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Critical transitions occur in a variety of dynamical systems. Here we employ quantifiers of chaos to identify
changes in the dynamical structure of complex systems preceding critical transitions. As suitable indicator
variables for critical transitions, we consider changes in growth rates and directions of covariant Lyapunov vectors.
Studying critical transitions in several models of fast-slow systems, i.e., a network of coupled FitzHugh-Nagumo
oscillators, models for Josephson junctions, and the Hindmarsh-Rose model, we find that tangencies between
covariant Lyapunov vectors are a common and maybe generic feature during critical transitions. We further
demonstrate that this deviation from hyperbolic dynamics is linked to the occurrence of critical transitions by
using it as an indicator variable and evaluating the prediction success through receiver operating characteristic
curves. In the presence of noise, we find the alignment of covariant Lyapunov vectors and changes in finite-time
Lyapunov exponents to be more successful in announcing critical transitions than common indicator variables as,
e.g., finite-time estimates of the variance. Additionally, we propose a new method for estimating approximations
of covariant Lyapunov vectors without knowledge of the future trajectory of the system. We find that these
approximated covariant Lyapunov vectors can also be applied to predict critical transitions.
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I. INTRODUCTION

Abrupt drastic shifts, called critical transitions (CTs), have
been reported in a variety of systems. Seizures in epileptic
patients [1,2], sudden crashes in financial markets [3], and
abrupt changes in climate [4,5] and in ecosystems [6] are all ex-
amples of critical transitions. During a CT, a system undergoes
a sudden, relatively rapid, and sometimes irreversible change.
A common model for systems exhibiting CTs are fast-slow
systems [7]. In this contribution we study CTs in several
different fast-slow systems, such as the FitzHugh-Nagumo
oscillator [8], a network of coupled FitzHugh-Nagumo os-
cillators, a model describing Josephson junctions [9], and
the Hindmarsh-Rose model [10]. Understanding a system
exhibiting CTs as a dynamical system close to a bifurcation
point, we can expect a CT to be preceded by early-warning
signs [11,12]. The most famous symptom of CTs is the
system’s increasingly slow recovery from perturbations near
the tipping point, a phenomenon referred to as critical slowing
down [11–13]. Consequences of critical slowing down can
be monitored in several observables that have been used to
predict CTs. Well-studied indicator variabes are, e.g., increase
in variance [6] and increase in autocorrelation [6] before a CT.
While these predictors are relatively successful in predicting
CTs, they do not offer any insight into the dynamical structure
of the phase space.

In this contribution we investigate changes in the dynamical
properties of different dynamical systems before a CT occurs.
We are especially interested in changes in the finite-time
growth rates of perturbations and in changes in the directions
of perturbation growth, as described by the stable and the
unstable manifolds. To explore these intrinsic directions of the
phase space, we employ covariant Lyapunov vectors [14–17]
and finite-time Lyapunov exponents [18]. We investigate how
changes in the finite-time Lyapunov exponents and changes

in the intrinsic directions of the phase space, represented by
covariant Lyapunov vectors, are linked to the occurrence of
CTs in the aforementioned stochastic fast-slow models for
critical transitions.

As a characteristic feature, we find that tangencies between
covariant Lyapunov vectors are linked to the occurrence of
critical transitions. The existence of tangencies (without any
link to specific events) has been reported in models for
spatiotemporal chaos as well [19–21]. Merging of covariant
Lyapunov vectors indicates homoclinic tangencies between the
stable and unstable manifolds which can occur in dynamical
structures called wild hyperbolic sets [22]. Newhouse [23–25]
has proved the existence of hyperbolic invariant sets in
which stable and unstable manifolds can have persistent
homoclinic tangencies that are robust against perturbations.
A very recent contribution [26] has reported tangencies to
occur during transitions to distant branches of a trajectory for
two three-dimensional deterministic models. By evaluating the
statistical relevance of the link between tangencies and CTs,
we find the existence of these homoclinic tangencies to be
a common phenomenon during critical transitions in two-,
three-, and higher-dimensional stochastic fast-slow models
of critical transitions. We argue that along with an increase
in the first finite-time Lyapunov exponent, both observations
can be expected to be intrinsically related to the phenomenon
of critical slowing down. We quantify this link in the sense
of Granger causality by using changes in the directions of
covariant Lyapunov vectors and their growth rates within
prediction experiments.

Moreover, we develop and test a method for estimating
approximations of covariant Lyapunov vectors without knowl-
edge of the far future of the system which can be applied
in predictive settings. We find that properties of covariant
Lyapunov vectors have the potential to be used as indicator
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variables for CTs since they perform equally well or, in the
presence of noise, better than common indicator variables.

