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Anomalous supply shortages from dynamic pricing
in on-demand mobility
Malte Schröder 1,2,4✉, David-Maximilian Storch 2,4, Philip Marszal 1,2,4 & Marc Timme 1,2,3

Dynamic pricing schemes are increasingly employed across industries to maintain a self-

organized balance of demand and supply. However, throughout complex dynamical systems,

unintended collective states exist that may compromise their function. Here we reveal how

dynamic pricing may induce demand-supply imbalances instead of preventing them. Com-

bining game theory and time series analysis of dynamic pricing data from on-demand ride-

hailing services, we explain this apparent contradiction. We derive a phase diagram

demonstrating how and under which conditions dynamic pricing incentivizes collective action

of ride-hailing drivers to induce anomalous supply shortages. We identify characteristic

patterns in the price dynamics reflecting these supply anomalies by disentangling different

timescales in price time series of ride-hailing services at 137 locations across the globe. Our

results provide systemic insights for the regulation of dynamic pricing, in particular in publicly

accessible mobility systems, by unraveling under which conditions dynamic pricing schemes

promote anomalous supply shortages.
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Complex engineered systems are known to exhibit unin-
tended states in their collective dynamics that often dis-
rupt their function1–5. In complex mobility systems,

examples include the emergence of congestion6,7, anomalous
random walks in human travel patterns8, and cascading failures
of mobility networks9–11. As urban mobility becomes more and
more self-organized and digitized, mobility services increasingly
employ dynamic pricing12–16, in general serving two main pur-
poses (Fig. 1a). First, dynamic pricing adjusts the price of a
product or service to compensate for changes in its intrinsic base
cost. Second, it creates incentives for all market participants to
equilibrate demand–supply imbalances by increasing the price if
demand exceeds supply and vice versa. A higher price both
imposes higher costs to customers incentivizing them to decrease
their demand and, at the same time, offers higher profit for
identical service to suppliers, in turn motivating them to increase
their supply. However, recent reports on on-demand ride-hail-
ing17–19 indicate that dynamic pricing may have the opposite
effect and instead cause demand–supply imbalances.

Here, we quantitatively demonstrate the existence of these
imbalances by comparing price time series and demand estimates
for ride-hailing services. In a game theoretic analysis we reveal the
incentive structure for drivers to induce anomalous supply
shortages as a generic feature of dynamic pricing. This observa-
tion suggests that similar dynamics should emerge independent of
the location or industry. Comparing price time series for 137
locations in 59 urban areas across six continents we find price
dynamics reflecting anomalous supply shortages in several cities
around the world.

Results
Dynamic pricing in on-demand mobility. Dynamic pricing
schemes are commonly applied by on-demand mobility service
providers, such as Lyft and Uber15,16. For Uber, the price p of the
service (the total fare for a ride) decomposes into two parts16,
base cost pbase and surge fee psurge,

p ¼ pbase þ psurgeðD; SÞ ; ð1Þ
as illustrated in Fig. 1b for trips from Reagan National Airport
(DCA) to Union Station in Washington, DC (see “Methods”
section and Supplementary Table 1 for more details).

The first component (base cost) consists of regular fees for a
ride

pbase ¼ p0 þ pt Δt þ pl Δl ; ð2Þ
including one-off fees p0 as well as trip fees pt and pl proportional
to the duration Δt and distance Δl of the trip, similar to the fare
for a typical taxi cab. These base cost increase, for example,
during times of heavy traffic, such as morning and evening
commuting hours (gray shading in Fig. 1b) when the trip
duration Δt increases due to congestion.

