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Replacing conventional power sources by renewable sources in current power grids drastically

alters their structure and functionality. In particular, power generation in the resulting grid will be

far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid

topologies on spontaneous synchronization, considering regular, random, and small-world

topologies and focusing on the influence of decentralization. We model the consumers and sources

of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest

non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle

(power outage), and coexistence of both. Second, we estimate stability thresholds for the collective

dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For

larger networks, we numerically investigate decentralization scenarios finding that decentralization

itself may support power grids in exhibiting a stable state for lower transmission line capacities.

Decentralization may thus be beneficial for power grids, regardless of the details of their resulting

topology. Regular grids show a specific sharper transition not found for random or small-world

grids. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865895]

The availability of electric energy fundamentally under-

lies all aspects of life. Thus, its reliable distribution is in-

dispensable. The drastic change from our traditional

energy system based on fossil fuels to one based domi-

nantly on renewable sources provides an extraordinary

challenge for the robust operation of future power grids.1

Renewable sources are intrinsically smaller and more

decentralized, thus yielding connection topologies

strongly distinct from those of today. How network topol-

ogies impact the collective dynamics and in particular the

stability of standard grid operation is still not well under-

stood. In this article, we systematically study how decen-

tralization may influence the collective grid dynamics in

model oscillatory networks. We first study small network

motifs that serve as building blocks for the larger net-

works later analyzed in this article. We find that, inde-

pendent of global topological features, decentralized

grids are consistently capable of reaching their stable

state for lower transmission line capacities than central-

ized ones. Regarding topological issues, decentralizing

grids may thus be beneficial for operating power grids,

largely independent of the original grid.

I. INTRODUCTION

The compositions of current power grids undergo radi-

cal changes. As of now, power grids are still dominated by

big conventional power plants based on fossil fuel or nuclear

power exhibiting a large power output. Essentially, their

effective topology is often locally star-like with transmission

lines going from large plants to regional consumers. As more

and more renewable power sources contribute, this is about

to change and topologies will become more decentralized

and more recurrent. The topologies of current grids largely

vary, with large differences, e.g., between grids on islands

such as Britain and those in continental Europe, or between

areas of different population densities. In addition, renew-

able sources will strongly modify these structures in a yet

unknown way. The synchronization dynamics of many

power grids with a special topology are well analyzed,2 such

as the British power grid3 or the European power transmis-

sion network.4 The general impact of grid topologies on col-

lective dynamics is not systematically understood, in

particular, with respect to decentralization.

Here, we study collective dynamics of oscillatory power

grid models with a special focus on how a wide range of top-

ologies, regular, small-world and random, influence the sta-

bility of synchronous (phase-locked) solutions. We analyze

the onset of phase-locking between power generators and

consumers as well as the local and global stability of the sta-

ble state. In particular, we address the question of how

phase-locking is affected in different topologies if large

power plants are replaced by small decentralized power sour-

ces. For our simulations, we model the dynamics of the

power grid as a network of coupled second-order oscillators,

which are derived from basic equations of synchronous

machines.5 This model bridges the gap between large-scale

static network models6–9 on the one hand and detailed

component-level models of smaller network10 on the other.

It thus admits systematic access to emergent dynamical phe-

nomena in large power grids.

The article is organized as follows. We present a dynam-

ical model for power grids in Sec. II. The basic dynamic

properties, including stable synchronization, power outage,

and coexistence of these two states, are discussed in Sec. III

for elementary networks. These studies reveal the mecha-

nism of self-organized synchronization in a power grid and

help understanding the dynamics also for more complex
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networks. In Sec. IV, we present a detailed analysis of large