This paper is organized as follows: In Sec. II we introduce
covariant Lyapunov vectors and finite-time Lyapunov expo-
nents and the methods we use for computing or approximating
them. In subsequent sections we present critical transitions and
their footprints in covariant Lyapunov vectors and finite-time
Lyapunov exponents for a single FitzHugh-Nagumo oscillator
(Sec. III), the Hindmarsh-Rose model (Sec. IV), a fast-slow
model for Josephson junctions (Sec. V), and a network of
coupled FitzHugh-Nagumo oscillators (Sec. VI). In Sec. VII
we quantify the strength of links between the dynamics of
covariant Lyapunov vectors and the occurrence of critical
transitions by evaluating the success of prediction experiments.
We summarize and discuss our findings in Sec. VIII.

II. COVARIANT LYAPUNOV VECTORS

Covariant Lyapunov vectors are independent of the chosen
coordinates, and they are invariant under time reversal and
covariant with the dynamics of the system. They represent
the stable and unstable manifolds and can provide information
about the local structure of attractors [14–17]. We compute
covariant Lyapunov vectors for different fast-slow systems and
use them to explore the dynamics. Covariant Lyapunov vectors
point in the directions of perturbation growth and live in the
tangent space, the dimension of which is equal to the dimension
of the original system. The dynamics of the tangent space is
governed by the linear propagator F (t1,t2), which determines
the evolution of perturbations δu(t), i.e., F (t1,t2) δu(t1) =
δu(t2), see, e.g., Ref. [17]. Covariant Lyapunov vectors {γi(t)}
are the set of vectors whose evolution can be written in the
form ‖F (t1,t1 ± t)γi(t1)‖ ≈ exp[±μi(t)] [17], i = 1, . . . ,m,
where m is the dimension of the system under study and μi(t)
denotes the instantaneous growth rate along the direction of
the ith covariant vector, the time average of which is the ith
Lyapunov exponent, λi . Covariant Lyapunov vectors are not
only invariant under time reversal but also covariant with the
flow. Hence, in theory, once computed at one point, they can
be determined at all times by F (t1,t2)γi(t1) = γi(t2) [17]. In
numerical computations the evolution of the vectors might be
limited by the accumulation of numerical errors. In contrast to
the orthogonal set of backwards Lyapunov vectors that are a
by-product of the process of computing Lyapunov exponents
[27], covariant Lyapunov vectors are not an orthorgonal set.
Consequently, one can study the dynamics of angles between
covariant Lyapunov vectors and relate it to the dynamics of
the system.

A. Computing covariant Lyapunov vectors

Recently, several methods for computing covariant Lya-
punov vectors have been proposed [14,15,17]. In this contribu-
tion we use the method introduced by Ginelli et al. [15] along
with a new complementary method of approximating covariant
Lyapunov vectors which will be introduced in Sec. II B.

The main idea of Ginelli et al.’s method is to perform itera-
tions backwards in time on a random set of perturbation vectors
confined to the subspaces spanned by backward Lyapunov
vectors. The idea stems from the fact that although forward

and backward Lyapunov vectors [17,27] are not covariant with
the dynamics, the subspaces they span (Oseledec subspaces)
are. Assume φ−

j (t) to be the j th backward Lyapunov vector,
growing asymptotically in time with exponential rate λj and
j = 1, . . . ,m. Typically φ−

j (t) is computed through Benetin’s
method [27] for computing Lyapunov exponents, λi . Consider
an arbitrary perturbation vector δuj (t1) ∈ S−

j (t1)\S−
j−1(t1)

with Oseledec subspaces given by S−
j (t) = span{φ−

i (t)}, i =
0, . . . ,j . Backward Lyapunov vectors can be computed by a
QR decomposition after evolution with the linear propagator.
In other words,

F (t1,t2)�−(t1) = �−(t2)R(t1,t2), (1)

with �−(t) = [φ−
1 (t),φ−

2 (t), . . . ,φ−
m(t)], m being the dimen-

sion of the tangent space and R(t1,t2) is an upper triangular
matrix. On the other hand, we know that γj (t), the j th covariant
Lyapunov vector, also belongs to the subspace S−

j (t)\S−
j−1(t).

Hence, in matrix form, covariant Lyapunov vectors can be
represented as

�(t) = �−(t)A−(t), (2)

with �(t1) = [γ1(t),γ2(t), . . . ,γm(t)] and A−(t) being an upper
triangular matrix. Due to the covariance of the vectors, their
evolution by the linear propagator can be described by

F (t1,t2)�(t1) = �(t2)C(t1,t2), (3)

with C(t1,t2) denoting a diagonal matrix whose diagonal
elements represent the growth rate of the vectors, i.e., covariant
finite-time Lyapunov exponents. Inserting Eq. (2) into Eq. (3)
and using Eq. (1), we obtain

R(t1,t2)A−(t1) = A−(t2)C(t1,t2). (4)

For backward iterations we have

R(t1,t2)−1 A−(t2) = A−(t1)C(t1,t2)−1. (5)

Equation (5) enables us to perform iterations backwards in
time while confining the iterations to the space of projections
onto the backward vectors in order to converge to covariant
Lyapunov vectors.

