(θi, θ̃i) and max(θi, θ̃i) and
evaluate the original and perturbed trajectories after this reception took place in
both dynamics:

δj
l = φ̃l(max(θi, θ̃i)) − φl(max(θi, θ̃i)) (52)

= φ̃l(θ̃j) − φl(θj) + ζj (53)

= H l
εlsj

(φ̃l(θ̃
−
j )) − H l

εlsj
(φl(θ

−
j )) + ζj (54)

= H l
εlsj

(φl(θ
−
j ) + δj−1

l − ζj) − H l
εlsj

(φl(θ
−
j )) + ζj (55)

= (H l
εlsj

)′(φl(θ
−
j ) + ξ)(δj−1

l − ζj) + ζj (56)

= clj(δ
j−1
l − ζj) + ζj (57)

= cljδ
j−1
l + (1 − clj)ζj , (58)
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where ξ ∈ [min(δj−1
l − ζj , 0), max(δj−1

l − ζj , 0)] and

clj = (H l
εlsj

)′(φl(θ
−
j ) + ξ). (59)

The perturbations of spikes, ζj remain unchanged at an interaction event. We note
that clj depends not only on l, j but also on the perturbations, the spike pattern,
and the interaction strength εlsj

. Starting with Eq. (33), from (52) to (53), we use a

case distinction together with dφl/dt = 1 for the free evolution and θ̃j = θj−ζj . The

employed relations together with Eq. (35) also lead to φ̃l(θ̃
−
j ) = φl(θ

−
j ) + δj−1

l − ζj

in (55). From (55) to (56) the intermediate value theorem is applied.
If εlsj

= 0, i.e. neuron l is not a postsynaptic neuron of neuron sj, we have

clj = 1, (60)

and the perturbation of neuron l’s phase stays unchanged. Eq. (58) also directly
implies that the perturbations do not change if they are all identical. This reflects
the time translation invariance of the system.

6. Lyapunov stable spike patterns. We now formulate and prove a Theorem
about the Lyapunov stability of periodic orbits in networks with arbitrary (i.e. not
necessarily strongly connected) topology. In systems with impulse effect (cf. model
section), we face the complication that even for trajectories staying near each other
for most of the time, if the jump or event times un in one and u′

n in the other
trajectory are not identical, there can be a macroscopic deviation within the interval
[min(un, u′

n), max(un, u′
n)) where in one trajectory the event has already occurred,

while in the other trajectory it has not. This leads to the following definition of
stability, which allows for macroscopic deviations in small environments around the
event times un (cf. [5], p. 60):

Definition 6.1. (Lyapunov stability) Let ϕ(t) be a solution of the dynamical equa-
tions (18) and (19) that hits M at times um, m ∈ Z. Further, let x0 ∈ X be a point
in phase space and x(t; t0, x0), t ∈ R a solution of the dynamical equations (18) and
(19) that assumes at time t0 the value x0. We call ϕ(t) Lyapunov stable or just
stable if for all η > 0, for all ξ > 0 and for all t0 with ∀m ∈ Z : |t0 − um| > η, there
is a χ > 0 so that for all x0 with ||x0 − ϕ(t0)|| < χ,

||x(t; t0, x0) − ϕ(t)|| < ξ for all t ≥ t0 that satisfy |t − um| > η for all m. (61)

In the spirit of orbital stability of ordinary differential equations we could relax
this condition by additionally allowing for reparametrizations of time.

Theorem 6.2. Consider a network with arbitrary topology where 0 < (H l
εlm

)′(φl) ≤
1 for all l, m ∈ {1, ..., N}, and for all φl ∈ (Bl, Θl] with BU,l < Ul(φl) + εlm <
ΘU,l. Then, any non-degenerate periodic pattern of spikes is Lyapunov stable. The
event-based perturbations originating from an initial perturbation within the order
preserving neighborhood, i.e. ||δ(0)|| < dmax, are bounded by ||δ(0)||.

Proof. Approach: We consider a trajectory within the order preserving neighbor-
hood at time t = 0, i.e. ||δ(0)|| < dmax and show by induction that the event-based
perturbation does not grow in time.

Induction assumption: We assume that the maximum-norm of the event-based
perturbation δj−1 does not exceed the maximum norm of the initial perturbation
for j − 1 ≥ κ0(0). Within time intervals between the same events in the perturbed
and the unperturbed dynamics, the perturbation δ(t) will in general be larger.
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Initialization: The assumption is fulfilled after the first spike arrival after zero:
Just before the spike arrival at min(θκ0(0), θ̃κ0(0)), the perturbation vector

δ(min(θκ0(0), θ̃κ0(0))
−) has phase perturbation entries δl(min(θκ0(0), θ̃κ0(0))

−) =

δl(0) = δ
κ0(0)−1
l . As spike perturbation entries it has the spike perturbation en-

tries of δ(0) where perhaps some of the entries have been replaced by newly sent
ones at possible sending times t1, t2, ... < θκ0(0). According to Eq. (37), these new
entries equal perturbations already present in the phase perturbations, so that in
particular ||δ(min(θκ0(0), θ̃κ0(0))

−)|| ≤ ||δ(0)|| holds. We first do not include a possi-

ble reset between min(θκ0(0), θ̃κ0(0)) and max(θκ0(0), θ̃κ0(0)). Application of Eq. (58)
implies for the event-based perturbation after the arrival of the κ0(0)th spike

||δκ0(0)|| =max
l,i

{|δ
κ0(0)
l |, |ζi|} (62)

=max
l,i

{|clκ0(0)δ
κ0(0)−1
l + (1 − clκ0(0))ζκ0(0)|, |ζi|} (63)

=max
l,i

{|clκ0(0)δl(min(θκ0(0), θ̃κ0(0))
−)

+ (1 − clκ0(0))ζκ0(0)|, |ζi|} (64)

≤max
l,i

{clκ0(0)|δl(min(θκ0(0), θ̃κ0(0))
−)|

+ (1 − clκ0(0))|ζκ0(0)|, |ζi|} (65)

≤max
l

{clκ0(0)||δ(min(θκ0(0), θ̃κ0(0))
−||

+ (1 − clκ0(0))||δ(min(θκ0(0), θ̃κ0(0))
−)||,

||δ(min(θκ0(0), θ̃κ0(0))
−)||} (66)

=||δ(min(θκ0(0), θ̃κ0(0))
−)|| (67)

≤||δ(0)||, (68)

where the maximum is taken over the phase perturbations, l ∈ {1, ..., N}, and
over the perturbations of the spikes in transit, i ∈ {κ0(θκ0(0)), ..., κ1(θκ0(0))} if
κ0(θκ0(0)) ≤ κ1(θκ0(0)). We used the triangle inequality for the absolute value

and 0 < (H l
εlsκ0(0)

)′(φl) ≤ 1, thus 0 < clκ0(0) ≤ 1, to derive (65) from (64).