power grids of different topologies. We investigate the onset

of phase-locking and analyze the stability of the phase-

locked state against perturbations, with an emphasis on how

the dynamics depends on the decentralization of the power

generators. Stability aspects of decentralizing power net-

works have been briefly reported before for the British trans-

mission grid.3

II. COUPLED OSCILLATOR MODEL FOR POWER
GRIDS

We consider an oscillator model where each element is

one of two types of elements, generator or consumer.11 Every

element i is described by the same equation of motion with a

parameter Pi giving the generated (Pi> 0) or consumed

(Pi< 0) power derived from the dynamics of synchronous

machines.5 The state of each element is determined by its

phase angle /iðtÞ and velocity _/iðtÞ. During the regular opera-

tion, generators as well as consumers within the grid run with

the same frequency X¼ 2p� 50 Hz or X¼ 2p� 60 Hz. The

phase of each element i is then written as

/iðtÞ ¼ Xtþ hiðtÞ; (1)

where hi denotes the phase difference to the set value Xt.
The equation of motion for all hi can now be obtained

from the energy conservation law, that is, the generated or

consumed energy Psource
i of each single element must equal

the energy sum given or taken from the grid plus the accu-

mulated and dissipated energy of this element. The dissipa-

tion power of each element is Pdiss
i ¼ jið _/iÞ2 and the

accumulated power is Pacc
i ¼ 1

2
Ii

d
dt ð _/iÞ2. Under the assump-

tion of constant voltage magnitudes of every element and no

ohmic losses in transmission lines, the transitional power

between two elements equals Ptrans
ij ¼ �Pmax

ij sinð/j � /iÞ,
where Pmax

ij is an upper bound for the transmission capacity

of a line. Therefore, Psource
i is the sum of these

Psource
i ¼ Pdiss

i þ Pacc
i þ Ptrans

ij : (2)

An energy flow between two elements is only possible, if

there is a phase difference between these two. Inserting Eq.

(1) and assuming only slow phase changes compared to the

frequency X ðj _hij � XÞ. The dynamics of the ith machine is

given by

IiX€hi ¼ Psource
i � jiX

2 � 2jiX _hi þ
X

j

Pmax
ij sinðhj � hiÞ:

(3)

Note that in this equation only the phase differences hi to the

fixed phase Xt appear. This shows that only the phase differ-

ence between the elements of the grid matters.

Large centralized power plants generating Psource
i ¼

100 MW each. A synchronous generator of this size would

have a moment of inertia of the order of Ii ¼ 104 kg m2. The

mechanically dissipated power jiX
2 usually is a small frac-

tion of Psource only. However, in a realistic power grid, there

are additional sources of dissipation, especially ohmic losses

and because of damper windings,12 which are not taken into

account directly in the coupled oscillator model. In the

model, we take Pmax
ij ¼ 700 MW as an upper bound for the

transmission capacity of a line. We take X ¼ 2p� 50 Hz.

The elements Kij ¼
Pmax

ij

IiX
constitute the connection matrix

of the entire grid, therefore, it decodes whether or not there

is a transmission line between two elements (i and j). With

Pi ¼ Psource
i �jiX

2

IiX
and ai ¼ 2ji

Ii
, this leads to the following equa-

tion of motion:

d2hi

dt2
¼ Pi � ai

dhi

dt
þ
X

j

Kij sinðhj � hiÞ: (4)

This equation is closely related to the swing equation known

in the literature.11,13 For given values of Psource and Ii (see

above), we obtain the orders of magnitude for Pi and ai. For

our simulations, we set a¼ 0.1 s�1 and Pi¼ 10 s�2 for large

power plants. For a typical consumer, we assume Pi¼�1

s�2, corresponding to a small city. For a renewable power

plant, we assume Pi¼ 2.5 s�2. These values are in the order

of magnitude commonly used in the literature.3,5

Taking ai¼ a for all nodes i, we rescale Eq. (4) introduc-

ing the rescaled time s ¼ at and new parameters ~P ¼ P=a2

and ~K ¼ K=a2, resulting in

d2hi

ds2
¼ ~Pi �

dhi

ds
þ
X

j

~Kij sinðhj � hiÞ: (5)

In the phase-locked state, both derivatives dhi

dt and d2hi

dt2 are

zero, such that

0 ¼ Pi þ
X

j

Kij sinðhj � hiÞ (6)

holds for each element. For the sum over all equations, one

for each element i we have

�
X

i

Pi ¼
X
i<j

Kij sinðhj � hiÞ þ
X
i>j

Kij sinðhj � hiÞ ¼ 0;

(7)

because Kij¼Kji and the sin-function is antisymmetric. It is

thus necessary for the existence of a phase-locked state that

the sum of the generated power (Pi> 0) equals the sum of

the consumed power (Pi< 0) in the stable state.

