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ABSTRACT How spiking neuronal networks encode memories in their different time and spatial scales
constitute a fundamental topic in neuroscience and neuro-inspired engineering. Much attention has been
paid to large networks and long-term memory, for example in models of associative memory. Smaller circuit
motifs may play an important complementary role on shorter time scales, where broader network effects
may be of less relevance. Yet, compact computational models of spiking neural networks that exhibit short-
term volatile memory and actively hold information until their energy source is switched off, seem not
fully understood. Here we propose that small spiking neural circuit motifs may act as volatile memory
components. A minimal motif consists of only two interconnected neurons – one self-connected excitatory
neuron and one inhibitory neuron – and realizes a single-bit volatile memory. An excitatory, delayed self-
connection promotes a bistable circuit in which a self-sustained periodic orbit generating spike trains co-
exists with the quiescent state of no neuron spiking. Transient external inputs may straightforwardly induce
switching between those states. Moreover, the inhibitory neuron may act as an autonomous turn-off switch.
It integrates incoming excitatory pulses until a threshold is reached after which the inhibitory neuron emits
a spike that then inhibits further spikes in the excitatory neuron, terminating the memory. Our results show
how external bits of information (excitatory signal), can be actively held in memory for a pre-defined amount
of time. We show that such memory operations are robust against parameter variations and exemplify how
sequences of multidimensional input signals may control the dynamics of a many-bits memory circuit in a
desired way.

INDEX TERMS Dynamical Systems, Network Motifs, Nonlinear Dynamics, Spiking Neural Networks

I. INTRODUCTION
Memory plays a fundamental role in biological, bio-inspired
and abstract artificial computing systems. While in standard
computers memory is usually implemented as discrete com-
ponents [1], which can be addressed by other components
as needed, in self-organized dynamical systems, computation
and memory are typically intertwined, with computation
and memory access taking place concurrently [2], [3]. In
particular, neural networks are composed of many discrete
computing units called neurons with memory being stored in
the network’s connectivity itself. The result of a computation
is the observable emergent collective dynamics.

Due to its parallel and distributed nature, memory stud-
ies on neural networks have traditionally focused on large-

scale systems, which not only exhibit a variety of emerging
phenomena but also may become analytically tractable in the
limit of large networks (N → ∞) [4]. One key example of
such collective phenomena is associative memory, in which
memories are represented as attractors in state space, such
that partial initial information or corrupted input signals may
be sufficient to recover original stored associated memories.
Most neural networks models, for memory or computation,
are also non-volatile [5], [6], such that the information stored
in the connections need not to be actively maintained but stay
long-term without ongoing energy inputs required. Volatility,
however, may be essential for a variety of cognitive functions,
as working memory and real-time planning [7], [8], in par-
ticular on shorter timescales, where broader network effects
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FIGURE 1. Spiking neural circuit motifs that implement a 1-bit volatile
memory. Blue circles labeled as ‘E’ represent excitatory neurons, red circles
labeled as ‘I’ represent inhibitory neurons, circles as arrow heads represent
inhibitory connections and conventional arrows represent excitatory
connections. (a) A minimal circuit composed of two neurons, one excitatory
and one inhibitory. (b) A circuit composed of an excitatory ring sub-network
and an inhibitory neuron. (a-b) In both cases, the excitatory component has
self-connections and connections to the inhibitory neurons while the inhibitory
feedback connects to all excitatory neurons.

may be of a lesser relevance.
Here we propose spiking neural network motifs to act as

volatile memory components. A minimal example is com-
posed of only two interconnected neurons (see Fig. 1), one
excitatory neuron with a delayed self-connection (autapse)
and one inhibitory neuron, yielding a bistable motif circuit. A
self-sustained periodic spike-train, representing an ‘on’ state
and thus a bit ‘1’ co-exists with the quiescent state, repre-
senting an ‘off’-state and thus a bit ‘0’. Switching between
those states is controlled by transient external inputs to either
the inhibitory or the excitatory neuron. Alternatively, the in-
hibitory neuron may also act as an autonomous off switch for
the circuit. That neuron integrates the pulses incoming from
the excitatory neuron until it reaches a spiking threshold upon
which the inhibitory neuron emits a spike and terminates the
self-sustained periodic spike-train at the excitatory neuron,
overall turning the collective motif state from ‘1’ to ‘0’ .
Collections of such motif may be used in parallel to represent
more complex information as independent bits, if larger-scale
network effects are not desirable or not relevant .