Since ||δκ0(0)|| < dmax when a reset due to possible reaching of threshold between

min(θκ0(0), θ̃κ0(0)) and max(θκ0(0), θ̃κ0(0)) is not included, indeed such a reset cannot
occur (by definition of dmax) and the above estimation holds for the full dynamics.

Inductive step: We show that ||δj−1|| < dmax implies ||δj || ≤ ||δj−1|| for j − 1 ≥
κ0(0). For any interaction, 0 < (H l

εlsj
)′(φl) ≤ 1 and therefore 0 < clj ≤ 1. Similarly

to the initialization, when first not including a possible reset between the spike
arrivals, this implies according to Eq. (58) after the arrival of the jth spike,

||δj || = max
l,i

{|δj
l |, |ζi|} (69)

≤ max
l,i

{clj |δ
j−1
l | + (1 − clj)|ζj |, |ζi|} (70)

≤ max
l

{clj ||δ
j−1|| + (1 − clj)||δ

j−1||, ||δj−1||} (71)

= ||δj−1||, (72)

where the maximum is taken over the phase perturbations, l ∈ {1, ..., N}, and over
the perturbations of the spikes in transit, i ∈ {κ0(θj), ..., κ1(θj)} if κ0(θj) ≤ κ1(θj).
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Since ||δj || < dmax when the possible reset is not included, such a reset cannot
occur by definition of dmax and the above estimation holds for the full dynamics.
Therefore, ||δj || ≤ ||δ(0)|| < dmax for all j. In particular, the perturbations of the
spike timings do not grow larger than ||δ(0)||.

Lyapunov stability: We ascertain in the following short paragraph that our find-
ings imply that the spike pattern is indeed stable according to the notion of Lya-
punov stability for systems with impulse effect. We may apply the maximum norm
due to equivalence of norms in finite dimensional spaces (e.g. [42]). We choose
χ = min(η, ξ) and note

||δ(0)|| < χ. (73)

t = 0 was chosen arbitrarily so that no event occurred at this time, in particular
the following holds for time origins with distance more than η from any event. We
note that we do not need to choose the time origin ‘far enough’ from an event,
because the definition of phase space already ensures that nearby trajectories have
the same Nsp last sent spikes and the same spikes in transit. According to Eqs. (37,
68, 72), differences between spike sending and arrival times after t = 0 equal phase
perturbations bounded from above by ||δ(0)||. Thus, the lengths of the intervals

[max(θi, θ̃i), min(θi+1, θ̃i+1)) and [min(tj , t̃j), max(tj , t̃j)) are bounded from above
by ||δ(0)|| < χ. Outside these intervals, the perturbations are bounded by ||δ(0)|| <
χ: Perturbations of phases equal event based perturbations outside these intervals
(cf. Eq. (35)) and perturbations of spikes equal previous event based perturbations
of phases (cf. Eq. (37)). This implies that for t > 0 with distance more than χ from
any event, i.e. |t− ti| > χ for all i > κ1(0) and |t−θj | > χ for all j ≥ κ0(0), we have
||δ(t)|| < χ. Due to η ≥ χ and ξ ≥ χ, also for all t > 0 with distance more than η
from any event, |t − ti| > η for all i > κ1(0) and |t − θj | > η for all j ≥ κ0(0), we
have

||δ(t)|| < ξ (74)

and thus Lyapunov stability.

7. Asymptotically stable spike patterns. We now prove a theorem stating
that under certain sufficient conditions in networks that are strongly connected,
the non-degenerate, i.e. almost all periodic patterns of spikes and the underlying
phase dynamics are asymptotically stable: After a sufficiently small perturbation,
a dynamics which is equivalent, only shifted in time with respect to the original
dynamics, is asymptotically assumed for t → ∞. For weakly but not strongly
connected networks, this is in general not the case due to their inherent hierarchical
structure [34].

Definition 7.1. (Asymptotic stability) Let ϕ(t) be a periodic solution of the dy-
namical equations (18) and (19), with period T ∈ R (i.e. ϕ(t)=ϕ(t + T ), ∀t ∈ R),
that hits M at times um, m ∈ Z. Further, let x0 ∈ X be a point in phase space and
x(t; t0, x0), t ∈ R a solution of the dynamical equations (18) and (19) that assumes
at time t0 the value x0. We call ϕ(t) asymptotically stable if it is Lyapunov stable,
and if for all ε > 0, δ > 0 and t0 with ∀m : |t0 − um| > 0, there are χ > 0 and
D ∈ R, so that for every x0 with ||x0 − ϕ(t0)|| < χ, there is a c0 ∈ R so that

||x(t; t0, x0) − ϕ(t + c0)|| < ε, for all t > D that satisfy

|t + c0 − um| > δ for all m. (75)
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Theorem 7.2. Consider a network that is strongly connected (has irreducible ad-
jacency matrix), where 0 < (H l

εlm
)′(φl) < 1 for all l, m ∈ {1, ..., N} with εlm 6= 0,

and for all φl ∈ (Bl, Θl] with BU,l < Ul(φl) + εlm < ΘU,l. Then, the dynamics
underlying any non-degenerate periodic pattern of spikes is asymptotically stable.
The dynamics asymptotically approaches a dynamics identical to the original one
up to a time shift and thus converges to the original periodic orbit. For initial states
in the order preserving neighborhood of a periodic orbit, the dynamics converges to
that orbit.

Proof. Approach: We study the evolution of perturbations of phase and spike vari-
ables within the order preserving neighborhood on an event by event basis. We show
that for nonidentical perturbations, after a finite time the maximal perturbation de-
creases and the minimal perturbation increases. We will show that this ultimately
leads to the convergence of the perturbations towards a vector with identical entries
and that this implies asymptotic convergence.

Identical perturbations: If after the arrival of the jth spike, all neurons’ phases
φ1, ..., φN and all spikes in transit σκ1(θj), ..., σκ0(θj) possess identical perturbations,
the perturbed dynamics is identical to the unperturbed one up to a time shift, so
that Theorem 7.2 holds for identical perturbations. From now on, we thus assume
that at least one neuron’s phase or spike in transit has non-maximal perturbation.

Interactions and their effect on perturbations: Since the perturbations are
bounded and the original orbit is periodic, the perturbed and unperturbed phases
are bounded, so that

0 < cmin < clj < cmax < 1 (76)

holds, because H ′
ε(.) is continuous. Since Lyapunov stability follows from Theorem

6.2, it is sufficient to consider j > κ1(0) for the asymptotic stability. According to
Eqs. (37, 58),

δj
l = cljδ

j−1
l + (1 − clj)δ

P (j)
sj

, (77)

so that each interaction leads to evaluating some weighted mean of the perturbation
of the sending neuron at the time of sending and the perturbation of the receiving
neuron at the time of reception. In particular, Eqs. (76, 77) imply that the pertur-
bation of a neuron l postsynaptic to neuron sj remains unchanged at the arrival of

the jth spike only if δj−1
l = δ

P (j)
sj , i.e. if its perturbation at the time of reception

equals the perturbation of the sending presynaptic neuron at the time of sending the
spike. Further, from Eqs. (60, 76, 77), we infer that a neuron l with perturbation

δj
l < δj

max will have a perturbation smaller than δj
max later on, i.e.