In this study, we assume that all transmission lines have

the same capacity. Every consumer uses an equal amount of

power; similarly, each small generator produces an equal

amount of power and every large generator generate equal

power that is larger than that of a small generator (see previ-

ous paragraph). The goal of this study is to gain insights into

the principal behavior of large power grids depending on the

network topology, particular their ability to synchronize.

This can be most clearly seen for a homogeneous set of pa-

rameters. An application to the heterogeneities, e.g., trans-

mission lines with different maximum transmission

capacities, of real-world grids deserves further studies, but

our results below may serve as guidelines for such a study

with qualitatively similar dynamical changes.
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III. DYNAMICS OF ELEMENTARY NETWORKS

A. Dynamics of one generator coupled with one
consumer

We first analyze the simplest non trivial grid, a two-

element system consisting of one generator and one con-

sumer. This system is analytically solvable and reveals some

general aspects also present in more complex systems. The

analysis follows standard textbook literature, cf. Ref. 14.

This system can only reach equilibrium if Eq. (7) is satisfied,

such that �P1¼P2 must hold. With DP¼P2 – P1, the equa-

tion of motion for this system can be simplified in such a

way that only the phase difference Dh¼ h2 – h1 and the dif-

ference velocity Dv :¼ D _h between the oscillators is

decisive

D _v ¼ DP� aDv� 2K sin Dh;

D _h ¼ Dv:
(8)

Figure 1 shows different scenarios for the two-element sys-

tem. For 2K�DP, two fixed points come into being (see Fig.

1(a)), whose local stability is analyzed in detail below. One

fixed point is stable the other unstable, such that all trajecto-

ries converge to the stable fixed point. For 2K<DP, the load

exceeds the capacity of the link. No stable operation is possi-

ble and all trajectories converge to a limit cycle as shown in

Fig. 1(b). In the remaining region of parameter space, the

fixed point and the limit cycle coexist such that the dynamics

depend crucially on the initial conditions as shown in Fig.

1(c). The parameter space of the systems is illustrated in Fig.

1(d). In the upper area for 2k<DP, we only have the limit

cycle, below for 2K>DP is the coexistence regime on the

left hand side for small a=
ffiffiffiffi
K
p

, on the right hand side the

fixed point. Most major power grids are operating close to

the edge of stability, i.e., in the region of coexistence, at least

during periods of high loads. Therefore, the dynamics

depends crucially on the initial conditions and static power

grid models are insufficient. Let us now analyze the fixed

points of the equations of motion (8) in more detail. In terms

of the phase difference Dh, they are given by

T1 :¼
Dv�

Dh�

 !
¼

0

arcsin
DP

2K

0
@

1
A;

T2 :¼
Dv�

Dh�

 !
¼

0

p� arcsin
DP

2K

0
@

1
A:

(9)

For DP> 2K, no fixed point can exist as discussed above.

The critical coupling strengths Kc is therefore DP/2.

Otherwise fixed points exist and the system can reach a sta-

tionary state. For DP¼ 2K, only one fixed point exists,

T1¼ T2, at Dv�;Dh�ð Þ ¼ ð0; p=2Þ. It is neutrally stable.