The second component (surge fee psurge) implements Uber’s
surge pricing algorithm16,20 and reflects the time evolution of
supply–demand imbalances. The surge fee increases due to
persistent supply–demand imbalance during commuting hours.
Longer trip duration means that drivers spend more time in
traffic serving the same number of customers, which effectively
reduces the supply of available drivers compared to the demand,
and causes an increase of the surge fee. These price surges are
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Fig. 1 Dynamic pricing in on-demand mobility. a Schematic illustration of dynamic pricing. The total price separates into the base cost of the product or
service and a supply and demand-dependent surge fee. Three fundamental mechanisms underlying price changes are (i) changes of the base cost, (ii)
demand exceeding current supply levels, and (iii) supply shortage compared to current demand. Price adaptations (ii) and (iii) are intended to drive the
system back to a supply–demand equilibrium. b The total fare for Uber ride-hailing services similarly decomposes into base cost and surge fee. Base cost
depend on trip duration and reflect current traffic conditions while surge fees result from supply–demand imbalances. Both effects are illustrated here for
trips from Reagan National Airport (DCA) to Washington Union Station in Washington, DC, USA. During commuting hours base cost increase because of
longer expected trip duration during rush-hour (gray shading). The slower speed effectively reduces the supply of available drivers as they spend more time
in traffic and naturally causes accompanying surge fees. During late evening and nighttime, the total fare exhibits repeated price surges triggered by
supply–demand imbalances (dashed box) not reflected in the demand dynamics (passenger capacity of airplanes landing in DCA), consistent with recent
reports on supply-driven price surges17. The identical magnitude of the price surges is the result of Uber limiting the maximum surge fee in response to
these reports29. c Supporting the previous observation, no apparent correlation exists between the surge fee and the demand dynamics during the evening
hours (20:00–02:00), even at 5 and 38min delays, the two local maxima of the correlation function (see Supplementary Note 1 for a more detailed
analysis).
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meant to incentivize customers to delay their request, reducing
the current demand, as well as to incentivize drivers to offer their
service in areas or at times with high demand, increasing the
supply.

As illustrated in Fig. 1b, during the evening the system settles
to constant base cost, reflecting constant trip duration in
uncongested traffic. Yet, even under these apparent equilibrium
conditions, the time evolution of the surge fee exhibits a series of
short, repeated price surges (dashed box in Fig. 1b) that are not
reflected in the demand dynamics (Fig. 1c). In fact, recent reports
about driver behavior at DCA17–19 indicate that drivers
collaboratively stimulate price surges in the evening hours by
temporarily switching off their app. Thereby, they cause artificial
supply shortages, implying supply-side-induced out-of-equili-
brium price dynamics at this airport consistent with our
observations.

Using the observed price surges of confirmed anomalous
supply shortages at DCA as a reference case, we address two key
questions: First, what are the underlying incentives causing
drivers to induce anomalous supply shortages and under which
conditions do they emerge? Second, do these non-equilibrium
dynamics emerge at other locations as well and how can we
identify them without direct observation?

Incentives promoting anomalous supply shortages. While the
specific conditions promoting artificial price surges depend on
local details and demand dynamics, a first principles game the-
oretic description captures fundamental incentives underlying the
anomalous supply shortages: S= 2 drivers are competing for a
fixed demand D aiming to maximize their expected profit
(Fig. 2a). For illustration, we take a piecewise linear price func-
tion, representing the simplest possible demand-supply response,
such that drivers earn the total fare

p0ðS;DÞ ¼ pbase if S≥D

pbase þ pmax
surge

D�S
D else

(
ð3Þ

when they serve a customer, where pbase denotes the (constant)
base cost and pmax

surge denotes the maximum possible surge fee when
S= 0 (see “Methods” section, Supplementary Note 3 and Sup-
plementary Fig. 16 for details). Each driver has the option to
temporarily not offer their service, contributing to an artificial
supply shortage, S < 2. As drivers turn off their app, the fare
increases from plow ¼ p0ð2;DÞ with both drivers online over
pmid ¼ p0ð1;DÞ≥ plow as one driver goes offline to phigh ¼
p0ð0;DÞ≥ pmid when both drivers withhold their service. While
drivers who do not offer their service would typically miss out on
a customer, the use of online mobile applications in most ride-
hailing services enables them to quickly change their decision.
Turning their app back on, they can capitalize on the additional
surge fee and earn the higher total fare by quickly accepting a
customer before the dynamic pricing algorithm reacts (Fig. 2a, see
“Methods” section for details).