δj+n
l < δj

max, (78)

for all n ∈ N.
Decrease of the maximal perturbation: We show that the maximal perturbations

decrease within at most 2N − 1 + Msp periods, where Msp = ⌈Nsp/M⌉ and ⌈x⌉
denotes the smallest integer larger or equal to x.

First, suppose that there is no neural phase φ1, ..., φN with maximal perturbation
after the arrival of the jth spike, but the maximal perturbation is in the spike vari-
ables σκ1(θj), ..., σκ1(θj)−Nsp+1 only. The maximal perturbation will then decrease as
soon as Nsp spikes have been sent because the neurons’ phases do not reach maximal
perturbation due to Eq. (78) and the newly sent spikes inherit the perturbations of
the phases (cf. Eq. (58)), while the original spikes carrying maximal perturbation
have indices i ≤ κ1(θj) and therefore do not occur in the new perturbation vector
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anymore. We conclude that a maximal perturbation present in the spikes only,
will decrease after Nsp spike sendings. Since in each period, M spikes are sent, the
perturbation decays after Msp < 2N − 1 +Msp periods if the maximal perturbation
is present in the spike variables only.

Therefore, we can assume that at least one phase has maximal perturbation and
that there is at least one neuron’s phase or one spike in transit that is non-maximally
perturbed. We consider an arbitrary neuron l which is maximally perturbed after
the arrival of the jth spike. To allow it to still carry perturbation δj

max after two
periods, all its presynaptic neurons Pre(l) must have perturbation δj

max at the be-
ginning of the first period. Otherwise, they have smaller perturbation also later
on, in particular when they emit at least one spike in the first period which arrives
before the end of the second period due to τ < T . These arriving spikes then have
perturbation smaller than δj

max and decrease the perturbation of neuron l on arrival.
The neurons Pre(Pre(l)) := Pre2(l) must have a perturbation of δj

max at the begin-
ning of the first period to allow neuron l to conserve its maximal perturbation to
the end of the fourth period. Otherwise, after at most two periods, there is a neu-
ron in Pre(l) having non-maximal perturbation whose spikes cause the perturbation
of neuron l to decrease within two further periods. Since the network is strongly
connected, there are no neurons with presynaptic distance to neuron l larger than
N −1. Therefore, to ensure that neuron l keeps its maximal perturbation up to the
end of the 2(N − 1)th period, all N neurons have to carry perturbation δj

max after
the arrival of the jth spike. To ensure this one more period, also all spikes in transit
have to carry maximal perturbation. Otherwise, within one period they cause neu-
rons to carry a perturbation smaller than δj

max at the end of the first period, leading
after 2(N − 1) further periods to a decrease of neuron l’s perturbation. This is in
contradiction to the assumption that the phase perturbations and the perturbations
of the spikes in transit do not all have identical entries after the arrival of the jth
spike. Since l was an arbitrary neuron carrying maximal perturbation, we conclude
that all phases have non-maximal perturbation after 2(N −1)+1 = 2N −1 periods.
After further Nsp spike sending events, all the spike variables have been replaced
and inherited some non-maximal perturbation. Each period T sees M spike sending
events. We defined Msp to be the smallest integer multiple of the pattern’s period so
that at least Nsp spikes are sent within MspT . Therefore the maximum perturbation
decreases within 2N − 1 + Msp periods.

Increase of the minimal perturbation: Arguments completely analogous to the
ones above, based on averaging of perturbations and strong connectivity of the
network, show that the minimal perturbation increases within 2N−1+Msp periods.

Convergence of the perturbation vector: We now show that the event-based per-
turbation vector converges to a vector with identical entries. We study how the
perturbations evolve within multiples of 2N − 1 + Msp periods. The number of
arrival events within one period is M . We define

Gj : δj → δj+(2N−1+Msp)M , (79)

which maps an actual event-based perturbation vector to the vector 2N − 1 + Msp

periods later. We note that due to the periodicity of the spike pattern, Gj is M -
periodic in the parameter j, Gj = Gj+nM , n ∈ N, in particular we will use below
that Gj+(n−1)(2N−1+Msp)M ◦ ... ◦ Gj+(2N−1+Msp)M ◦ Gj = Gn

j . From Eq. (55) we

see that for the step from some spike reception j′ − 1 to the next reception j′,
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event-based perturbations of the neurons’ phases δj′

l , l ∈ {1, ..., N}, depend contin-
uously on the previous perturbation vector, namely on the previous perturbations

of phases δj′−1
l and on ζj′ (supra-threshold excitation cannot occur). Further, dur-

ing such a step, the possibly newly sent spikes inherit the previous perturbations
of the sending neurons, in particular they depend continuously on them, while the
perturbations of the other spike variables stay constant or are eliminated from the
perturbation vector due to later spikes. Taken together, we conclude that the map
δj′−1 → δj′ is continuous for any j′ ≥ κ0(0), and therefore also Gj , the compo-

sition δj → δj+1 → δj+2... → δj+(2N−1+Msp)M of (2N − 1 + Msp)M such maps.
The sequence (max[Gn

j (δj)])n is strictly monotonically decreasing, (min[Gn
j (δj)])n

is strictly monotonically increasing, both are bounded above by δj
max and bounded

below by δj
min. Therefore, each is convergent, say

max[Gn
j (δj)] → M0, and min[Gn

j (δj)] → m0. (80)

Furthermore, (Gn
j (δj))n is bounded and therefore has a convergent subsequence,

say

Gnm

j (δj) → δ̂. (81)

The maximum of δ̂ is

max(δ̂) = max[ lim
m→∞

Gnm

j (δj)] = lim
m→∞

(max[Gnm

j (δj)]) = M0, (82)

where we used that max(.) is continuous and that (max[Gnm

j (δj)])m is a subsequence

of the sequence (max[Gn
j (δj)])n which converges to M0. Analogously, we compute

the maximum of Gj(δ̂),

max(Gj(δ̂)) = max[Gj( lim
m→∞

(Gnm

j (δj)))] (83)

= lim
m→∞

(max[Gj(G
nm

j (δj))]) (84)

= lim
m→∞

(max[Gnm+1
j (δj)]) (85)

= M0, (86)

where we used in the second step that max[Gj(.)] is continuous and in the third that

(max[Gnm+1
j (δj)])m is a subsequence of the convergent sequence (max[Gn

j (δj)])n.