We have two fixed points for 2K>DP. The local stabil-

ity of these fixed points is determined by the eigenvalues of

the Jacobian of the dynamical system (8), which is given by

kð1Þ6 ¼ �
a
2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � DP2
p

s
(10)

at the first fixed point T1 and

kð2Þ6 ¼ �
a
2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2

� �2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 � DP2
p

s
(11)

at the second fixed point T2, respectively. Depending on K,

the eigenvalues at the first fixed point are either both real and

negative or complex with negative real values. One eigen-

value at the second fixed point is always real and positive,

the other one real and negative. Thus, only the first fixed

point is stable and enables a stable operation of the power

grid. It has real and negative eigenvalues for DP
2
¼ Kc

< K < K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

64
þ DP2

4

q
, which is only possible for large a,

i.e., the system is over damped. For K�K2, it has complex

eigenvalues with a negative real value j<ðkÞj � a
2
, for which

the power grid exhibits damped oscillations around the fixed

point. As power grids should work with only minimal losses,

which correspond to small a and such to K�K2, this is the

practically relevant setting.

B. Dynamics of motif networks

We discuss the dynamics of the two motif networks

shown in Fig. 2. These two can be considered as building

blocks of the large-scale quasi-regular network that will be

analyzed in Sec. IV. Fig. 2(a) shows a simple network, where

a small renewable energy source provides the power for

N¼ 3 consumer units with d¼ 3 connections. To analyze the

most homogeneous setting, we assume that all consumers

have the same phase h1 and a power load of –P0 and all

transmission lines have the same capacity K. The power

FIG. 1. Dynamics of an elementary network with one generator and one

consumer for a¼ 1 s�1. (a) Globally stable phase locking for DP¼ 2 s�2

and K¼ 2 s�2. (b) Globally unstable phase locking (limit cycle) for

DP¼ 2 s�2 and K¼ 0.5 s�2. (c) Coexistence of phase locking (normal opera-

tion) and limit cycle (power outage) for DP¼ 2 s�2 and K¼ 1.1 s�2. (d)

Stability phase diagram in parameter space.
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generator has the phase h0 and provides a power of NP0. The

reduced equations of motion then read

€h0 ¼ N P0 � _h0 þ dK sinðh1 � h0Þ;
€h1 ¼ �P0 � _h1 þ K sinðh0 � h1Þ:

(12)

For this motif class, the condition jNj ¼ jdj always holds,

such that the steady state is determined by

sinðh0 � h1Þ ¼ P0=K. The condition for the existence of a

steady state is thus

K > Kc ¼ P0; (13)

i.e., each transmission line must be able to transmit the

power load of one consumer unit. Fig. 2(b) shows a different

network, where N¼ 12 consumer units arranged on a

squared lattice with d1¼ 4 connections between the central

power source (h0) and the nearest consumers (h1) and d2¼ 2

connections between the consumers with phase h1 and those

with h2. Due to the symmetry of the problem, we have to

consider only three different phases. The reduced equations

of motion then read

€h0 ¼ N P0 � _h0 þ d1K sinðh1 � h0Þ;
€h1 ¼ �P0 � _h1 þ d2K sinðh2 � h1Þ þ K sinðh0 � h1Þ;
€h2 ¼ �P0 � _h2 þ K sinðh1 � h2Þ:

(14)

For the steady state, we thus find the relations

sinðh0 � h1Þ ¼ ðNP0Þ=ðd1KÞ;
sinðh1 � h2Þ ¼ P0=K:

(15)

The coupling strengths K must now be higher than the criti-

cal coupling strengths

Kc ¼
NP0

d1

(16)

to enable a stable operation. For the example shown in Fig.

2(b), we now have a higher critical coupling strength

Kc¼ 3P0 compared to the previous motif for the existence of

a steady state. This is immediately clear from physical rea-

sons, as the transmission lines leading away from the power

plant now have to serve 3 consumer units instead of just one.

IV. DYNAMICS OF LARGE POWER GRIDS

A. Network topology

We now turn to the collective behavior of large net-

works of coupled generators and consumers and analyze

how the dynamics and stability of a power grid depend on

the network structure. We emphasize how the stability is

affected when large power plants are replaced by many small

decentralized power sources.