Figure 2b illustrates the phase diagram of the resulting Nash
equilibria. When the demand is inelastic and does not change as
the price increases [Fig. 2b, panel (i)], at low demand and low
surge fee the payoff structure of the game resembles a prisoner’s
dilemma21, describing a conflict of interest between the drivers.
While the socially optimal strategy for both drivers is to go
offline, maximizing their total profit, each driver individually
profits more from remaining online. Consequently, both drivers
remain online due to the high risk of completely missing out on a
customer if the other driver remains online (ON–ON equili-
brium, green). The payoff structure changes to a stag hung22 with

multiple Nash equilibria when the surge fee or the demand
increases. If both drivers are online, neither profits individually
from going offline, and vice-versa if both drivers are offline.
Depending on the trust between the drivers, they settle into either
an on–on (risk-averse) or an off–off (payoff-dominant and
socially optimal) Nash equilibrium. In this regime, an additional
mixed strategy Nash equilibrium also exists, where both drivers
go offline with a certain probability. At high demand, the payoff
structure becomes that of a trivial game without any conflict of
interest between the drivers as both drivers always profit from
inducing artificial supply shortages to earn the additional surge
fee (OFF–OFF equilibrium, orange).

As the demand becomes elastic [Fig. 2b, panels (ii) and (iii)],
i.e. the demand decreases in response to an increase of the total
fare as

D0ðp0;DÞ ¼ D ð1� δ ðp0 � pbaseÞÞ ð4Þ

governed by the price elasticity δ, the risk of missing out on a
customer increases and profits due to surge fees are counteracted
by the reduced demand. For a sufficiently strong demand
response (high elasticity), the game setting effectively changes
to low demand conditions when a single driver goes offline. The
game becomes a prisoner’s dilemma or a trivial game where both
drivers remain online (green). Consequently, the parameter
region where drivers are incentivized to switch off their app
(orange) shrinks. In particular, drivers are more strongly
incentivized to create artificial price surges when the maximum
surge fee is small. For intermediate conditions, a new state of
partial supply shortages emerges, where only one of the two
drivers goes offline (red-blue-hatched). This incentive structure is
a generic property of the dynamic pricing, illustrated by its
existence in this fundamental game-theoretic model and demon-
strated for more than two players in Supplementary Fig. 20 and
non-linear demand response in Supplementary Fig. 19.

Moreover, these incentives are sufficient to explain anomalous
supply shortages in a time-continuous game under constant
conditions (constant demand, a constant number of drivers and a
constant price elasticity of demand) where the ON–OFF-
decisions of the drivers, reacting to the current conditions, are
the only remaining dynamics (Fig. 2c). Drivers contribute to an
artificial supply shortage if sufficiently many other idle drivers are
willing to also participate, following their mean-field optimal
strategy. To avoid never making profit, however, individual
drivers remain offline only for a short amount of time, explicitly
limiting the timescale of potential artificial price surges (see
“Methods” section and Supplementary Note 3 for details). The
simulations shown in Fig. 2c reproduce qualitatively the same
non-equilibrium price dynamics as observed in the recorded price
data (compare Fig. 1b): Increases of the trip duration during
commuting hours (gray shading in Fig. 2c) are accompanied by a
sustained supply–demand imbalance and surge fees without
drivers turning off their app. At other times, the drivers create
short, artificial price surges to maximize their profit.

Identifying characteristic price dynamics. The fact that these
incentives are generic to dynamic pricing schemes suggests that
artificial supply shortages and non-equilibrium surge dynamics
emerge independent of the location. However, direct observation
of the supply dynamics, e.g. of the number and location of online
drivers, is typically impossible as this information is not publicly
available. Even with the above results, a bottom-up prediction is
practically infeasible since the exact conditions under which these
dynamics are promoted depend on the specific details of the trip,
the local dynamics of demand and drivers, publicly unavailable
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details on the surge pricing algorithm as well as additional
external influences such as local legislation.