A practical implementation of this procedure is as follows:
Start iterating the system forward from the far past while
orthogonalizing the perturbation vectors via QR decompo-
sition every several time steps. After the transient time, the
vectors converge to the backward Lyapunov vectors, φ−

i (t).
Start recording the backward vectors and R(t1,t2), the diagonal
elements of which are the finite-time Lyapunov exponents.
Iterate to the far future. Initialize a random nonsingular upper
triangular matrix and iterate backwards with Eq. (5). After the
transient time, the upper triangular matrix will converge to
A−(t). Use Eq. (2) to calculate covariant Lyapunov vectors.

B. Estimating approximations of covariant Lyapunov
vectors without knowledge of the (far) future

This contribution aims to quantify the existence of a
link between tangencies of covariant Lyapunov vectors and
critical transitions in a Granger causal sense, i.e., by testing
in how far covariant Lyapunov vectors can predict critical
transitions. However, since the computation of covariant Lya-
punov vectors requires the knowledge of the future trajectory
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(see Sec. II A), these predictions would not be feasible in
practical applications. Hence, we develop a new approach of
estimating approximations of covariant Lyapunov vectors that
does not require the knowledge of the (far) future of the system
but uses only data from the past and the near future. The
main idea of this approach is to evolve covariant Lyapunov
vectors computed at the preceding time step forward in the
space of projections onto backward Lyapunov vectors, then
evolve the resulting vectors from the near future (e.g., the
next orthogonalization step) backwards repeatedly (without
actually going backwards in time).

Suppose that you would like to estimate an approximation
of a covariant Lyapunov vector at time tn and you have data
until time step tn + τ . The time τ can be as small as needed,
the minimum value being one orthorgonalization step �. Like
other methods, to estimate covariant Lyapunov vectors we use
two transient times; both, however, are in the past. The first
transient is for the perturbation vectors to converge to the
backward vectors and the second is for them to converge to the
covariant vectors. We start in the far past and evolve the system
and the perturbation vectors as explained before in Sec. II A.
After a long enough transient time, one can assume that the
perturbations have converged to backward Lyapunov vectors at
time tn. The next step is to compute the vectors that, through the
second transient, will converge to covariant Lyapunov vectors.
The second transient does not need to be long, it can be as short
as the available data allows. One can start the second transient
at time tn, i.e., evolve the perturbation vectors from tn to tn + τ

and record R(tn,tn + τ ). Equation (4) and Eq. (5) determine
dynamical rules of the backwards and forward transformation
of the covariant Lyapunov vectors in the space of projections
onto backward Lyapunov vectors. Knowing this dynamics,
one can continue evolving the perturbation vectors from tn to
tn + τ and record R(tn,tn + τ ). We then compute the inverse,
R(tn,tn + τ )−1 and multiply it repeatedly with a random upper-
triangular matrix AR(tn) according to Eq. (5). In other words,
we obtain the first approximated matrix A′(tn) through

A′(tn) ∝ R(tn,tn + τ )−N AR(tn) (6)

with N being adjusted with respect to the model we are
studying. Multiplying A′(tn) with the matrix of backward
vectors gives approximations of covariant Lyapunov vectors
at time tn.

After evaluating the vectors for the very first time step of
the second transient, tn, one does not have to use the evolution
of random matrices or matrices of eigenvectors any more.
As a matter of fact, one can improve the estimate of the
covariant vectors by evolving the vectors computed at the
previous time step and then use the evolved matrix as a starting
matrix for going backwards. In more detail, knowing A′(tn),
the matrix A′(tn+1) for the next time step tn+1 = tn + �, can be
obtained by evolving A′(tn) from tn to tn+1 + τ , in the space of
projections onto the backward vectors using Eq. (4) and then
using the evolved matrix to iterate backwards from tn+1 + τ

to tn+1, N times. Since R(tn,tn+1)−1 R(tn,tn+1) = 1, we have

A′(tn+1) ∝ R(tn+1,tn+1 + τ )−(N−1) R(tn,tn+1)A′(tn). (7)

Using information of the vectors computed in the past, one can
therefore improve the estimate of the vectors in the present.
Therefore using matrices A′(tp) from the past to successively
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FIG. 1. Estimating approximations of covariant Lyapunov vec-
tors with the repetitive iteration method yields results which mimic the
dynamics of covariant Lyapunov vectors computed through Ginelli
et al.’s method. The absolute value of the cosine of the angle between
the first and the second covariant Lyapunov vectors computed with
Ginelli et al.’s method, solid black line, are compared with the
results from the repetitive iteration method, dashed blue line, for
a FitzHugh-Nagumo model with a = 0.4, b = 0.3, e = 0.01, and
D = 0.

compute A′(tn) with tp < tn gradually improves the precision
of the approximative estimates during the time steps of the
second transient. After this short second transient one can
assume that the matrix A′(t) has converged to an estimate of
A−(t), that is, the matrix of projection of covariant Lyapunov
vectors onto the backward vectors.

