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Finding conditions that support synchronization is a fertile and active area of research with applications
across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical
systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space
may synchronize even if fully coupled they do not. While for many standard systems coupling strengths
need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables
synchronization in an infinite range of effective coupling strengths. The presented coupling scheme
therefore opens up the possibility to induce synchrony in (biological or technical) systems whose
parameters are fixed and cannot be modified continuously.
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Synchronization is one of the most prevalent colle-
ctive phenomena in coupled dynamical systems [1].
Synchronization and related consensus phenomena have
been frequently found in biological, ecological, physical,
engineering, and social systems such as in predator-prey
dynamics, the spread of epidemics, the migration of large
populations, systems of self-driven particles, and systems
of social or technical dynamics [2–12]. For chaotic sys-
tems, synchronization typically emerges only within a
specific range of coupling strengths and is impossible
otherwise [1,13–15].
In this Letter, we propose and analyze a way of inducing

synchronization between coupled chaotic oscillators by
transient uncoupling: If the system is in a certain predefined
subset of its state space, coupling is active; otherwise
it is inactive. We systematically study the dependence of
successful synchronization on the fraction of state space
where coupling is active. Synchronization may emerge
even for systems that do not synchronize when coupled
continuously in time (i.e., standard coupling). Furthermore,
the system may synchronize for an infinite range of
coupling strengths, even though this is often not possible
for ordinarily coupled chaotic systems. A systematic
numerical analysis reveals how transverse stability proper-
ties vary across the attractor with the location of active
coupling, not only between more or less stable synchrony,
but all the way from stability to instability for the same
system. This demonstrates that transient uncoupling modi-
fies the collective dynamics in a nontrivial way. These
results may find applications in inducing synchrony in
systems whose local coupling parameters cannot be con-
tinuously varied with ease, but only switched on or off.
Standard coupling.—To start, consider a system of two

unidirectionally coupled chaotic oscillators

dx1

dt
¼ Fðx1Þ; ð1Þ

dx2

dt
¼ Fðx2Þ þ αC × ðx1 − x2Þ; ð2Þ

where x1ðtÞ;x2ðtÞ ∈ Rd denote the states of the driving and
driven unit, respectively, C is a square coupling matrix,
and α is the coupling constant that determines the
overall strength of coupling [13]. As an explicit example
throughout this Letter we consider identical x-coupled
Rössler oscillators defined by FðxÞ ¼ ( − ðyþ zÞ; xþ ay;
bþ zðx − cÞ)T [16] and C ∈ R3×3, where Cij ¼ 1 for
i ¼ j ¼ 1 and Cij ¼ 0 otherwise. Further, a ¼ b ¼ 0.2,
c ¼ 5.7, and we take xi ≕ ðxi; yi; ziÞT as a convenient
notation. Other chaotic systems exhibit qualitatively the
same phenomena as those presented below [17].
Depending on the coupling strength α, such systems

do or do not synchronize towards x1ðtÞ ¼ x2ðtÞ ≕ xSðtÞ.
In particular, like many other coupled chaotic systems,
Rössler oscillators are known to typically synchronize for
intermediate coupling strengths α, but not if coupled too
strongly or too weakly [Figs. 1(a)–1(c)].
These qualitative synchronization properties depend on

the (“transverse”) dynamics of the difference x⊥¼x1−x2.
A Taylor expansion to first order in the ðx⊥Þi yields

_x⊥ ¼ Fðx1Þ − Fðx2Þ − αC × ðx1 − x2Þ
≈ ½JðxSðtÞÞ − αC�x⊥; ð3Þ

where JðxÞ ¼ ∂xFðxÞ is the local Jacobian of F. For the
system (3) to relax to x⊥ðtÞ → 0, its maximum transverse
Lyapunov exponent

λ⊥max ¼ lim
t→∞

1

t
ln

jx⊥ðtÞj
jx⊥ð0Þj

ð4Þ

needs to be negative [1]. Figure 1(d) illustrates λ⊥max as a
function of the coupling constant α. This clearly links,
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in a quantitative way, the coupling strength and the
qualitative changes in collective dynamics observed before
[Figs. 1(a)–1(c)].
Transient uncoupling.—We now introduce transient

uncoupling via a factor

χAðx2Þ ¼
�
1 for x2 ∈ A;

0 for x2∉A ð5Þ

in the coupling term,

dx2

dt
¼ Fðx2Þ þ αχAðx2ÞC × ðx1 − x2Þ: ð6Þ

Here A ⊆ Rd is a subset of the driven unit’s state space
where coupling is active. The two units are thus effectively
coupled only within a subset Rd × A of their common state
space. For A ¼ Rd, the units are ordinarily coupled con-
tinuously in time.
Practically relevant subsets A are defined by clipping a

region of state space along the direction of a particular
coordinate axis,

AΔ ¼ fx2 ∈ Rd∶jðx2Þ1 − ðx�
2Þ1j ≤ Δg; ð7Þ

where x�
2 is a suitable point and the subscript “1” refers to

the first coordinate of x2 and x�
2. Thus, coupling is only

active within a column of width 2Δ centered around ðx�
2Þ1.