We conclude from Eqs. (82, 86) that max(Gj(δ̂)) = M0 = max(δ̂). For any vector
δ with non-identical entries however, we know from the above considerations that

max(Gj(δ)) > max(δ) holds. So, δ̂ is a perturbation vector with N + Nsp identical
entries,

δ̂ = (c0, ..., c0), (87)

where we defined c0 = M0. The same computation as above for the minimum

entries reveals min(Gj(δ̂)) = m0 = min(δ̂) (with the same δ̂ as in (81–87)). Because

δ̂ has identical entries, max(δ̂) = min(δ̂) = c0.
Now, from Theorem 6.2 we infer that max(δj+n(2N−1+Msp)M ) and

min(δj+n(2N−1+Msp)M ) are upper and lower bound for the entries of δj′ for all
j′ ≥ j + n(2N − 1 + Msp)M . Since upper and lower bound converge towards the

same value c0, the sequence (δj′ )j′ converges,

δj′ → δ̂. (88)
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This implies

t̃j′ → tj′ − c0, (89)

θ̃j′ → θj′ − c0, (90)

due to Eqs. (32, 36, 37). Thus, the spiking dynamics converges towards a spiking
dynamics equivalent to the original one, namely to the original spiking dynamics
shifted in time by a constant value −c0, where

|c0| < ||δ(0)|| (91)

due to Theorem 6.2.
Convergence of the phase dynamics: Also the perturbed phase dynamics ap-

proaches the original phase dynamics shifted in time by −c0: We first consider
times t which do not lie between the arrivals of the same event in the perturbed
and the unperturbed dynamics. The event-based perturbation vector δj′ equals the
time-based perturbation vector only within the interval given by Eq. (41). The

newly sent spikes, however, inherit perturbations already present in δj′ as phase
perturbations due to Eq. (36). So, the perturbations δ(t) for

t ∈ Sj′ = [max(θj′ , θ̃j′ ), min(θj′+1, θ̃j′+1))\
⋃

j:tj∈[θj′ ,θj′+1)

[min(tj , t̃j), max(tj , t̃j))

(92)

are bounded above by δj′

max and bounded below by δj′

min. Therefore, if a sequence
of times (t(j′))j′ is chosen so that t(j′) lies for each j′ within Sj′ ,

δ(t(j′)) → δ̂, (93)

when j′ → ∞.
The perturbed phase dynamics approaches the shifted phase dynamics pointwise

for almost all t in the sense that δ(t + nT ) → δ̂ with n → ∞ for almost all t: We
take the dynamics shifted in time by −c0 as reference and denote the dynamical
quantities by a bar, i.e. φ̄l(t − c0) = φl(t) for the spike phases, t̄i = ti − c0 for the
spike times, θ̄i = θi − c0 for the arrival times and δ̄(t) for the perturbation of the
perturbed dynamics relative to the shifted one. Consider times t which lie between
events together in the unperturbed, in the perturbed and in the shifted dynamics,

t ∈[max(θj′ , θ̃j′ , θ̄j′ ), min(θj′+1, θ̃j′+1, θ̄j′+1))

\
⋃

j:tj∈[θj′ ,θj′+1)

[min(tj , t̃j , t̄j), max(tj , t̃j, t̄j)). (94)

For large enough j′, these intervals are nonempty because of Eqs. (89, 90, 91). If
times t(j′) are chosen within the set between the j′th and j′ + 1th arrival, we have

δ̄(t(j′)) = δ(t(j′)) − (c0, ..., c0), (95)

and Eq. (93) yields

δ̄(t(j′)) → 0 (96)

with j′ → ∞. The phase perturbations δ̄l(t), l ∈ {1, ..., N}, are constant for all

t ∈ S̄j′ =[max(θ̃j′ , θ̄j′), min(θ̃j′+1, θ̄j′+1))

\
⋃

j:tj∈[θj′ ,θj′+1)

[min(t̃j , t̄j), max(t̃j , t̄j)). (97)
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Therefore, for t(j′) within the sets S̄j′ between j′th and j′ + 1th arrival, we have

δ̄(t(j′)) → 0 (98)

if j′ → ∞. Consider t 6= t̄i∧t 6= θ̄i for i ∈ Z, i.e. t is not at the time of a shifted event.
Then there is some minimal distance η = min(min{|t−t̄i||i ∈ Z}, min{|t−θ̄j||j ∈ Z})
separating t from any shifted event. Due to the periodicity of the dynamics, also
t + nT has the same finite distance from any shifted event, min(min{|t + nT −
t̄i||i, n ∈ Z}, min{|t+nT − θ̄j||j, n ∈ Z}) = η. Because the spike dynamics converges

(Eqs. (89, 90)), there is some D′ ∈ N so that |θ̄j − θ̃j | < η and |t̄j − t̃j | < η for
all j > D′ and therefore there is some D′′ ∈ N so that t + nT will not lie within
any interval [min(t̄j , t̃j), max(t̄j , t̃j)), [min(θ̄j , θ̃j), max(θ̄j , θ̃j)), if n > D′′. Thus, for
large enough n, t + nT ∈ S̄j′ for some j′. Further, j′ → ∞ when n → ∞, so that
the times t + nT form a subsequence of some sequence (t(j′))j′ . From Eq. (98) we
infer pointwise convergence

δ̄(t + nT ) → 0, (99)

⇔

δ(t + nT ) → δ̂, (100)

or, equivalently, pointwise convergence

φ̃l(t + nT ) → φl(t + c0 + nT ), (101)

σ̃j+nM (t + nT ) → σj+nM (t + c0 + nT ), (102)

where l ∈ {1, ..., N}, j ∈ {κ1(t) − Nsp + 1, ..., κ1(t)}, for any initial t with t 6=
ti − c0 ∧ t 6= θi − c0 for all i ∈ Z.

Asymptotic stability: We consider arbitrary ε > 0 and δ > 0. We denote t′i =
ui + c0 + δ, where ui is the ith event within [0, T ) and t′′i = vi + c0 − δ, where vi

is the event after ui. There is a Di such that |t̄j − t̃j | < δ and |θ̄j − θ̃j | < δ for all

t̄j , t̃j, θ̄j , θ̃j > Di and δ̄(t′i + nT ) < ε for all t′i + nT > Di. Since the dynamics is
linear between events, δ̄(t) < ε for all t ∈ (t′i +nT, t′′i +nT ) with t′i +nT > Di. Since
i is arbitrary and the number of events is finite, we can set D = maxi Di. Each
t > D with distance more than δ from all events falls in an interval (t′i+nT, t′′i +nT )
for some i, and we thus have δ̄(t) < ε for all such t.

8. Unstable spike patterns. Now we demonstrate that for a different, equally
important class of systems non-degenerate periodic spike patterns and their un-
derlying phase dynamics are guaranteed to be unstable. We show that there are
arbitrarily small perturbations such that the perturbed dynamics depart at least to
a fixed finite distance from all dynamics equivalent to the original one.