Our results below show how an external bit of information
can be actively held in memory for a pre-defined amount
of time. To hold a ‘1’ bit in memory, neural spiking activ-
ity and thus energy is needed, making the memory system
volatile. The small neural circuits introduced below may
serve as basic memory units for short-term volatile memory,
and thus may complement the broad variety of previously
proposed computational neural circuits and memory models
[5], [9], [10], in particular the set of, also volatile, computing
paradigms emerging in symmetrical systems [11]–[14] or
stochastic dynamics in random networks with local excitation
and global inhibition [15], [16], which also take advantage of
self-organization instead of carefully tuned (many) connec-
tions between neurons.

II. MINIMAL MODEL OF NEURONAL NETWORK MOTIF
In this work we present a compact neuronal circuit motif
that implements a 1-bit volatile memory. Volatile in this

context means that spike activity, and thus energy, is needed
to maintain at least one of the memory states. The system is
compact because it can be implemented with as few as two
neurons. For instance, as we sketch in Fig. 1a, the system
may be implemented with one inhibitory neuron and one
excitatory neuron only. The connectivity is such that the
excitatory neuron has a self connection and a connection to
the inhibitory neuron; the inhibitory neuron has a single con-
nection to the excitatory neuron. Alternatively, the excitatory
component may be composed of a ring (Fig. 1b) or other
small population of neurons to better resemble a biological
neural circuit or to otherwise circumvent self-connections.
To explain the basic mechanisms and collective dynamics
underlying volatile memory function of such motifs, we
consider a minimal motif of two neurons in the remainder
of this article.

For clarity of presentation we here mathematically de-
scribe the neurons as Leaky Integrate-and-Fire neuron mod-
els that exhibit parameters with a direct physical mean-
ing also for potential hardware implementations. Leaky
integrate-and-fire models already capture main fundamental
features of spiking neurons, including their dynamics ex-
hibiting two different times scales: a long term sub-threshold
dynamics and short term interactions (spikes) modeled via
discrete pulse responses. Our specific model is defined by a
pair of differential equations,

dVE

dt
= AE + ξE(t)− γEVE +

∑
ti∈PE

εEδ(t− ti − τE)

+
∑
tj∈PI

εIδ(t− tj − τI) + ηE(t)

(1)

dVI

dt
= AI + ξI(t)− γIVI +

∑
ti∈PE

εEδ(t− ti − τE)

+ ηI(t)

(2)

complemented by conditions for spike emission and reset.
Specifically, we say that neuron X ∈ {E, I} emits a spike
at time t := tn if its voltage reaches a threshold,

VX(t) ≥ θ

after which that voltage is reset to

V (t+) := 0.

The time tn indicates the nth spike time in the motif circuit
(after some reference time t0). Moreover, the parameters AX

represent temporally the internal driving currents that set
the equilibrium voltage (see below), ξX(t) external driving
currents serving as input signal to store or remove mem-
ories, and γX the leak constants. Finally εX represent the
connection weights, τX the delays between a spike emitted
by neuron X and reception of that spike and PX denotes the
set of all pulses elicited by a neuron X . The indices E and
I indicate features of the excitatory and inhibitory neurons,
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respectively. Finally the inputs ηX are the contribution of
internal noise. We remark that the autonomous part of the
system of equations above, i.e. for ηX(t) = ξX(t) ≡ 0, has
an analytical solution in between spike events and equally
enable a piecewise, exact event-based simulations [17]–[19].

III. SELF-SUSTAINED AND SELF-TERMINATED
MEMORY
In the 2-unit motif network, two qualitatively different collec-
tive dynamics coexist (Fig. 2), one exhibiting a self-sustained
spike train created by the excitatory neuron, encoding a
bit value ‘1’, the other a quiescent state with no spikes
emitted, encoding the bit value ‘0’. To store the value ‘1’,
an excitatory signal ξE is sent to the excitatory neuron; to
switch from a bit ‘1’ to zero, an external excitatory signal
ξI is sent to the inhibitory neuron. Both types of external
signals ξX need to be sufficiently strong, i.e. of sufficiently
large amplitude and duration. The exact shape of these input
signals as a function of time is not relevant as long as they are
sufficiently rapid and charge the targeted neuron sufficiently
for it to cross threshold and spike.