We overcome these obstacles by exploiting the characteristic
temporal structure of the surge dynamics observed for confirmed
anomalous supply shortages in DCA (compare Fig. 1b) to identify
locations with similar dynamics. Based only on the price time
series, we quantify the timescales of normalized price changes Δp
for 137 different routes in 59 urban areas across six continents
(Fig. 3a, see “Methods” section for details). The distribution of

price changes separates into a slow and fast timescale and a
contribution where the price does not change

P Δpð Þ ¼wbase Pbase Δp; σbaseð Þ
þ wsurge PsurgeðΔp; σsurgeÞ þ w0 δðΔpÞ : ð5Þ

The slow price changes Pbase Δp; σbaseð Þ describe changes of the
base cost varying as slowly as traffic conditions change during the
day. The fast price changes PsurgeðΔp; σsurgeÞ are associated with
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Fig. 2 Incentive structure in dynamic pricing. a A two player game captures the fundamental incentives for drivers. Both drivers compete for a fixed
average number of customers 1≤ D≤ 2. The drivers may choose to temporarily switch off their apps to induce an artificial supply shortage and additional
surge fees (see “Methods” section). If both drivers keep their apps on, both earn plow ($) with probability D/2 (panel a, top left). If one driver switches their
app off, the total fare increases to pmid ($$). However, the other driver exploits their first-mover advantage to secure a customer, earning guaranteed pmid,
while the offline driver only earns (D−1) pmid from the remaining demand (panel a, top right and bottom left). If both drivers switch off their apps, they
induce a larger supply shortage and thus a larger surge fee, resulting in the total fare phigh ($$$). Both drivers again share the demand equally when they go
back online (panel a, bottom right). b Phase diagram of the resulting Nash equilibria. (i) If the demand is sufficiently large, the game is trivial and both
drivers always go offline, triggering anomalous supply shortages (orange). At low demand the game becomes a prisoner’s dilemma21 and both drivers
remain online (green) or stag hunt22 (hatched region with multiple coexisting Nash equilibria). (ii) and (iii) As the demand becomes more elastic and
decreases as the price increases [Eq. (4)], drivers switching off their app risk missing out on a customer completely and the parameter range promoting
artificial price surges becomes smaller (orange). Drivers are more likely to both remain online (green). At high demand and high surge fee, partial supply
shortages emerge as equilibrium states where only one of the two drivers goes offline (red/blue hatched). These results are robust for nonlinear demand
response (see Supplementary Figs. 18 and 19). c A dynamic game with multiple drivers (see “Methods” section and Supplementary Note 3) qualitatively
reproduces the observed dynamics (compare DCA, Fig. 1b): Sustained non-zero surge fees occur during commuting hours with high base cost (gray).
During non-commuting hours, drivers cooperate to induce artificial supply shortages to optimize their collective profit.
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sudden changes of the surge fee. The last term w0 δ(Δp) describes
times when the price remains constant and contributes only at
Δp= 0, where δ represents the Dirac-Delta distribution and w0

the remaining weight w0= 1−wbase−wsurge.
Characterizing the contribution wsurge of the surge fee and the

magnitude σsurge of the associated price changes with a
maximum-likelihood Gaussian mixture model fit

PxðΔp; σxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p e
�Δp2

2σ2x ð6Þ

with x 2 base; surgef g (see “Methods” section for details), we
find locations without surge activity (Fig. 3b and c) as well as
locations with strong but infrequent price surges (Fig. 3d).
Importantly, we also identify several locations with price change
characteristics similar to those observed at DCA, with a high
magnitude and contribution of surge price changes, suggesting
strong and frequent price surges potentially driven by anomalous
supply dynamics (compare Fig. 3e).

Indeed, all of the identified locations exhibit qualitatively
similar non-equilibrium surge fee dynamics with a large number
of repeated price surges, in particular during evening hours,
demonstrating that the phenomenon is ubiquitous (Fig. 4,
see Supplementary Figs. 14 and 15 for additional examples).
While these results do not directly imply that all price surges at
these locations are induced artificially, both the similarity
of the timescale separation to confirmed artificial price surges
and the universality of the incentives for drivers provide evidence
supporting this conclusion.