A difficulty that can occur with this method in systems with
highly expanding directions is that A′ becomes ill conditioned
and several vectors collapse on each other. The solution in that
case is to randomize the matrix A′ again. Ill-conditioned A′
can also occur during repeated iterations. This problem usually
occurs if N is too large. In this case it suffices to reduce N

to a value that is large enough to guarantee convergence of
the vectors to the covariant directions and small enough not to
cause singularities in A′. Note that if one has enough data in
the past one can use any method to compute covariant vectors
(e.g., Ginelli et al.’s) until the near past and then use the
approximative method described above to compute a present
estimate of covariant vectors.

Moreover, bear in mind that this method only yields
approximations of covariant Lyapunov vectors and not the
exact vectors. Nonetheless, it seems to be leading to effective
approximations concerning the dynamics of the vectors.
Figure 1 shows the absolute value of the cosine of the angle
between first and second covariant Lyapunov vector θ1,2 for
a single FitzHugh-Nagumo oscillator (see Sec. 9 for details)
computed with Ginelli et al.’s method as well as the corre-
sponding angle α1,2 obtained from the approximative method
presented in this section. In Sec. VII we will compare the
predictions made using time series of the angle θij (t) between
the covariant Lyapunov vectors (computed as described in
Sec. II A) to predictions based on time series of the angle
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αij (t) between approximations of covariant Lyapunov vectors
as described in this section.

C. Computing finite-time Lyapunov exponents

Lyapunov exponents λi are well-known quantifiers of chaos
that measure the average growth rate of perturbations in
different directions. While Lyapunov exponents are time-
averaged quantities, their finite-time values {λi(t)}, i.e., finite-
time Lyapunov exponents, can describe the current behavior
of the system under study [28,29]. Although Lyapunov
exponents λi , computed in the asymptotic limit of infinite
time are well ordered by value, their finite-time counterparts,
the finite-time Lyapunov exponents λi(t), can fluctuate and
exchange order. In addition to covariant Lyapunov vectors
and their growth rates {μi(t)}, we compute finite-time Lya-
punov exponents {λi(t)} [18] which represent growth rates of
backward Lyapunov vectors. For computing these exponents
in the low-dimensional systems studied in this contribution
we used the Euclidean norm. Since finite-time Lyapunov
exponents describe the current behavior of the system under
study [28,29], we will study here whether changes in these
exponents can be signatures announcing critical transitions.
General considerations on Lyapunov exponents in oscillators
with noise can, e.g., be found in Ref. [30] and in Ref. [18].

Concerning further technical details of all computations:
For all the systems studied in this contribution, we integrated
the equations using a fourth-order Runge-Kutta solver. Our
integration time step was dt = 0.001 and we orthogonalized
the perturbation vectors after every 10 iteration steps δt =
0.01. When using the newly developed approach for estimating
approximations of covariant Lyapunov vectors, we iterated the
system forward in time only one orthogonalization interval,
i.e., τ = �.

III. CRITICAL TRANSITIONS IN A
FITZHUGH-NAGUMO OSCILLATOR

Fast-slow dynamical systems are common models for
describing CTs [7]. They show a slow drift of system variables
interrupted by fast transitions, i.e., drastic changes in at least
one variable. The first fast-slow system we investigate is a
FitzHugh-Nagumo oscillator [8],

εẋ = x − x3

3
− y, (8)

ẏ = x + a − by +
√

2Dη(t), (9)

where ε � 1. The slow variable y acts as a bifurcation
parameter and drives the dynamics of the fast variable x

such that it alternates between two different states with η(t)
being white noise. We investigated this model for two different
parameter sets. The first set of parameters is a = 1, b = 0.3,
and ε = 0.01. For this set, transitions can only be induced by
noise. An example for a transition can be seen in the time series
of the fast variable as presented in Fig. 2(d). In Fig. 2(a) we
present trajectories of a single oscillator in phase space with
different initial conditions. The black lines are nullclines, the
polynomial curve is the nullcline of the fast variable, x, and
the straight line is the nullcline of the slow variable, y. For

this set of parameters, the intersection of the nullclines is a
stable fixed point to which trajectories would converge in the
absence of noise. However, the stochastic term added to the
control parameter of Eq. (9) enables transitions.