In the absence of external input signals, the voltage of both
neurons with time tends towards their respective fixed points
VE := IE/γE and VI := AI/γI , see Fig. 2 before input
onset. A short transient input signal ξE triggers the release of
the first spike by the excitatory neuron. In turn, this spike ar-
rives in both neurons after a delay τE . For sufficiently strong
pulse (response) amplitudes εE , the excitatory neuron sends
a second spike and the process repeats. The motif network
then maintains a spike-train with frequency 1/τE until it is
interrupted by an inhibitory pulse. There are two different
mechanisms potentially causing such an interruption. First, a
strong excitatory signal ξI(t) could be sent at any desired
time from outside the motif, see Fig. 2a. Second, these
systems hold the option of self-sustained and self-terminating
memory function (see Fig. 2b), with memory duration set
by system parameters (that might, in turn, be varied on
demand): The ongoing sequence of excitatory pulses fed into
the inhibitory neuron promotes consecutive voltage jumps.
If one such spike brings the inhibitory neuron to or beyond
its firing threshold, the inhibitory neuron elicits a spike that
after a delay τI causes a voltage leak in the excitatory neuron,
thereby interrupting the self-sustained spike-train.

IV. MEMORY DURATION
An interesting feature of the memory circuit motif presented
is its tunable memory duration. Quantitatively, how long the
an on-state is held active before self-terminating depends on
most of the system parameters, for example on the pulse
amplitudes (and durations), the delays, and the leak constant
γX . For a qualitative analysis, we study the memory duration
in terms of variations of the leakage parameter γI and the
firing threshold θI , fixing all other parameters. A natural
way to measure the memory duration is in terms of number
of elicited spikes; the absolute real time again depends on

chosen parameters set in any motif implementation. Fur-
thermore, because the excitatory neuron’s role is simply to
generate a spike-train with a fixed frequency 1/τE , we here
studied the memory duration from the perspective of the
inhibitory neuron’s response to such spike-trains.

As shown in Fig. 3a, if γI is large enough, most of
the current injected into a neuron is lost during the inter-
spike intervals and the voltage curve resembles a non-linear
saw wave with a small up-drift. Contrariwise, in the limit
of γI → 0, no current is lost, as there is no leak term,
and the voltage curve thus has a stair shape. Intermediary
values show an average logarithmic increase overlayed by the
spikes. Notice the exact values of γI shown in Fig. 3 are only
illustrative, as the same qualitative effects can be achieve for
fixed γI and varying, for example, τE instead. We also expect
the system to show robustness to small variations of εE as
the leakage grows exponentially with the deviation from the
resting state, see Fig. 3b.

The memory duration is controllable. For depiction, we
varied the firing threshold θI and fixed all other parameters.
Fig. 3c shows how larger γI values restrict the discernible
memories’ duration to a predefined interval of pulses, as the
voltage peaks immediately after consecutive spikes get closer
exponentially fast. For large enough θI the memory duration
is in practice long-term, as the actual difference between the
voltage peaks (at spike times) decreases exponentially with
θI and the voltage does not converge to the threshold in finite
time or converge to a value below the threshold. For γI → 0,
the leak is negligible, and the memory duration increases in
equally spaced steps, multiples of to the spike amplitude εE
(Fig. 3d). We remark that long-term memory in this context
does not imply storage but long-lasting, as the memory here
is always sustained by pulses and is, thus, still volatile.

V. INFLUENCE OF NOISE
Noise is an ever-present feature in biological and artificial
(hardware) neural networks. Its role in memory and compu-
tation is varied and is often beneficial, in contrast to their ef-
fects in signal transmission lines. We now describe the effects
of noise on our compact memory circuit. In the following,
we add independent Gaussian noise sources ηX(t), with
identically distributed random components, to both neurons.
The noise is modeled (approximated) by adding the term

ηX(t+ δt)− ηX(t) =
√
δtNrand(σ, 0) (3)

to the righthand side of (1) and (2). Here Nrand(σ, 0) is
a random number drawn from a Gaussian distribution with
variance σ and centered at zero. To conserve the event-based
feature time evolution noise is evaluated after discrete times
intervals δt drawn independently from a Poisson distribution
with average ⟨δt⟩ = τE/100. That is, the noise sample
intervals are randomized and independent for each neuron,
while their average sampling interval is fixed.