Discussion
In summary, we quantitatively demonstrated the emergence of
non-equilibrium price dynamics in on-demand mobility systems
at various locations across the globe and explained the funda-
mental incentive structure ultimately giving rise to such non-
equilibrium price dynamics.

The exact conditions promoting anomalous supply shortages
and artificial price surges depend on a multitude of factors at each
location, such as users’ transportation preferences, working
conditions for service providers, local legislation, and the avail-
ability of alternative transport options. Our methodology to
classify the price dynamics based on the separation of timescales
of price changes, without explicit knowledge about the time-
resolved demand and supply evolution, enables a systematic
search for supply anomalies based on price time series only.
Although a direct observation of the supply dynamics may be
required to confirm anomalous supply shortages, we identify a
number of locations likely exhibiting anomalous supply shortages
by combining confirmed reports and quantitative observations
for reference cases, game-theoretically revealed generic incentive
structures and large-scale time series analysis of recorded price
estimates.

Our theoretical model demonstrates that the underlying
incentives are a generic property of dynamic pricing and should
even apply across industries where prices are adapted to supply
and demand fluctuations on short timescales. This is particularly
relevant for applications where prices are prescribed by an
external algorithm instead of market clearing prices of buy and
sell offers. One contemporary example may be recently discussed
smart pricing schemes in power grids14,23, especially since large
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parts of the demand are inelastic due to fixed daily routines. Our
results demonstrate that a carefully designed pricing scheme is
essential to avoid unintended incentives that potentially reduce
power grid stability instead of enhancing it.

For mobility systems in particular, characterizing the incentives
and the conditions that promote artificially induced price surges
suggests specific actions to suppress their emergence. This may
include offering ride-sharing options24–27 (effectively lowering
the demand, compare Fig. 2b) or providing more or alternative
public transport options (effectively increasing the price elasticity
of demand, compare Fig. 2b). The same incentives following a
combination of few public transport options and a mismatch in
driver availability and demand dynamics28 may also promote the
emergence of supply anomalies particularly in the evening and at
nighttime. Importantly, our results suggest that limiting the
maximum surge fee, as done in response to the initial reports
from DCA29 (see Fig. 1b) and frequently discussed as potential
legislation30,31 (compare Chennai, Fig. 4), is not an effective
response and may even result in the opposite effect if the demand
is highly elastic.

In general, with the emergence of digital platforms, sharing
economies and autonomous vehicle fleets, mobility services and
other industries are becoming increasingly self-organized and
complex such that new, potentially unintended collective
dynamics can emerge1,3–5,7,11,32. Our results provide conceptual
insights into these dynamics and may thereby support the crea-
tion and regulation of fair, efficient and transparent publicly
available mobility services24–27,33–35.

Methods
Data sources and acquisition. In this work, we have recorded ~28 million ride-
hailing price estimates for 137 routes of Uber rides in 59 urban areas across six
continents between 31-05-2019 and 25-06-2019. We distinguish between four types
of routes based on the origin location: 63 airport, 23 convention center, 12 train
station, and 39 city trips (see Supplementary Note 4, Supplementary Fig. 1, and
Supplementary Table 2 for detailed information, see Supplementary Data for
precise GPS coordinates of the different routes).

For each route, we prompted total fare requests with a fixed interval via Uber’s
price estimate API endpoint recording the price estimates for each route every
2–30 s. Per request, the API returned lower and upper total fare estimates for all
Uber products operating in the local area, as well as estimated distance and
duration of the trip which we equipped with the request timestamp. Using Uber’s
products API endpoint, we complemented the price estimate data with information
on local booking fee, price per minute, price per mile, distance unit, minimum fees,
and the currency code parameter per product and location. We convert all price
estimates to US Dollars based on currency exchange rates provided by the
European Central Bank for the date of recording.