Figure 2(b) shows the phase space portrait of the oscillator.
The dashed red line indicates the trajectory. The green and the
orange vectors are the first and the second covariant Lyapunov
vectors, respectively. The first vector is tangent to the trajectory
and represents the neutral direction corresponding to the first
Lyapunov exponent. The second vector indicates the stable
direction, perturbations along which decay rapidly.

In the following, we will focus for the moment on
the behavior of the finite-time Lyapunov exponents. While
the system moves along the nullcline, the first finite-time
Lyapunov exponent is close to zero before a transition [see
Fig. 2(f)]. Perturbations along the trajectory neither shrink
nor grow. Before the occurrence of a transition, the direction
orthogonal to the trajectory is stable; consequently, the second
finite-time Lyapunov exponent is negative [see Fig. 2(g)].
As the system moves towards the transition point on the
nullcline, the second finite-time Lyapunov exponent grows
since the shrinking of the perturbation along the stable
direction becomes slower as the system approaches the critical
point. During the transition, any perturbation orthogonal to the
trajectory neither shrinks nor grows. Hence the second finite-
time Lyapunov exponent approaches zero [see Fig. 2(g)]. Very
close to the transition, the first finite-time Lyapunov exponent
rapidly increases and becomes positive [see Fig. 2(f)]. The
phenomenon becomes apparent inspecting the x-nullcline in
Fig. 2(b): As the fast variable accelerates towards the other
branch of the manifold, any perturbation along the trajectory
will also rapidly grow. However, during the second half of
the transition, any perturbation along the trajectory will shrink
rapidly as the fast variable is decelerating prior to arriving at the
other branch. At the end of the transition, arriving again at the
x-nullcline, the first finite-time Lyapunov exponent approaches
zero once more.

The transition is also reflected in the angle between first and
second covariant Lyapunov vector, θ12. The angle decreases as
the system moves towards a transition on the nullcline since
the angle between the trajectory and the unstable direction is
decreasing [see Fig. 2(b) and Fig. 2(c)]. As the transition starts,
the trajectory becomes completely tangent to the shrinking
direction, moving rapidly towards the other branch of the
nullcline. Consequently, the two covariant Lyapunov vectors
are almost tangent [see Fig. 2(b)]. Note that this implies that
the system is effectively one-dimensional during the transition
to the other section of the manifold.

The j th covariant Lyapunov vector as discussed in Secs. II B
and II A is the vector that grows backwards and forward in
time with growth rate μj (t). In the limit of infinite time, these
growth rates converge to the Lyapunov exponent λj . Going
backwards in time, the j th covariant Lyapunov vector can be
regarded as a vector belonging to the subspace S−

j (t)\S−
j−1(t).

Therefore it is a linear combination of the first j backward
vectors with a nonzero component along the j th backward
vector and it is orthogonal to backward vectors of order higher
that j [see Eq. (2)]. Therefore, going backwards in time,
it asymptotically decays with the rate λj , i.e., the smallest
Lyapunov exponent of the exponents λi , i = 1 . . . j . Although
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FIG. 2. Alignment of covariant Lyapunov vectors during noise-induced transitions in a FitzHugh-Nagumo oscillator with a = 1, b = 0.3,
ε = 0.01, and D = 0.2. (a) Phase-space portrait of the oscillator with black lines indicating the nullclines and the discontinuous lines representing
trajectories from different initial points. (b) The dotted red line indicates a typical trajectory in the phase space. Green and orange vectors show
the first and the second covariant Lyapunov vector, respectively, both vectors align during transitions. (c) The cosine of the angle between the
first and the second vector is shown while the system is drifting on the left and transitioning to the right branch (black dashed line) and drifting
on the right and transitioning to the left branch (red line). (d) Time series of the fast variable, i.e., the observable of the system. (e) Time series
of the cosine of the angle between the first and the second vector. (f) Time series of the first finite-time Lyapunov exponent and (g) time series
of the second finite-time Lyapunov exponent.

Lyapunov exponents λi , computed in the asymptotic limit
of infinite time are well ordered by value, their finite-time
counterparts, the finite-time Lyapunov exponents λi(t), can
fluctuate and exchange order. The direction corresponding
to λi(t) [the ith backward Lyapunov vector φ−

i (t)] where
i < j , may temporarily become more stable than the direction
corresponding to λj (t), i.e., the value of λi(t) may temporarily
be smaller than λj (t).