In the following, we consider power grids of NC¼ 100

consumers units with the same power load –P0 each. In all

simulations, we assume P0¼ 1s�2 with a¼ 0.1s�1 as dis-

cussed in Sec. II. The demand of the consumers is met by

NP 2 f0;…; 10g large power plants, which provide a power

PP¼ 10 P0 each. The remaining power is generated by NR

small decentralized power stations, which contribute

PR¼ 2.5 P0 each. This means that, for instance, for NP¼ 5

we have five large power sources and 5 � 4 ¼ 20 small power

sources, thus 50% of the total power is produced by decen-

tralized power sources. Consumers and generators are con-

nected by transmission lines with a capacity K, assumed to

be the same for all connections.

We consider three types of networks topologies, sche-

matically shown in Fig. 3. In a quasi-regular power grid, all

consumers are placed on a squared lattice. The generators

are placed randomly at the lattice and connected to the adja-

cent four consumer units (cf. Fig. 3(a)). In a random net-

work, all elements are linked completely randomly with an

average number of six connections per node (cf. Fig. 3(b)).

A small world network is obtained by a standard rewiring

algorithm15 as follows. Starting from ring network, where

every element is connected to its four nearest neighbors, the

connections are randomly rewired with a probability of 0.1

(cf. Fig. 3(c)).

B. The synchronization transition

The stable operation of a power grid requires that all

machines run at the same frequency. The phases of the

machines will generally be different but the phase differen-

ces are constant in time. This global phase locking is related

to phase cohesiveness.16,17 Phases are called phase cohesive

if their differences are below an upper bound, which is auto-

matically the case if every phase has a fixed value. Thus, if

the system is phase-locked it is automatically phase-cohesive

as well. This must be distinguished from partial

FIG. 2. Motif networks: simplified phase description.

FIG. 3. Small size cartoons of different network topologies: (a) Quasi-

regular grid, (b) random network, and (c) small-world network.
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synchronization commonly analyzed in the physics litera-

ture.18 We analyze the requirements for the onset of synchro-

nization between generators and consumers, in particular,

the minimal coupling strength Kc. All machines j are initial-

ized with phase hj¼ 0 for all simulations. An example for

the synchronization transition is shown in Fig. 4, where the

dynamics of the phases hi(t) is shown for two different val-

ues of the coupling strength K. Without coupling, K¼ 0, all

elements of the grid oscillate with their natural frequency.

For small values of K, only the phases of the renewable gen-

erators and the consumers are close together (cf. Fig. 4(a)).

If the coupling is further increased (Fig. 4(b)), all generators

synchronize such that a stable operation of the power grid is

possible.

The phase coherence of the oscillators is quantified by

the order parameter18

rðtÞ ¼ 1

N

X
j
eihjðtÞ; (17)

which is also plotted in Fig. 4. For a synchronous operation,

the real part of the order parameters has a positive value,

while it fluctuates around zero otherwise. In the long time

limit, the system will either relax to a steady synchronous

state or to a limit cycle where the generators and consumers

are decoupled and r(t) oscillates around zero. In order to

quantify synchronization in the long time limit, we thus

define the averaged order parameter

r1 :¼ lim
t1!1

lim
t2!1

1

t2

ðt1þt2

t1

rðtÞ dt: (18)

In numerical simulations, the integration time t2 must be fi-

nite, but large compared to the oscillation period if the sys-

tem converges to a limit cycle. Furthermore, we consider the

averaged squared phase velocity

v2ðtÞ ¼ 1

N

X
j
_hjðtÞ2; (19)

and its limiting value

v2
1 :¼ lim

t1!1
lim

t2!1

1

t2

ðt1þt2

t1

v2ðtÞdt (20)

as a measure of whether the grid relaxes to a stationary state.

These two quantities are plotted in Fig. 5 as a function of the

coupling strength K/P0 for 20 realizations of a quasi-regular

network with 100 consumers and 40% renewable energy

sources. The onset of synchronization is clearly visible: If

the coupling is smaller than a critical value Kc no steady

synchronized state exists and r1¼ 0 by definition.

Increasing K above Kc leads to the onset of phase locking

such that r1 jumps to a non-zero value. The critical value of

the coupling strength is found to lie in the range Kc/P0 	 3.1

– 4.2, depending on the random realization of the network

topology.