Here, ðx�
2Þ1 ¼ 1.2 was chosen as the center of the attractor

in the x direction. An example realization for Rössler
oscillators is illustrated in Fig. 2.
Such transient uncoupling modifies the collective dynam-

ics of the coupled system in a nontrivial way (Figs. 3 and 4).
Specifically, for a fixed coupling strength α, for which
standard coupling would not lead to synchronization, clip-
ping in an intermediate interval Δ induces synchronization.

Obviously, for Δ → 0 the units become completely
uncoupled and cannot synchronize. Similarly, for no clip-
ping Δ → Ω=2 (where Ω is the width of the attractor along
the clipping direction) we reobtain the original system with
standard coupling that does not synchronize. For intermedi-
ate clipping, however, we find stable synchronization. As the
clipping fraction Δ becomes just one additional parameter
of the system, we expect the Lyapunov exponent to vary
continuously with respect toΔ. An analysis of the transverse
Lyapunov exponent as a function of the clipping fraction
Δ0 ¼ 2Δ=Ω confirms this (Fig. 3).

FIG. 2 (color online). Transient uncoupling through state-space
clipping. The dynamics of two synchronized chaotic oscillators
in the x-y plane with x� ¼ ðx�

2Þ1 ¼ 1.20, Δ ¼ 4.16, and α ¼ 7.0
(driving: solid curve; driven: dashed curve). Coupling is only
active in the interval x2 ∈ ½x� − Δ; x� þ Δ� (shaded in gray).

(a) (b)

(c) (d)

FIG. 1 (color online). Synchronization depends on coupling strength. Trajectories of the driving (solid line) and driven (dashed line)
unit of two coupled chaotic oscillators for (a) α ¼ 0.05, (b) α ¼ 1.5, and (c) α ¼ 5 as indicated in panel (d). (d) The maximum transverse
Lyapunov exponent λ⊥max indicates synchronization for intermediate coupling only.
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Intriguingly, we find that for a fixed clipping interval Δ,
the dependence on the coupling strength α is changed not
only quantitatively but also qualitatively (compare Fig. 4 to
Fig. 1). In particular, for intermediate transient uncoupling
(intermediate values of Δ), synchrony emerges in an
infinite range of coupling strengths α, thus in particular
for arbitrarily large coupling [Fig. 4(d)]. This is in contrast
to many chaotic oscillators which, when ordinarily
coupled, exhibit an upper bound above which synchroni-
zation fails [13]. In fact we explicitly checked that the same
phenomenon also emerges in Rössler oscillators with other
parameters, and in pairs of coupled Lorenz and coupled
Chen oscillators as well as for larger networks [17].

Optimal uncoupling.—We now analyze direction depen-
dencies of transient uncoupling. Interestingly, the range of
coupling strengths α for which the system synchronizes
increases when the clipping fraction decreases from
Δ0 ¼ 1, as Fig. 5(a) illustrates. Moreover, the range of
clipping fractions for which synchronization emerges
depends on the exact direction in state space along which
clipping is applied. For instance, clipping along the
x axis seems more synchronizing in this sense than clipping
along the y axis [compare Fig. 5(a) to Fig. 5(b)]. Oblique
directions exhibit even broader ranges of clipping fractions
where synchrony emerges [Fig. 5(c)].
In fact, certain directions of clipping are optimal.

Because of the shape of the attractor, excursions of
trajectories that substantially vary z are rare compared to
those that vary the other two coordinates. Thus, clipping
is desirable in the x-y plane. To quantify the effectiveness
of clipping depending on its direction in the x-y plane,
we measure the fraction of clipping

SðθÞ ¼
Z

1

0

sðf; θÞdf ð8Þ

for which the system synchronizes when α is fixed. Here,
we have measured the angle θ counterclockwise from the
x axis and have defined the synchrony indicator

sðf; θÞ ¼
�
1 for λ⊥max < 0;

0 for λ⊥max ≥ 0
ð9Þ

and the temporal clipping fraction

f ¼ lim
T→∞

1

T

Z
T

0

χAðx2ðtÞÞdt ð10Þ

FIG. 3 (color online). Synchronization induced by transient
uncoupling. Maximum transverse Lyapunov exponent for two
transiently uncoupled chaotic oscillators (for parameters see
text) for α ¼ 5 and clipping with ðx�

2Þ1 ¼ 1.20. Synchronization
emerges for moderate clipping, i.e., for intermediate values of Δ0,
though not without clipping (Δ0 ¼ 1).

(a)

(c) (d)

(b)

FIG. 4 (color online). Transient uncoupling induces synchronization in an infinite range of coupling strengths. Trajectories of the
driving (solid line) and driven (dashed line) units for (a) α ¼ 0.05, (b) α ¼ 1.5, and (c) α ¼ 5, the same as in Fig. 1. The clipping is given
by Eqs. (5) and (7) with ðx�

2Þ1 ¼ 1.20 and Δ ¼ 4.16 as in Fig. 2. (d) Maximum transverse Lyapunov exponent λ⊥max as a function of the
coupling strength α; note the logarithmic scale. The gray line shows λ⊥max for normal, unclipped coupling. With transient uncoupling,
synchronization is stable for arbitrarily large coupling strengths.