Fig. 4 illustrates the effect of different noise amplitudes
for small and for intermediate noise amplitudes, γI = 0.05
and γI = 10−10, respectively. Qualitatively, the results are
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FIGURE 2. Bistable dynamics: memory initiation and termination. For both panels, the upper graphs represent input currents as a function of time while the
lower ones represent the voltages of inhibitory and excitatory neurons.(a) After a short input signal (upper panel), the excitatory neuron switches from its quiescent
state to a self-sustained active state.A second external signal drives the inhibitory neuron to spike, which in turn terminates the memory, back to the quiescent state.
(b) After the memory is initiated, the excitatory feedback loop persists until the inhibitory neuron produces a pulse, triggered by the consecutive excitatory pulses,
thus terminating the memory. Parameters are: AE = 0.9, AI = 0.01, γE = 1, γI = 0.12, θE = 1, θI = 0.3, τE = 3, τI = 2, εE = 0.05, εI = −0.2.

FIGURE 3. Memory duration and long-term dynamics (a) Dynamical
response of the inhibitory neuron to long spike trains with fixed frequency and
amplitude. The larger the leak constant γI , the slower the voltage increases
on average. (b) Given an instantaneous voltage jump ∆Vfix at time t0 from
the resting state, this panel shows the recovery time ∆t, in which the voltage
is V (∆t) − VI = 10−5 away from its resting states. The larger the leak
constant γI , the shorter the recovery time for the same ∆Vfix. (c) Number of
spikes received by the inhibitory neuron until reset as a function of its
threshold θ. (d) As in (c), but for a smaller γ = 10−10. The smaller γI , the
longer the curve resembles an equally spaced stair. Parameters: the same as
in Fig. 2 if not stated otherwise. AI = 10−4 for all panels.

the same in their most important aspects. Initially, for small
σ, noise mostly affects the vicinity of the transition points
between two memories duration (step jumps). As a result,
the steps themselves become less steep than without noise.
For larger noise strength σ, the plateaus (progressively) lose
their identity, due to the large variability in the memory

duration between random realizations, as also reflected in an
increase in the standard deviation of the number of spikes
to reset. Because the voltage plateaus for large γI become
progressively smaller without noise, the increase in standard
deviation becomes also progressively larger and more appar-
ent with larger θI , compare Fig. 4b-c to Fig. 4e-f. Further-
more, combinations of small enough θI with large enough σ
may promote eventual noise-induced spikes in the inhibitory
neuron (false positive), even without an external signal to
any of the neurons. As a consequence, spike events occur
even before the excitatory neuron has its first spike, which
translate in average memory duration below 1 in Figures 4(b-
c) and Figures 4(e-f). Notice, 1 is the minimum memory
length for the noise-free dynamics, that is, a single excitatory
spike promoting an inhibitory spike.

VI. LOADING AND FLUSHING MULTI-DIMENSIONAL
MEMORIES

In neuronal systems, sets of neurons or neuronal networks
can be used to represent and store information. In our ap-
proach to transiently holding bits in memory, neurons are
interconnected forming small motifs. In the simplest set-
ting, multi-dimensional memories may thus be established
by multiple motifs acting independently and in parallel. In
such settings, multi-dimensional inputs can be loaded con-
currently into memory as independent bits, not unlike in a
traditional computer (see Fig. 5). In our model, loading a bit
in memory is intuitive and in line with traditional computer,
each single bit can be set to one of two states almost instanta-
neously (within one spike cycle interval), independently of
the current states of the neuron. Furthermore, this system
exhibits a natural ground state (non-active), to which the
system abruptly switch after the memory interval elapses.
Moreover, the state representation is very convenient for
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FIGURE 4. Noise-induced variability of memory duration. Average number of spikes (black curves) received by the inhibitory neuron until its first spike and
standard deviation (blue and red backgrounds) as functions of the inhibitory neuron’s firing threshold. Measures calculated over 1000 repetitions at intervals of 0.01
volts. (a-c) For fixed γI , changing the noise standard deviation σ softens the staircase features of the curve. Even though the mean does not seem to deviate too
far from the noiseless case, the standard deviation monotonically increases with θ. (d-e) Same results as in (a-c), but with a slower increase rate. Parameters: same
parameters as in Fig. 3 if not stated otherwise.

binary codes, as one state has spike activity and the other
has a complete absence of spikes, thus, it does not require
involved decoding approaches.

FIGURE 5. A sequence of four-bits words. Only excitatory spikes are
depicted. Four independent 1-bit neural circuit receive a sequence of four
four-bits words. The last signal also serves to reset the system. Inputs label as
0 represent short inputs to the inhibitory neuron and as 1 to the excitatory
neuron. In both cases the signal’s duration is 0.3 and the amplitude is 0.5, see
Fig. 2 for details.