The synchronization transition is quantitatively analyzed

in Fig. 6. We plotted r1 and v1 for three different network

topologies averaged over 100 random realizations for each

FIG. 4. Synchronization dynamics of a quasi-regular power grid. (a) For a

weak coupling, the phases hj(t) of the small renewable decentralized genera-

tors (green lines) are close to the consumer’s phases (blue lines), but not the

phases of the large power plants (red lines). Thus, the order parameter r(t)
fluctuates around a zero mean. (b) Global phase-locking of all generators

and consumers is achieved for a large coupling strength, such that the real

part of the order parameters r(t) has a positive value (here close to one).

FIG. 5. The synchronization transition as a function of the coupling strength

K: The order parameter r1 (left-hand side) and the phase velocity v1 (right-

hand side) in the long time limit. The dynamics has been simulated for 20

different realizations of a quasi-regular network consisting of 100 consum-

ers, NP¼ 6 large power pants and NR¼ 16 small power generators.

FIG. 6. The synchronization transition for different fractions of decentral-

ized energy sources 1 – NP/10 feeding the grid and for different network top-

ologies: (a) Quasi-regular grid, (b) random network, and (c) small-world

network. The order parameter r1 and the phase velocity v1 (cf. Fig. 5) have

been averaged over 100 realizations for each network structure and each

fraction of decentralized sources.
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amount of decentralized energy sources for every topology.

The synchronization transition strongly depends on the struc-

ture of the network, and in particular, the amount of power

provided by small decentralized energy sources. Each line in

Fig. 4 corresponds to a different fraction of decentralized

energy 1 – NP/10, where NP is the number of large conven-

tional power plants feeding the grid. Most interestingly, the

introduction of small decentralized power sources (i.e., the

reduction of NP) promotes the onset of synchronization. This

phenomenon is most obvious for the random and the small-

worlds structures.

Let us first analyze the quasi-regular grid in the limiting

cases NP¼ 10 (only large power plants) and NP¼ 0 (only

small decentralized power stations) in detail. The existence

of a synchronized steady state requires that the transmission

lines leading away from a generator have enough capacity to

transfer the complete power, i.e., 10 P0 for a large power

plant and 2.5 P0 for a small power station. In a quasi-regular

grid, every generator is connected with exactly four trans-

mission lines, which leads to the following estimate for the

critical coupling strength (cf. Eq. (16)):

Kc ¼ 10P0=4 for NP ¼ 10;
Kc ¼ 2:5P0=4 for NP ¼ 0:

(21)

These values only hold for a completely homogeneous distri-

bution of the power load and thus rather present a lower

bound for Kc in a realistic network. Indeed, the numerical

results shown in Fig. 6(a) yield a critical coupling strength of

Kc	 3.2�P0 and Kc	 1�P0, respectively (cf. Eqs. (13)

and (16)). Of course, the motifs provide only rough estimates

and may serve as lower bounds for the actual transition

because topological disorder typically increases the synchro-

nization threshold.18

For networks with a mixed structure of power generators

(NP � {1,…,9}), we observe that the synchronization transi-

tion is determined by the large power plants, i.e., the critical

coupling is always given by Kc 	 3.2�P0 as long as NP 6¼ 0.

However, the transition is now extremely sharp—the order

parameter does not increase smoothly but rather jumps to a

high value. This results from the fact that all small power sta-

tions are already strongly synchronized with the consumers

for smaller values of K and only the few large power plants

are missing. When they finally fall in as the coupling

strength exceeds Kc, the order parameter r immediately

jumps to a large value.

The sharp transition at Kc is a characteristic of the quasi-

regular grid. For a random and a small-world network, differ-

ent classes of power generators exist, which are connected

with different numbers of transmission lines. These different

classes get synchronized to the consumers one after another as

K is increased, starting with the class with the highest amount

of transmission lines to the one with fewest. Therefore, we

observe a smooth increase of the order parameter r.