PRL 115, 054101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
31 JULY 2015

054101-3



such that larger values of SðθÞ indicate that synchronization
emerges in a larger range of clipping fractions.
The curve SðθÞ has two local maxima [Fig. 5(d)],

indicating two locally optimal clipping directions, one of
which is globally optimal (at θ� ≈ 0.4π). Why is there such
a complicated dependence on direction?
Transverse stability depends on uncoupling location.—

We can better understand the synchronization of the system
by characterizing the stability for a family of clipping
functions χðxÞ ¼ χAðxÞ where

A ¼ Ax�
2
;r ≔ fx2 ∈ Rd∶jx2 − x�

2j ≤ rðx�
2Þg: ð11Þ

Coupling is thus active if and only if x2 is in a sphere
of radius rðx�

2Þ around x�
2. We sample the center points

randomly from the attractor (i.e., the invariant measure) of
the uncoupled system and choose the size rðx�

2Þ such that
the coupling is active during a fraction f of the time.
The results show that the impact of the uncoupling

strongly depends on the position where clipping is applied.
In particular, at identical system parameters, synchrony
can be either stable or unstable, depending on where
the coupling is active (Fig. 6). This holds even though the
coupling is active for the same fraction f of time. The
attractor regions of positive and negative transverse
Lyapunov exponents alternate depending on the direction
from the origin. As these different regions of stability and
instability each occur two times on the 2π phase cycle
(circulating the origin) and at roughly equal phase
distance, this explains the two maxima (and the two
minima) of the curve SðθÞ found above [Fig. 5(d)]. This
heterogeneous dependence on the exact location indicates
that transient uncoupling, despite being represented by a
linear reduction of the coupling term, modifies the
collective dynamics of the system in a strongly nonlinear
way. As a consequence, the clipping sets A need to be
determined individually for each given system to be
synchronized.
Conclusion.—In summary, we have proposed transient

uncoupling to modify whether a system of coupled chaotic
oscillators synchronizes. Most generally, these results
demonstrate that continuous-time coupling is not required
for synchronization, even for very simple coupling schemes
[21]. Interestingly, uncoupling can synchronize systems
that would fail to synchronize if ordinarily coupled.
Furthermore, it can even remove any upper bound on

(a) (b)

(c) (d)

FIG. 5 (color online). Extended synchronization range by transient uncoupling and optimal clipping. (a)–(c) Depending on the coupling
strength α and the percentage (Δ0 ¼ 2Δ=Ω) of the state space where coupling is active, the system may or may not synchronize. The dark
area marks the parameters where the synchronized state is stable, i.e., λ⊥max < 0. Clipping is (a) in x direction [x� ¼ ðx�

2Þ1 ¼ 1.2], (b) in y
direction [y� ¼ ðx�

2Þ2 ¼ −1.5], and (c) in the direction y ≈ 3.1x (θ� ¼ 0.4π). Accordingly, the direction of clipping can be optimized to
achieve the largest possible clipping range. (d) Effectiveness SðθÞ [Eq. (8)] of clipping along the direction θ for fixed α ¼ 10.

FIG. 6 (color online). Multiple switches between stability and
instability depending on the coupling location. The color of the
points indicates the maximum transverse Lyapunov exponent of
the system with clipping to sets A ¼ Ax�

2
;r [Eq. (11)], indicating

stable synchronization (light) and no synchronization (dark)
depending on the coupling location on the attractor. Parameters
are α ¼ 5 and f ¼ 0.05.
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the coupling strengths that enable synchronization. As a
natural extension, it would be challenging to explore how
systems capable of weaker forms of collective dynamical
coordination, such as phase synchronization, lag synchro-
nization, or generalized synchronization, would behave if
transiently uncoupled [1]. Additionally, our scheme may
extend synchronization regimes not only in continuous-
time systems (described by differential equations and
discussed throughout the Letter), but also for chaotic maps
and systems temporally switching between different con-
tinuous dynamics, cf. e.g., [22,23].
Stability properties of chaotic systems are known to

vary locally with the system’s state as quantified by the
local Lyapunov exponent [24–26]. For transverse systems,
studied above, local stability depends on the direction of
the difference vector x⊥ ¼ x1 − x2. For small coupling
strengths, the direction of this vector in the uncoupled
transverse system accurately indicates the regions of state
space where coupling will be most effective. However,
when the coupling is stronger or active in an extended
region of state space, the trajectories are more strongly
modified by the coupling. In particular, whether coupling at
one point is effective or not in general depends nonlinearly
on the coupling in the rest of state space. Optimizing the
regions of active coupling in this respect might enhance
synchronizability even further.
As experimental chaotic systems often exhibit intrinsi-

cally fixed, or at least restricted, internal and coupling
settings, the question emerges how to synchronize them.
Transient uncoupling by state-space clipping may help to
induce synchronization for a wider range of coupling
strengths, with potential applications to chaotic lasers,
electric and electronic circuits, communication systems,
and chaos-based cryptography [27–37].
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