In case for any reason the order between finite-time Lya-
punov exponents is temporarily lost, any covariant vector of the
order between i and j , will have a dominant component along
the ith backward vector and tend to converge to the subspace
S−

i (t)\S−
i−1(t), forming tangencies with the ith covariant

vector. In this contribution we argue that this temporary change
in the stability of stable and unstable or neutral directions is a
generic behavior in critical transitions that leads to tangencies
between stable and unstable (or marginal) manifolds.

In the case of the FitzHugh-Nagumo, as the system slowly
moves towards a transition point, the increase in the second
finite-time Lyapunov exponent goes along with a decrease
of the angle between the first and the second covariant
Lyapunov vector. Right before and at the very beginning of
the transition, the marginal direction becomes highly unstable,
enabling the transition. The sudden rise of the first Lyapunov
exponent making this exponent much larger than the second
finite-time Lyapunov exponent which is close to zero, goes
along with a fast increase in the angle between the two vectors.
However, this sudden rise is followed by a sharp decrease way
below the value of the second finite-time Lyapunov exponent

during the transition. The first Lyapunov exponent becoming
the more negative exponent, is like a switching between
the stability of the orthogonal directions of the finite-time
Lyapunov exponents. The direction of the first finite-time
Lyapunov exponent has temporarily become more stable than
the direction orthogonal to it. Therefore, the second covariant
vector will collapse on the direction parallel to the previously
marginal manifold.

Figure 3 shows the finite-time exponents and the growth rate
of the second covariant vector computed with Ginelli et al.’s
method and the repetitive iteration method. Note that in order
to be able to compare the results for the exact same transition,
i.e., D = 0, we simulated the FitzHugh-Nagumo model with
a = 0.4 that corresponds to the regular spiking regime. The
results with both methods show, as discussed before that
the growth rate of the second vector is close to the second
finite-time Lyapunov exponent while the trajectory is on one
of the branches. During the transition, however, the growth
rate of the second covariant Lyapunov vector converges to the
first Lyapunov exponent. With the repetitive iteration method
this convergence corresponds exactly to the instance that the
first finite-time Lyapunov exponent becomes smaller than the
second finite-time Lyapunov exponent, which agrees with our
discussion above. As for Ginelli et al.’s method, they seem to
converge earlier. The reason for that is in the repetitive iteration
method; repeated iteration of the same interval at present
amplifies the changes in the local dynamics, while in Ginelli
et al.’s method iterating backwards from the far future will
lead to a delay in exhibiting the changes in the local dynamics.
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FIG. 3. The finite-time growth rate of the first and second
covariant Lyapunov vector converge during the transition in a
FitzHugh-Nagumo oscillator. The first (dotted green line) and the
second (dotted red line) finite-time Lyapunov exponent are compared
to the finite-time growth rate of the second covariant Lyapunov vector
(solid black line). Note that the growth rate of the first covariant
Lypunov vector is by definition the same as the first finite-time
Lyapunov exponent. While the trajectory is slowly drifting on the
nullcline the growth rate of the second covariant vector is almost
the same as the second finite-time Lyapunov exponent. Merging of the
first and the second covariant Lyapunov vector during the transition
manifests it’s self in converging of the growth rate of the second
covariant vector to the first finite-time exponent. (a) The time series of
the fast variable. (b) The growth rates computed with Ginelli et al.’s
method. (c) The growth rates computed with repetitive iterations
method.

We obtain qualitatively similar results concerning the
dynamics of the angle between the covariant Lyapunov vectors
and finite-time Lyapunov exponents for different sets of
parameters, as, e.g., a = 0.4, b = 0.3, and ε = 0.01, for
which the fixed point is unstable and oscillations are present
even in the absence of noise (see Fig. 4).

IV. CRITICAL TRANSITIONS IN THE
HINDMARSH-ROSE MODEL

In order to test whether the alignment of covariant Lya-
punov vectors is inherent to models that show CTs, we com-
puted covariant Lyapunov vectors and finite-time Lyapunov
exponents for trajectories of the Hindmarsh-Rose model [10].
The Hindmarsh-Rose model is a model common to describe
neural activity. A modified version of this model, containing an
additional stochastic term, is given by the following equations:

ẋ = y − ax3 + bx2 − z + J, (10)

ẏ = c − dx2 − y, (11)

ż = r(s(x − x0) − z) +
√

2Dη(t), (12)

where x is a voltagelike variable, y controls the recovery
after a spike, and z represents an adapting current with
slow dynamics. We choose a noise strength of D = 0.05
and parameter values, r = 0.01, s = 4, x0 = −1.6, b = 3.5,

a = 1, c = 1, J = 2.5, and d = 5. Within this parameter
range, the original Hindmarsh-Rose model shows a regular
spiking behavior. However, our modification of the model,
which consists of adding a stochastic term to the slow variable,
leads to highly irregular spiking.