Definition 8.1. (Instability): Let ϕ(t) be a periodic solution of the dynamical
equations (18) and (19), with period T ∈ R, that hits M at times um, m ∈ Z.
Further, let x0 ∈ X be a point in phase space and x(t; t0, x0), t ∈ R a solution of
the dynamical equations (18) and (19) that assumes at time t0 the value x0. We
call ϕ(t) unstable if there is a t0 with ∀m : |t0 − um| > 0 and a ξ > 0 so that for all
χ > 0, there is a x0 with ||x0 − ϕ(t0)|| < χ and

min
t′

||x(t; t0, x0) − ϕ(t′)|| > ξ (103)

for some t ≥ t0.
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Theorem 8.2. Consider a strongly connected network where (H l
εlm

)′(φl) > 1 for all
l, m ∈ {1, ..., N} with εlm 6= 0, and for all φl ∈ (Bl, Θl] with BU,l < Ul(φl) + εlm <
ΘU,l. Then, any non-degenerate periodic pattern of spikes is unstable.

Proof. Approach: We will show that for all d0 > 0 there is a perturbation with
||δ(0)|| < d0 that grows with time until the difference between maximum and min-
imum of the perturbation exceeds any d1 < dmax. Since equivalent dynamics differ
from the original one only by a perturbation vector with identical entries, the dis-
tance of the perturbed dynamics to any equivalent dynamics then exceeds d1/2:
The dynamics is unstable. We assume here and in the following that two points in
the original trajectory, which fall into the same minimal period but are separated
by events, have a distance larger than dmax. Otherwise, d1 can be defined as being
smaller than half the minimal distance between two such points.

We consider a class of perturbations for which we show that the maximum per-
turbation can only grow with time and that the minimal perturbation can only
decrease. We then assume that there is a d0 > 0 so that there is no perturbation
with ||δ(0)|| < d0 that grows and exceeds any d1 < dmax and show that this leads
to a contradiction. Since we can choose the initial maximal and minimal perturba-
tion to have different signs, after their growth and decrease their difference must be
larger than d1.

Maximal perturbations do not decrease: We can presume d0 ≤ d1/2, otherwise
there are already initial perturbations with ‖δ(0)‖ < d0 and with difference between
maximum and minimum perturbation exceeding d1. We will use that for all pertur-
bations ||δj || ≤ d1 < dmax, j ≥ κ0(0) − 1, the order of events does not change. For
j ≥ κ0(0), we can presume that Eq. (58) is applicable: If the threshold was reached
between arrivals of the perturbed and the unperturbed dynamics (and Eq. (58)
would not be applicable), the perturbation must just have grown larger than dmax

and the proof would already be completed. We track an initial perturbation δ(0)
with the property that (i) it has a nonidentical maximal and minimal perturbation
in the perturbations of the phases,

max
l

δl(0) = δmax(0) > δmin(0) = min
l

δl(0), (104)

where l ∈ {1, ..., N}, and (ii) the maximal and minimal initial perturbation has
different signs. Such a perturbation is guaranteed to exist. We first show that the
maximal entry can only increase with time. Between zero and θκ0(0) only spikes
can be sent that inherit perturbations already present in the phases at time t = 0.
So, neither the overall maximal and minimal perturbation nor the perturbations
of the phases can change. We may thus concentrate on j ≥ κ0(0). From our
presumptions, (H l

εlm
)′(φl) ≥ 1 holds for all l, m ∈ {1, ..., N} and therefore clj ≥ 1

for any interaction. Rewriting Eq. (58) as

δj
l = (clj − 1)(δj−1

l − ζj) + δj−1
l , (105)

we directly infer that a maximal perturbation δj−1
l = δj−1

max in the neurons’ phases

cannot decrease due to an interaction, because (δj−1
l − ζj) ≥ 0, with (clj − 1) ≥ 0

and therefore

δj
l ≥ δj−1

l . (106)

Minimal perturbations do not increase: Analogously, a minimal perturbation
cannot grow, since for δj−1

l = δj−1
min we have (δj−1

l − ζj) ≤ 0, implying

δj
l ≤ δj−1

l . (107)
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Presence of extremal perturbations in the phases: We now show that the prop-
erty that maximal and minimal perturbations are represented in the phase pertur-
bations is conserved, i.e. holds for δj with j ≥ κ0(0). We use complete induction

and start with the perturbation δ
κ0(0)
l . For δ

κ0(0)
l the statement holds (initializa-

tion): Just before the spike arrival at min(θκ0(0), θ̃κ0(0)), the perturbation vector

δ(min(θκ0(0), θ̃κ0(0))
−) has phase perturbation entries

δl(min(θκ0(0), θ̃κ0(0))
−) = δl(0). (108)

The spike perturbation entries are identical to those of δ(0), only some might have
been replaced by new ones at sending times t1, t2, ... < θκ0(0). The new spike
perturbation entries equal perturbations already present in the phase perturbations,
so that in particular the minimal and the maximal perturbation are still represented
in the phase perturbations. Due to an interaction, the maximal phase perturbations
can only grow, the minimal ones can only decrease (cf. Eqs. (106, 107)), while the

spike perturbations remain unchanged. Using δl(min(θκ0(0), θ̃κ0(0))
−) = δ

κ0(0)−1
l ,

where l ∈ {1, ..., N}, we conclude that

δ
κ0(0)
min = min

l
δ

κ0(0)
l

≤ min
l

δ
κ0(0)−1
l

= δmin(min(θκ0(0), θ̃κ0(0))
−)

< δmax(min(θκ0(0), θ̃κ0(0))
−)

= max
l

δ
κ0(0)−1
l

≤ max
l

δ
κ0(0)
l

= δκ0(0)
max , (109)

holds. Our induction assumption is that for some j − 1 ≥ κ0(0), the maximal and

minimal perturbations δj−1
max and δj−1

min of the perturbation vector δj−1 are represented

in the phase perturbations δj−1
l ,

min
l

δj−1
l = δj−1

min < δj−1
max = max

l
δj−1
l . (110)

As inductive step, we now show that

min
l

δj
l = δj

min < δj
max = max

l
δj
l , (111)

where still l ∈ {1, ..., N}. Perturbations of spikes with indices i, κ1(θj−1) ≥ i ≥

κ1(θj−1)−Nsp+1 occurring in the perturbation vector δj−1 are bounded by δj−1
min and

δj−1
max. Their value does not change but they can be replaced by the perturbations

of new spikes i, κ1(θj−1) < i ≤ κ1(θj), sent between θj−1 and θj . Due to Eq. (36),

these new spikes i inherit a perturbation ζi = δ
P (i)
si , P (i) = j − 1, already present

in the phases and they are therefore also bounded by δj−1
min and δj−1

max. When the
jth spike arrives, the sizes of the perturbations of spike variables do not change
while the perturbations of the phases change according to Eq. (58). Eqs. (106, 107)
imply that the maximal perturbation of the phase can only increase and that the
minimal perturbation can only decrease, so that the new extremal perturbations of
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the phase are the extremal perturbations of the new perturbation vector,

δj
min = min

l
δj
l ≤ min

l
δj−1
l = δj−1

min

< δj−1
max = max

l
δj−1
l ≤ max

l
δj
l = δj

max. (112)

Increase of maximal perturbations: After we have seen that for the perturbations
considered the maximal perturbation can only increase while the minimal pertur-
bation can only decrease and both are always represented in the phases, we show
that the maximal perturbation indeed has to grow within 2(N − 1) periods as long
as ||δj || ≤ d1. We assume that the perturbation does not grow within 2(N − 1)
periods and show that this assumption leads to a contradiction. First, we consider
the case that the perturbation of some neuron l which is maximally perturbed,
δj
l = δj

max, after the arrival of the jth spike, decreases within the 2(N − 1) peri-
ods. Due to Eq. (105), this can only happen if there was an arrival of a spike i,
j < i ≤ j+2(N−1)M , with ζi > δj

max. This implies that the maximal perturbation
must have grown, which already contradicts our assumption.