Fig. 5 shows how a sequence of words can be loaded into
an array of neurons. As expected from our previous discus-
sion around Fig. 2, a new value can be loaded independent
of the system state. The single false positive spikes after
each active-to-quiescent change of states occurs due to the
delay τI , i.e. spike signals still in transit (sent but not yet
received). As a consequence, the desired system state, i.e. the
collective dynamics at all motifs, is assumed after a (small)
lag time ∆t > τI . The exact timing depends on the excitatory
neuron’s voltage at the time it receives the inhibition. This
observation sets a minimum of two consecutive pulses with

frequency 1/τE to guarantee a correct solution, because after
a change in input signals, a single pulse may still be triggered
by the former input signal (a false ‘1’). The real-world (clock)
time interval τE , e.g. in seconds, is defined by the neuron
model time scales, by choosing the units for τE .

VII. DISCUSSION
We have proposed a general concept of implementing tunable
volatile memory in simple neural networks. Such networks
are small network motifs and exploit bi- or multistability
to realize memory dynamically. Memory duration is either
determined by system parameters that set the time scale of
self-terminating a memory, or by external signals.

The concept of volatile memory is already familiar in com-
puter science, see [20]. It is defined as a memory type that
is actively maintained by the system, thus continuously con-
suming power. Contrary to storage, such memory is erased
each time power is no longer provided to the system. In-
spired by such concepts, we here proposed that simple neural
motifs may act as volatile memory components. Our model
is fundamentally different from previous neuronal models
with similar functionality, which rely on, e.g., short-term
plasticity ( [21]), because our model requires no changes in
the network connectivity or their weights. Instead, memory is
held dynamically in the spike configuration until terminated
internally or externally. We specifically analyzed a simple
1-bit volatile memory neural network motif that exhibit bi-
stability. The bit ‘1’ is represented by a self-sustained spike
train and the bit ‘0’ by no spiking activity.

Our focus on minimal motifs was motivated by two as-
pects: first, independent bits may play an important role in
small systems, where network effects may be less relevant;
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second, the minimal 2-neuron systems offers maximal clar-
ity in gaining insights about fundamental mechanisms that
underlie both the self-organized collective dynamics of a
motif and its response to external control signals. We remark
that the same concept and mechanisms underlie also volatile
memory dynamics in larger recurrent motifs that exhibit a
suitable inhibitory component (shutdown-counter) and may
thus self-terminate memory. In general, for larger motifs or
several motifs embedded into a larger network, future work
will need to investigate two aspects, local memory func-
tion and broader network effects. Larger motifs or networks
may also hold the option for additional, potentially more
advanced, functionality, for instance into the direction of
systematically correlated multi-bit parallel memory storage,
see also [13], [22].

We chose a standard leaky integrate-and-fire neuronal
model [23]–[25] to keep the number of defining parameters
to the most essential ones. Nevertheless, the conditions to
implement such volatile memory circuit do not depend on
the details of the neuronal model, but only on whether a self-
sustained spike-train can be initiated by an external signal
and whether the inhibitory feedback can promptly terminate
such a spike-train. The results might thus be viewed as
conceptual and largely independent of the neuron model.

Departing in some measure from the biological paradigm,
independent bits (motif states) can be assembled to form
larger sets of N motifs which combined have a large memory
capacity (2N ), as in traditional computers. While it is unclear
if the animal brain may take advantage of such combinatorial
approach, bio-inspired computers can certainly make use of it
to complement functionality of a large class of spiking neural
systems, thereby maintaining information and processing
completely within the spiking paradigm if desired.

Our minimal motif for volatile memory complements a
variety of alternative dynamical system models of neural
and networked information processing systems [26]–[29]. In
particular, our model for short-term memory is a promising
complement for approaches to computations relying on sim-
ple (neural) logical gates or on symmetrical spiking neural
systems [11]–[14]. To date, these systems transiently process
information but cannot retain the result of a computation, nei-
ther in the long- nor in the short-term, for example in (noisy)
heteroclinic networks [12] or, more generally, networks of
unstable states [13]. Finally, we believe that such alternative
and compact form of volatile memory implementation may
contribute to future computing architectures, e.g., in neu-
romorphic and bio-inspired chemical, physical and robotic
systems [30]–[33].
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