Figure 5(a) illustrates projections of the nullclines of x and y

and the trajectory to the x-y plane. While the trajectory slowly
moves close to the nullclines, the drifting of the bifurcation
parameter z shifts the x-nullcline and enables an excursion of
x and y, called a spike [also see Fig. 5(b)].

Figure 6 shows time series of the observable x, of all angles
between the covariant Lyapunov vectors and of all finite-
time Lyapunov exponents computed for the Hindmarsh-Rose
model. The first covariant Lyapunov vector, corresponding to
the first Lyapunov exponent that is zero [see Fig. 6(e)], is
tangent to the trajectory. However, for the Hindmarsh-Rose
model, the second Lyapunov exponent [see Fig. 6(f)] is also
very small (−0.041 for this parameter set), and its finite-time
value is also mostly close to zero and coinciding with the
first finite-time exponent, resulting the persistent tangency
between the first and the second covariant Lyapunov vectors
[see Fig. 6(b)]. The 180◦ change of the direction of the first
and second vector is due to an intersection between the two
finite-time exponents, i.e., the switching of the stability of the
corresponding backward Lyapunov vectors, that can be seen
in Figs. 6(e) and 6(f). However, it is an insignificant change in
the stability that does not correspond to the critical transition.

In this system the vector corresponding to the contracting
direction is the third covariant Lyapunov vector. The third
finite-time exponent is not highly negative either, there for the
third covariant Lyapunov vector has noticeable components
along the first and the second covariant vectors. Nonetheless
the spikes or the critical transitions are marked by clear
tangencies between the first and the third and the second and
the third covariant Lyapunov vectors. That is, the phenomenon
of critical slowing down prior to CTs manifests itself in
tangencies between the third and the first two covariant
Lyapunov vectors during CTs [see Figs. 6(b)–6(d)].

The increase in finite-time Lyapunov exponents prior to
CTs and the spikelike dynamics during the CTs, which have
been observed for the FitzHugh-Nagumo oscillator studied
in the previous section, also occur in time series of finite-
time Lyapunov exponents computed from the Hindmarsh-Rose
model.

V. JOSEPHSON JUNCTIONS

The Josephson effect consists of a tunneling current
between two superconducting metals [31,32]. A model that
describes this effect in terms of a fast-slow system [9] is given
by the following equations:

βεφ̇ = ψ − (1 + βε)φ, (13)

εψ̇ = u − α̂−1φ − sin φ, (14)

u̇ = J − sin φ +
√

2Dη(t). (15)

Assuming ε � 1, we have a fast-slow system. However, β

should be small as well since, for β 
 1 (namely β > 10), the
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FIG. 4. Alignment of covariant Lyapunov vectors in a single FitzHugh-Nagumo oscillator with a = 0.4, b = 0.3, ε = 0.01, and
D = 0.2. (a) Phase-space portrait of the oscillator with black lines indicating the nullclines and the discontinuous lines representing
trajectories from different initial points. (b) The dotted red line indicates a typical trajectory in the phase space. The green and the
orange vectors show the first and the second covariant Lyapunov vectors, respectively, both vectors align during transitions. (c) The
cosine of the angle between the first and the second vectors is shown while the system is drifting on the left and transitioning
to the right branch (black dashed line) and drifting on the right and transitioning to the left branch (red line). (d) Time series
of the fast variable, i.e., the observable of the system. (e) Time series of the cosine of the angle between the first and the second vector.
(f) Time series of the first finite-time Lyapunov exponent and (g) time series of the second finite-time Lyapunov exponent.

system does not show fast-slow behavior any more. Although
the system does not have a stable fixed point and transitions
happen in the absence of noise as well, adding a stochastic
term to the bifurcation parameter u makes the transitions
stochastic. Here we chose the parameters of the system
(other than β) to be ε = 0.01, J = 1.5, α̂−1 = 0.2, and
D = 0.2.

In the limit of β � 1, φ and ψ are approximately equal and
the system becomes effectively two dimensional. Examining
the system for different values of β, it can be seen that, as long
as β < 0.22, the system can be reduced to a two-dimensional
system [see Fig. 7(a)]. In this parameter range the covariant
Lyapunov vectors and the finite-time Lyapunov exponents
show a qualitatively similar behavior as observed in the
two-dimensional FitzHugh-Nagumo oscillator.