We can thus presume that the perturbation of maximally perturbed neurons l
does not decrease. However, Eqs. (60, 105) imply that the perturbation of neuron
l stays constant only if δi−1

l = ζi or εlsi
= 0, i.e. to ensure that neuron l keeps its

perturbation δj
max within two periods, all arriving spikes ζi, j < i ≤ j + 2M with

εlsi
6= 0 must have maximal perturbation. This implies that all presynaptic neurons

Pre(l) have perturbation δj
max when they spike within the first period, because their

spikes arrive before the end of the second period due to τ < T and the spikes
have inherited the sending neurons’ perturbation due to Eq. (36). If the maximal
perturbation has not yet increased, the perturbation of neurons with perturbation
δj
max cannot decrease so that neurons Pre(l) have maximal perturbation later on, in

particular at the end of the second period. However, to ensure that the perturbation
of neurons Pre(l) does not increase within the next two periods, also all neurons
Pre(Pre(l)) have to carry perturbation δj

max when they spike in the third period,
which entails that they carry perturbation δj

max at the end of the fourth period. To
ensure that the maximal perturbation does not increase up to the 2(N−1)th period,
all neurons would have to carry perturbation δj

max at the end of the 2(N − 1)th
period in contradiction to the fact that the minimal perturbation cannot grow and
is represented in the perturbations of the neurons’ phases, so that there is at least

one neuron m with δ
j+2(N−1)M
m ≤ δj

min < δj
max at the end of the 2(N − 1)th period.

Therefore, our assumption is wrong and the maximal perturbation grows within at
least 2(N − 1) periods.

Decrease of minimal perturbations: An analogous consideration shows that the
minimal perturbation decreases within at least 2(N − 1) periods.

Perturbation size eventually exceeds d1: Due to the increase of maximal perturba-
tions and the decrease of minimal perturbations, the sequence (max(δj+n·2(N−1)M ))n

is strictly monotonic increasing and (min(δj+n·2(N−1)M ))n is strictly monotonic de-
creasing, due to our assumption they are bounded from below and above by −d1

and d1 and therefore converge,

max(δj+n·2(N−1)M ) → M0, (113)

min(δj+n·2(N−1)M ) → m0. (114)
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Furthermore, (δj+n·2(N−1)M )n is bounded with respect to ||.|| by d1 and therefore
has a convergent subsequence, say

δj+nm·2(N−1)M → δ̂. (115)

We define Ḡj , which maps an actual event-based perturbation vector to the vector
2(N − 1) periods later

Ḡj : δj → δj+2(N−1)M . (116)

Like Gj defined in Eq. (79), Ḡj is continuous and M -periodic in j. With the same

computations as for the proof of asymptotic stability, we conclude max(δ̂) = M0,

max(Ḡj(δ̂)) = M0, so

max(δ̂) = max(Ḡj(δ̂)) (117)

Since δ
j+nm·2(N−1)M
max , δ

j+nm·2(N−1)M
min are always represented in the finitely many

phase perturbations, we can find constant indices l′, l′′ ∈ {1, ..., N} so that

δ
j+nm′2·(N−1)M
l′ = δj+nm′2·(N−1)M

max (118)

and

δ
j+nm′′2·(N−1)M
l′′ = δ

j+nm′′2·(N−1)M
min (119)

for subsequences (nm′)m′ ⊂ (nm)m, (nm′′)m′′ ⊂ (nm)m. Since max and min are

continuous, δ̂l′ = max(δ̂) and δ̂l′′ = min(δ̂) holds, so the extremal perturbations
are represented in the perturbations of the phases of the limit perturbation vector

δ̂. This implies that the minimum and maximum of δ̂ would change under Ḡj ,

if δ̂ had nonidentical entries. Due to Eq. (117), this is not the case, so δ̂ has

identical entries. Since also min(δ̂) = m0 we conclude M0 = m0 in contradiction to
m0 ≤ min δ(0) < max δ(0) ≤ M0. Therefore, our initial assumption is wrong and
the arbitrarily small initial perturbations finally exceed any d1 < dmax.

Points on the periodic orbit which fall into different inter-event-intervals have a
distance larger than d1 (due to our assumption). So, the minimal distance between
the perturbed dynamics and any shifted version of the original dynamics, and thus
the periodic orbit, is larger than ξ = d1/2.

9. Purely inhibitory networks with normal dissipation.

Corollary 1. In purely inhibitory arbitrarily connected networks with concave rise
functions (i.e. normal dissipation), any non-degenerate spike pattern is stable. In
purely inhibitory strongly connected networks with strictly concave rise function, any
non-degenerate spike pattern is even asymptotically stable. The order preserving
neighborhood lies within the basin of attraction, i.e. the dynamics is stable at least
against perturbations smaller than dIn

max.

Proof. In networks with normal dissipation we have for l ∈ {1, ..., N}, ε < 0 and φl

with BU,l < Ul(φl) + ε,

H l
ε(φl) < H l

0(φl) = φl, (120)

due to the monotonicity of the transfer function, and

0 < U ′
l (φl) ≤U ′

l (H
l
ε(φl)), (121)

because U is concave. This implies

0 < (H l
ε)

′(φl) =
U ′

l (φl)

U ′
l (H

l
ε(φl))

≤ 1, (122)
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Figure 4. Asymptotic stability of non-degenerate periodic spike
patterns in purely inhibitory, strongly connected networks of neu-
rons with normal dissipation. Sparse inhibitory network (a) of
three leaky integrate-and-fire neurons (green) and two Mirollo and
Strogatz biological oscillators (blue) (cf. model section). The rise
functions are strictly concave as displayed in b) for neurons 2 (blue)
and 4 (green). c) displays the dynamics by showing the time differ-
ence ∆t between the actual spike (colored according to the sending
neuron) minus the time of the last preceding spike of neuron 1
versus the total time elapsed. The network has been designed to
realize a predefined pattern [28, 27]. At time t = 30T a perturba-
tion inside the minimal basin of attraction is applied, at t = 60T
a perturbation inside the basin but outside the minimal basin and
at t = 90T a perturbation outside the basin. (For details, see text.)

and Theorem 6.2 yields the first part of the statement (simple stability). Further,
for strictly concave rise function, strict inequality “<” holds in Eqs. (121, 122);
for strongly connected networks we can apply Theorem 7.2 and the definition of
the order preserving neighborhood Eq. (50) for purely inhibitory networks, which
yields the second part of statement (asymptotic stability and minimal basin of
attraction).