C. Local stability and synchronization time

A sufficiently large coupling of the nodes leads to syn-

chronization of all nodes of a power grid as shown in the

preceding section. Starting from an arbitrary state in the ba-

sin of attraction, the network relaxes to the stable synchron-

ized state with a time scale ssync. For instance, Fig. 7(a)

shows the damped oscillations of the phase hj(t) of a power

plant and a consumer in a quasi-regular grid with K¼ 10 and

NP¼ 10. In order to quantify the relaxation, we calculate the

distance to the steady state

dðtÞ ¼
XN

i¼1

d2
1ðhiðtÞ; hi;stÞ þ d2

2ð _hiðtÞ; _hi;stÞ
 !1

2

; (22)

where the subscript “st” denotes the steady state values. For

the phase velocities, d2 denotes the common Euclidean dis-

tance d2
2 _a; _b
� �

¼ j _a � _bj2, while the circular distance of the

phases is defined as

d1ða; bÞ ¼ 1� cosða� bÞ: (23)

The distance d(t) decreases exponentially during the relaxa-

tion to the steady state as shown in Fig. 7(b). The black

line in the figure shows a fit with the function dðtÞ
¼ d0 expð�t=ssyncÞ. Thus, synchronization time ssync meas-

ures the local stability of the stable fixed point, being the

inverse of the stability exponent k (cf. the discussion in Sec.

III A).

Fig. 7(c) shows how the synchronization time depends

on the structure of the network and the mixture of power

generators. For several paradigmatic systems of oscillators,

it has been demonstrated that the time scale of the relaxation

process depends crucially on the network structure.19,20

Here, however, we have a network of damped second order

oscillators. Therefore, the relaxation is almost exclusively

given by the inverse damping constant a�1. Indeed, we find

FIG. 7. Relaxation to the synchronized steady state: (a) Illustration of the

relaxation process (K/P0¼ 10 and Np¼ 10). We have plotted the dynamics

of the phases hj only for one generator (red) and one consumer (blue) for the

sake of clarity. (b) Exponential decrease of the distance to the steady state

(blue line) and a fit according to dðtÞ 
 e�t=ssync (black line). (c) The synchro-

nization time ssync as a function of the fraction of decentralized energy sour-

ces 1 – NP/10 for a regular (�), a random (w), and a small-world grid (�).

Cases where the system does not relax have been discarded.
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ssync � a�1. For an elementary grid with two nodes only, this

was shown rigorously in Sec. III A. As soon as the coupling

strength exceeds a critical value K>K2, the real part of the

stability exponent is given by a, independent of the other

system parameters. A different value is found only for inter-

mediate values of the coupling strength Kc<K<K2.

Generally, this remains true also for a complex network of

many consumers and generators as shown in Fig. 7(c). For

the given parameter values, we observe neither a systematic

dependence of the synchronization time ssync on the network

topology nor on the number of large (NP) and small (NR)

power generators. The mean value of ssync is always slightly

larger than the relaxation constant a�1. Furthermore, also the

standard deviation of ssync for different realizations of the

random networks is only maximum 3% of the mean value. A

significant influence of the network structure on the synchro-

nization time has been found only in the weak damping limit,

i.e., for very large values of P0/a and K/a.

D. Stability against perturbations

Finally, we test the stability of different network struc-

tures against perturbations on the consumers’ side. We per-

turb the system after it has reached a stable state and

measure if the system relaxes to a steady state after the per-

turbation has been switched off again. The perturbation is

realized by an increased power demand of each consumer

during a short time interval (Dt¼ 10s) as illustrated in the

upper panels of Fig. 8. Therefore, the condition of (7) is

violated and the system cannot remain in its stable state.

After the perturbation is switched off again, the system

relaxes back to a steady state or not, depending on the

strength of the perturbation. Fig. 8 shows examples of the

dynamics for a weak (a) and strong (b) perturbation,

respectively.

These simulations are repeated 100 times for every

value of the perturbation strength for each of the three net-

work topologies. We then count the fraction of networks

which are unstable, i.e., do not relax back to a steady state.