In all our analyses, we work with the lower estimate of the local economy
product (UberX, UberGO in India).

Data quality. We consider the data reliable because of the generally good avail-
ability of Uber’s service. Almost all data points are recorded with sub-minute
intervals, most on an even finer scale. Individual locations have single gaps of up to
18 min between two recordings, though these are single occurrences out of a total
3–7 days of observations per location and thus do not affect the overall statistical
analysis. While we chose origin and destination locations consistently by type for
each location, rounding of the price estimates to integer values and granularity of
reported trip duration may limit data quality for very short trips (see also Sup-
plementary Table 2 for a detailed list of trips recorded). The resulting small fluc-
tuations of the surge fee, however, are not captured by our timescale analysis as
they are still small compared to the base cost and to actual price surges.

Base cost. To determine the base cost (sum of pickup fee, trip fee, and surcharges)
of a trip we first compute the trip fee based on the price per mile, price per minute,
and the estimated trip length and duration. We add the pickup fee obtained from
the Uber products API. Since data on the surcharges (e.g. airport fees or tolls) of
individual trips is not available, we take surcharges to be constant for each trip. We
subtract the pickup fee and trip fee from the price estimate, and take the minimum
value of this remaining surge fee and surcharge cost as estimate of the surcharges,
such that zero surge fee occurs at least once in the recorded price estimates.

Surge fee. To estimate the surge fee time series, we subtract the base cost of the
respective product from the total fare estimate. Since the available price estimates
are rounded to integer values, the recorded price estimate may not reflect all
changes of the trip fare especially for shorter trips with lower absolute total fare.
This leads to small fluctuations in the extracted surge fee that do not correspond to
actual surge activity.

Airport arrival data. To estimate the demand for rides at airports, we record the
number of arrivals at each of the 63 airports where we recorded price estimates. We
collected aircraft landing times, call signs, and type of aircraft using flightradar24’s
open API in the corresponding time frame, as well as information on the different
aircraft’s current seat configuration obtained via flightera.net. We disregard entries
without call signs or real landing times. In rare cases where no seat configuration
was available, we estimate the number of seats as the average of all recorded flights
with the same aircraft model (or the average over all aircraft models if no other
similar model was recorded).

Airport demand. We estimate the demand for ride-hailing services as proportional
to the number of seats of all arriving airplanes (implying a constant fraction of
potential Uber customers). To create a continuous time series from the discrete
arrival events of individual airplanes we compute a 5 min moving average to create
equidistant records every minute. This also slightly reduces the strong variations
between minutes with and without arrivals.

Because we have much more frequent but not equally spaced data for the Uber
price estimates, we use the same procedure and compute a 5 min moving average of
the surge fee for every minute. This leaves us with the same granularity of the data
as for the deplanements.
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Fig. 4 Identifying non-equilibrium surge dynamics and anomalous supply shortages. Repeated price surges similar to those observed at DCA (compare
Fig. 3e) emerge in locations across the globe (America, Asia, and Europe) and independent of type of origin (airport, train station, and other prominent
locations). The surge dynamics at the six locations identified in Fig. 3a is qualitatively and statistically similar to DCA. In particular, sustained periods with
non-zero surge fee likely reflect a real supply–demand imbalance at that time while periods with repeated surge peaks are characteristic for price surges
induced by artificial supply shortages (e.g. Warsaw evening, Montreal evening, Chicago evening, New York City afternoon and evening).
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Using these data, we compute the cross-correlation between the Uber surge fee
estimates and the deplanement data at the corresponding airport. In Fig. 1c we
show the scatterplot at the timelag (deplanement earlier than surge) where this
correlation is maximal for the illustrated window from 20:00 to 02:00 of the
surge fee.