Fig. 4 illustrates the statement of Corollary 1. The parameters in the figure
are γ = 0.3, 0.8, 1.2 for the leaky integrate-and-fire neurons and b = 0.5, 1 for
the Mirollo-Strogatz biological oscillators. The thresholds of the potentials are
ΘU,l = 1, the connections are delayed with τ = 0.125. The remaining neuron
parameters I and a are chosen so that the free period is normalized to 1. Ap-
plying the methods introduced in refs. [28, 27], the network has been designed
to realize the periodic pattern of spikes as invariant solution. The spike times are
(t1, ..., t7) = (0, 0.60, 0.67, 0.94, 1.46, 1.85, 2.19) (rounded to two decimal digits) with
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Figure 5. Instability of non-degenerate periodic spike patterns
in purely inhibitory, strongly connected networks of neurons with
anomalous dissipation. The inhibitory network (a) has the same
rough topology, neuron types and delays as the one in Fig. 4 and it
is designed to show the same periodic pattern of spikes as invariant
dynamics. However, the rise functions are now strictly convex as
displayed in b) for neurons 2 and 4. The pattern is therefore un-
stable, as illustrated by c). The three perturbations do not change
the irregular dynamics qualitatively. (For details, see text.)

sending neurons (s1, ..., s7) = (1, 4, 3, 2, 5, 4, 2), randomly chosen (independent, uni-
form distributions for times within [0, T ) and for neurons within {1, ..., 5}) from
the patterns with period T = 2.5 and M = 7 spike times. The non-degenerate
spike pattern is stable, where all trajectories with maximal distance smaller than
dIn
max ≈ 0.03 (cf. Eq. (50)) are certainly attracted. Around times t = 30T , t = 60T

and t = 90T perturbations are applied. The first perturbation has maximum norm
slightly smaller than dIn

max, the dynamics therefore stays within the minimal basin
of attraction and relaxes back towards the original pattern. The second and third
perturbation have maximum norm 1.8dIn

max. After the second perturbation, the tra-
jectory starts outside the minimal basin but still within the basin of attraction, as
can be seen from the numerical simulation. The third one perturbs the trajectory
out of the basin of attraction into the basin of a different non-degenerate spike
pattern.

10. Purely inhibitory networks with anomalous dissipation.

Corollary 2. In purely inhibitory strongly connected networks with strictly convex
rise functions (anomalous dissipation) any non-degenerate spike pattern is unstable.

Proof. In networks with strictly convex rise functions Ul, for ε < 0,

U ′
l (φ) >U ′

l (H
l
ε(φ)) > 0, (123)
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Figure 6. Instability of non-degenerate periodic spike patterns
in purely excitatory, strongly connected networks of neurons with
concave rise function. Excitatory network (a) with rough topology,
neurons and rise functions (illustrated in b) for neurons 2 and 4)
as in Fig. 4. The non-degenerate spike pattern is unstable (c). The
dynamics converges to patterns stabilized by degenerate events.
(For details, see text.)

because H l
ε(φ) < φ due to the monotonicity of the transfer function. This implies

(H l
ε)

′(φ) =
U ′

l (φ)

U ′
l (H

l
ε(φ))

> 1, (124)

and application of Theorem 8.2 yields the statement.

An illustration to Corollary 2 is given in Fig. 5. The network has been designed
to realize the same pattern as in Fig. 4 and to have the same rough topology. The
neurons now have convex rise function: The parameters are γ = −0.3,−0.8,−1.2
for the leaky integrate-and-fire neurons and b = −0.5,−1 for the Mirollo-Strogatz
biological oscillators. (Other network parameters are chosen as described for Fig. 4.)
Due to the strictly convex rise function, the pattern is unstable, as illustrated by c).
Already due to growth of numerical errors, the dynamics quickly leaves the periodic
orbit corresponding to the spike pattern. For purely inhibitory networks, there is
no obvious stabilizing mechanism such as supra-threshold excitation, and, indeed,
we find continued irregular activity. The three perturbations around times t = 30T ,
t = 60T and t = 90T do not change this dynamics qualitatively.

11. Purely excitatory networks with normal dissipation.

Corollary 3. In purely excitatory, strongly connected networks with strictly concave
rise functions (normal dissipation) any non-degenerate spike pattern is unstable.
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Proof. In networks of excitatory neurons, we have for l ∈ {1, ..., N}, ε > 0, and φl

with Ul(φl) + ε < ΘU,l,

H l
ε(φ) > H l

0(φ) = φ, (125)

due to the monotonicity of the transfer function. Because Ul is strictly concave,

U ′
l (φ) >U ′

l (H
l
ε(φ)) > 0 (126)

holds. This implies

(H
l

ε)
′(φ) =

U ′
l (φ)

U ′
l (H

l
ε(φ))

> 1, (127)

and application of Theorem 8.2 yields the statement.

The typical dynamics of such a network is illustrated by Fig. 6. The rough topol-
ogy and the neuron parameters are the same as in the network of Fig. 4. The delay
time τ is scaled by a factor of 0.3. The network is designed so that the dynamics has
the periodic pattern of M = 7 spikes (t1, ..., t7) = (0, 0.18, 0.20, 0.28, 0.44, 0.56, 0.66)
with sending neurons (s1, ..., s7) = (1, 4, 3, 2, 5, 4, 2) and period T = 0.75 as invari-
ant solution. This is the pattern of Fig. 4 scaled by a factor 0.3 so that it can be
realized by a completely excitatory network with neurons of intrinsic period one.
The non-degenerate spike pattern is unstable. Already due to increase of numerical
error, the dynamics leaves the pattern and converges to a different pattern of spikes.
This pattern is stable, as can be seen from the perturbations applied around times
t = 30T and t = 60T . It therefore must be degenerate. Indeed, it is stabilized
by supra-threshold excitation: Neuron 5 excites neurons 2, 4 supra-thresholdly to
simultaneous sending, these neurons in turn excite neurons 1, 3 supra-thresholdly.
The perturbation at t = 90T is large enough to cause the dynamics to leave the
pattern’s basin of attraction and to assume a different periodic pattern, which is
again stabilized by supra-threshold excitation.

12. Purely excitatory networks with anomalous dissipation.

Corollary 4. In purely excitatory arbitrarily connected networks with convex rise
function (anomalous dissipation) any non-degenerate spike pattern is stable. In
purely excitatory strongly connected networks with strictly convex rise function any
non-degenerate spike pattern is asymptotically stable. The order preserving neigh-
borhood lies within the basin of attraction, i.e. the dynamics is stable at least against
perturbations smaller than dEx

max .