The results are summarized in Fig. 9 for different network

topologies. The figure shows the fraction of unstable grids as

a function of the perturbation strength and the number of

large power plants. For all topologies, the best situation is

found when the power is generated by both large power

plants and small power generators. An explanation is that the

moment of inertia of a power source is larger if it delivers

more power, which makes it more stable against perturba-

tions. On the other hand, a more distributed arrangement of

power stations favors a stable synchronous operation as

shown in Sec. III B.

Furthermore, the variability of the power grids is stron-

ger for low values of NP, i.e., few large power plants. The

results do not change much for networks which many power

sources (i.e., high NP) because more power sources are dis-

tributed in the grid. Thus, the random networks differ only

weakly and one observes a sharp transition between stable

and unstable. This is different if only few large power plants

are present in the network. For certain arrangements of

power stations, the system can reach a steady state even for

strong perturbations. But the system can also fail to do so

with only small perturbations if the power stations are clus-

tered. This emphasizes the necessity for a careful planning of

the structure of a power grid to guarantee maximum

stability.

V. CONCLUSION AND OUTLOOK

In the present article, we have analyzed a dynamical net-

work model for the dynamics of a power grid. Each element

of the network is modeled as a second-order oscillator simi-

lar to a synchronous generator or motor. Such a model

bridges the gap between a microscopic description of electric

machines and static models of large supply networks. It

incorporates the basic dynamical effects of coupled electric

FIG. 8. Weak and strong perturbation. The upper panels show the time-

dependent power load of the consumers. A perturbation of strength Ppert is

applied in the time interval t �.5,6 The lower panels show the resulting dy-

namics of the phase hj and the frequency _h j of the consumers (blue lines)

and the power plants (red lines). The dynamics relaxes back to a steady state

after the perturbation for a weak perturbation (a), but not for a strong pertur-

bation (b). In both cases, we assume a regular grid with NP¼ 10.

FIG. 9. Robustness of a power grid. The panels show the fraction of random

grids which are unstable against a perturbation as a function of the perturba-

tion strength Ppert and the fraction of decentralized energy 1 – NP/10.

(a) Quasi-regular grid, (b) random network, and (c) small-world network.
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machines, but it is still simple enough to simulate and under-

stand the collective phenomena in complex network

topologies.

The basic dynamical mechanisms were explored for ele-

mentary network structures. We showed that a self-

organized phase-locking of all generators and motors in the

network is possible. However, this requires a strong enough

coupling between elements. If the coupling is decreased, the

synchronized steady state of the system vanishes.

We devoted the second part to a numerical investigation

of the dynamics of large networks of coupled generators and

consumers, with an emphasis on self-organized phase-lock-

ing and the stability of the synchronized state for different

topologies. It was shown that the critical coupling strength

for the onset of synchronization depends strongly on the

degree of decentralization. Many small generators can syn-

chronize with a lower coupling strength than few large

power plants for all considered topologies. The relaxation

time to the steady state, however, depends only weakly on

the network structure and is generally determined by the dis-

sipation rate of the generators and motors. Furthermore, we

investigated the robustness of the synchronized steady state

against a short perturbation of the power consumption. We

found that networks powered by a mixture of small genera-

tors and large power plants are most robust. However, syn-

chrony was lost only for perturbations at least five times

their normal energy consumption in all topologies for the

given parameter values.

For the future, it would be desirable to gain more insight

into the stability of power grids regarding transmission line

failures, which is not fully understood yet.21 For instance, an

enormous challenge for the construction of future power

grids is that wind energy sources are planned predominantly

at seasides such that energy is often generated far away from

most consumers. That means a lot of new transmission lines

will be added into the grid and such many more potential

transmission line failures due to physical breakdowns may

occur. Although the general topology of these future power

grids seem to be not that decisive for their functionality, the

impact of including or deleting single links is still not fully

understood and unexpected behaviors can occur.22,23

Furthermore, it is highly desirable to gain further insights

about collective phenomena such as cascading failures to

prevent major outages in the future.
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