Comparison of surge dynamics. To compare and characterize the surge dynamics
for different trips we normalize the absolute surge fee time series by the base cost at
that time, yielding an effective surge factor. For these normalized time series, we
compute the per minute changes Δp between consecutive time points (time t in
minutes),

ΔpðtÞ ¼ total fare ðtÞ
base cost ðtÞ �

total fare ðt � 1Þ
base cost ðt � 1Þ ¼

surge fee ðtÞ
base cost ðtÞ �

surge fee ðt � 1Þ
base cost ðt � 1Þ :

ð7Þ
To quantify and compare the statistical properties of the surge factor time series

we split the price changes into three contributions. We take any data point with
Δp2 < 10−7 to belong to a Dirac delta distribution at zero (not shown in the
histograms) and fit a Gaussian mixture model with two Gaussian distributions to
the remaining data. Taking both distributions to have a mean of zero (no price
change on average) yields

Prob Δpð Þ ¼ w0 δðΔpÞ þ wbase
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2main

p e
� Δp2

2σ2
base þ wsurge

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2surge

q e
� Δp2

2σ2surge

where the weight wsurge defines the surge contribution and the standard deviation
σsurge is the normalized surge strength used to characterize the surge dynamics.

Two player game—minimal theoretical model. The results presented in the
manuscript (Fig. 2b) are obtained with normalized parameters pbase= 1 and
δ 2 0; 0:15; 0:30f g, allowing up to pmax

surge ¼ 1=0:30 � 3:33 before no customer
orders a ride at the maximum surge fee. See Supplementary Note 3 for a detailed
description.

Dynamic multiplayer game. For the dynamic multiplayer game, we consider a
single origin location with N= 160 drivers. Upon completing a trip, drivers return
to the origin location after a total round-trip time ts uniformly distributed in
tsh i � 5; tsh i þ 5½ � minutes. We increase the round-trip time from the base value
tsh i ¼ 30 min to tsh i ¼ 60 min in the morning and afternoon (starting at 08:00 and
increasing linearly up to the maximum at 9:30 and back to the base value until
11:00. Similarly in the afternoon from 15:00 to the maximum at 18:00 and back
until 20:00).

The base cost pbase depend linearly on the round-trip time as pbase ¼ 1þ
tsh i=2 2 16; 31½ � USD as the round-trip time changes during the day. Similar to the
two-player game, we take a linear price dependence for the surge pricing as

p0ðtÞ ¼
pbase if N idleðtÞ≥N thresh

pbase þ pmax
surge 1� N idleðtÞ

N thres

� �
else

(
ð8Þ

based on the number Nidle of online drivers at the trip origin and the number of
drivers Nthresh before the surge fee becomes non-zero. We take N thresh ¼ λ <ts>,
where λ= 2 requests per minute describes the demand modeled as a Poisson
process in time. We model responses of the price to the current system state
(number of available drivers and round-trip time) as instantaneous.

The behavior of customers and drivers is as follows: Each customer i is assigned
a uniformly random maximum price pmax;i 2 ½pbase; pmax� they are willing to pay,
where we take pmax ¼ 54 USD. When the customer makes a request, they check the
current total fare. If the current total fare is smaller than pmax;i , the customer orders
the ride. If the total fare is higher or no drivers are online and idle, the customer
waits and checks again every 2 min. After 10 min without ordering a ride, the
customer leaves the system.

At every point in time the drivers decide whether to switch their app off or on.
They make this decision based on the (mean field) optimal strategy to optimize
their collective payoff. A driver switches off their app only if two conditions are
fulfilled: first, if there are sufficiently many drivers available and willing to be offline
to induce a non-zero surge fee. Second, if the price is less than the (mean field)
optimal value for the drivers given the current system state. Each driver remains
offline for at most 20 min. After this time, the driver only considers going offline
again after serving a customer (drivers try to obtain similar individual profits
whereas their optimal strategy based on maximizing their collective profit would be
for some drivers to be always offline).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A list of aggregate statistics for all recorded trips containing the exact origin and
destination coordinates, as well as measurement parameters and numerical analysis

results (presented in Figs. 3 and 4) is available as Supplementary Data. The full original
data is available on reasonable request to the authors.

Code availability
Full details on the data analysis and game-theoretic modeling are provided in the
Supplementary Information. The code is available on request to the authors.
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