Proof. For ε > 0, in networks with convex Ul,

0 < U ′
l (φ) ≤U ′

l (H
l
ε(φ)) (128)

holds because H l
ε(φ) > φ. This implies

0 < (H
l

ε)
′(φ) =

U ′
l (φ)

U ′
l (H

l
ε(φ))

≤ 1, (129)

and we can apply Theorem 6.2 which yields the first part of the statement (simple
stability). For strictly convex rise function, strict inequality “<” holds in Eqs. (128,
129); in strongly connected networks, Theorem 7.2 is applicable and yields together
with the definition of the order preserving neighborhood Eq. (51) the second part
of the statement (asymptotic stability and minimal basin of attraction).
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Figure 7. Asymptotic stability of non-degenerate periodic spike
patterns in purely excitatory, strongly connected networks of neu-
rons with convex rise function. The excitatory network (a) has the
same rough topology, neuron types and delays as the one in Fig. 6
and it is designed to show the same periodic pattern of spikes as
invariant dynamics. The rise functions are now convex as displayed
in b) for neurons 2 and 4. The pattern is asymptotically stable. At
time t = 30T a perturbation inside the minimal basin is applied,
at t = 60T a perturbation inside the basin but outside the minimal
basin and at t = 90T a perturbation outside the basin are applied.
(For details, see text.)

An illustration is given by Fig. 7. The rough network topology and the neuron
parameters are the same as in the network of Fig. 5. The pattern is asymptotically
stable with a basin of attraction so that any trajectory with maximal distance less
than dEx

max ≈ 0.008 is certainly attracted. The dynamics (c) is perturbed with a
vector of maximum norm less than dEx

max at time t = 30T . It relaxes back towards
the original spike pattern. Around times t = 60T and t = 90T , two different
perturbations with maximum norm 6dEx

max are applied. At t = 60T , the trajectory
is perturbed outside the minimal basin (e.g. the sending times of neurons 3 and 4
are interchanged) but it lies still within the basin of attraction. At t = 90T , the
basin of attraction is left and the dynamics converges to a different stable periodic
pattern, which is in fact degenerate and additionally stabilized by supra-threshold
excitation: A sending event of neuron 2 is generated by a supra-threshold input
from neuron 3.

13. Conclusion and outlook. We have analytically studied the stability proper-
ties of a general class of periodic orbits for multi-unit systems with delayed couplings
and complex connectivity structure.

One of the most basic properties of a periodic pattern of spikes is its stability or
instability against small perturbations. Numerical simulations have shown that in
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mixed networks, networks having both excitatory and inhibitory interactions, peri-
odic patterns can be both stable or unstable (cf. [28, 27]). From the three theorems
formulated and proven in the present article, we directly inferred general state-
ments about the stability properties of non-degenerate periodic patterns of spikes
for purely excitatory or purely inhibitory networks where the rise functions are con-
generically curved: For arbitrary underlying network connectivity we analytically
showed that

1. In purely inhibitory networks with concave rise functions (normal dissipation)
any non-degenerate spike pattern is stable. If the network is strongly con-
nected and the rise functions are strictly concave, any non-degenerate spike
pattern is asymptotically stable (Corollary 1).

2. In purely inhibitory strongly connected networks with strictly convex rise
functions (anomalous dissipation) any non-degenerate spike pattern is unsta-
ble (Corollary 2).

3. In purely excitatory strongly connected networks with strictly concave rise
functions (normal dissipation) any non-degenerate spike pattern is unstable
(Corollary 3).

4. In purely excitatory networks with convex rise functions (anomalous dissipa-
tion) any non-degenerate spike pattern is stable. If the network is strongly
connected and the rise functions are strictly convex, any non-degenerate spike
pattern is asymptotically stable (Corollary 4).

For asymptotically stable periodic spike patterns in strongly connected networks, we
also derived the analytic expressions Eqs. (50, 51) for a minimal basin of attraction.

The proof of stability is based on the observation that interactions lead to av-
eraging of perturbations so that differences between the maximal and the minimal
perturbation can only decrease due to interactions. If the network is strongly con-
nected, the averaging takes place over the entire network leading to asymptotic
stability. In weakly but not strongly connected networks we cannot expect asymp-
totic stability in general. A simple counterexample is given by a network where
several neurons do not receive any input. Their sub-pattern of spikes will not be
asymptotically but only Lyapunov stable. (For general implications of the inherent
hierarchical structure of weakly connected networks, see [34].)

The proof of instability is based on the observation that for certain arbitrarily
small perturbations, the difference between the maximal and the minimal pertur-
bation can only increase due to interactions so that these perturbations grow and
the perturbed dynamics depart from any dynamics equivalent to the original one.
Implications of only weakly connected network topology remain to be investigated.

A linear stability analysis employing the Frobenius and Gershgorin Theorems [25]
as applied in [35] to much simpler dynamics seems possible as well. The nonlinear
stability analysis presented here has the advantages that (i) we can derive informa-
tion about the size of the basin of attraction, and (ii) it allows for a generalization to
irregular dynamics (cf. [17, 18]). We furthermore remark that the multi-dimensional
dynamical systems considered here are one of the rare examples allowing for such
an approach. We therefore concentrated exclusively on this nonlinear method.

Degenerate patterns with simultaneous events such as simultaneous spike send-
ings and arrivals can be unstable or stable. In particular, in networks in which all
non-degenerate patterns are stable, there can also be unstable periodic patterns.
For excitatory coupling and concave rise function, where non-degenerate patterns
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are unstable, degenerate patterns can be strongly stabilized by supra-threshold ex-
citation [10, 11, 37], because supra-threshold excitation eliminates small perturba-
tions, cf. [37], so these patterns are observed as attractors in numerical simulations,
cf. Fig. 6. In contrast, in purely inhibitorily coupled networks with convex rise
function, there is no such obvious stabilization mechanism (as long as no additional
features are introduced) and indeed, we find continued irregular activity after the
dynamics has left the unstable periodic pattern. This regime remains to be studied
in detail.

Precisely timed patterns of spikes have been found in neurobiological experiments
[3, 32, 30, 23, 15, 2, 12, 31, 13]. For their identification, statistical methods have been
derived, e.g. in [12]. Analysis of the occurrence of precisely timed patterns of spikes
in model networks with these tools will on the one hand allow to test the statistical
methods. On the other hand, it will show for which model parameters precisely
timed patterns of spikes occur in the model spike trains and how appropriate the
models are for the description of neural activity.

Important directions of future research concern the robustness of the current
results against the introduction of noise or against changes of the model, e.g. intro-
duction of few excitatory couplings in inhibitory networks or introducing synaptic
couplings with finite time course. Moreover, stability of non-periodic spike patterns
and the occurrence of (potentially long) transients need to be understood. Some
results in this spirit are presented in [46, 45, 17, 26, 44, 18].
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