While the first and the second covariant Lyapunov vectors
are distinctly tangent during and prior to the critical tran-
sition [see Fig. 7(e)], the third covariant Lyapunov vector,
corresponding to the highly negative finite-time Lyapunov
exponent [see Fig. 7(o)], exhibits near-tangencies during the
CTs with the other covariant Lyapunov vectors [see Figs. 7(g)
and 7(i)], respectively. The first finite-time Lyapunov exponent
shows a spiking behavior during the transition [see Fig. 7(k)],
as we have also observed for the previous models. The
constant increase in the absolute value of the other two
finite-time Lyapunov exponents [see Figs. 7(m) and 7(o)] is
also comparable to the dynamics of the second finite-time
Lyapunov exponent of the FitzHugh-Nagumo and the third
finite-time Lyapunov exponent of the Hindmarsh-Rose model.

The second finite-time Lyapunov exponent is close to zero
during the transition and the sudden change in the first finite-
time Lyapunov exponent will lead to an intersection between
the two finite-time Lyapunov exponents and a temporary
change between the marginal and the stable directions. The
temporal change in the stability as discussed before leads to
a clear tangency between the first and the second covariant
Lyapunov vectors. The third Lyapunov exponent is highly
negative. Its finite-time value reaches its maximum prior to
the transition. The decrease in the stability of this direction
presents itself in the decrease in the angle between the third and
the first as well as the third and the second covariant vectors.
Nonetheless, the third finite-time Lyapunov exponent stays
substantially smaller than the other two exponents through
the transition. Therefore the third covariant Lyapunov vector
remains not tangent to the first two covariant vectors.

For β > 0.22 the system is no longer two dimensional. In
this parameter range the values of the Lyapunov exponents
are less negative and closer to each other. The second and
the third finite-time Lyapunov exponent exhibit oscillations
and frequently intersect resulting the oscillatory changes in
the angle between the vectors. On further increasing of β, the
first finite-time Lyapunov exponent will also start oscillating
and frequently intersecting with the two other finite-time
exponents. As a result, the invariant manifolds frequently
change directions, forcing the trajectory to spiral around the
nullcline during a transition. Nonetheless, as in our other
models, the vectors exhibit clear tangencies during each
transition [see Fig. 7(f)].
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FIG. 5. Merging of all covariant Lyapunov vectors forecasts
spikes in the Hindmarsh-Rose model. (a) Projection of the trajectory
of the Hindmarsh-Rose model and the nullclines of x and y on the
x-y plane. The trajectory (dash-dotted line) slowly moves up close
to the nullclines (black solid lines) before the spike occurs. (b) The
three-dimensional phase space portrait of the trajectory shows a slow
drift of z as the fast variables go through an excursion. The green-blue
lines are the shifted projections of the trajectory on the x-y plane,
showing the absolute value of the cosine of the angle between the
covariant Lyapunov vectors.

VI. COUPLED FITZHUGH-NAGUMO OSCILLATORS

We furthermore studied critical transitions in networks of
N coupled FitzHugh-Nagumo oscillators,

εẋi = xi − x3
i

3
− yi + c

N∑

j=1

Kij (xj − xi), (16)

ẏi = xi + a − byi +
√

2Dη(t). (17)

with K being the adjacency matrix and c representing the
coupling strength. We explored networks of coupled oscillators
of different sizes. However, for simplicity, we merely show
four FitzHugh-Nagumo oscillators coupled to each other.

Figure 8(a) shows the time series of the fast variables of
four connected oscillators. As shown in Fig. 8(b), the angle
between the first and the second covariant Lyapunov vectors
decreases prior to most of the transitions happening in any
of the oscillators. The angles between higher-order vectors
are not shown here; however, they qualitatively exhibit the
same behavior. There are four Lyapunov exponents (time-
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FIG. 6. In the Hindmarsh-Rose model, all three covariant Lya-
punov vectors merge during a critical transition and the finite-time
Lyapunov exponents increase prior and reach their maximum during
transitions. (a) Time series of the fast variable x. [(b)–(d)] Time series
of the cosine of the angles between the covariant Lyapunov vectors.
[(e)–(g)] Time series of the finite-time Lyapunov exponents.

averaged, non-finite-time) that correspond in value to the first
Lyapunov exponent of the previously studied single FitzHugh-
Nagumo oscillator. These exponents are almost zero or slightly
negative and represent the neutral directions. Additionally,
there are four Lyapunov exponents that correspond to the
second Lyapunov exponent of the single FitzHugh-Nagumo
oscillator. These exponents are highly negative and represent
the contracting directions. Figure 8(c) shows that the first
finite-time Lyapunov exponent is always approximately zero
but before and during the first half of the transition, it suddenly
increases, followed by a rapid decrease during the second half,
accompanied by an overshoot before going back to zero.

Although only the first finite-time Lyapunov exponent has
been shown here, all four exponents corresponding to the four
neutral directions exhibit qualitatively the same dynamics.
The fifth finite-time Lyapunov exponent is highly negative as
shown in Fig. 8(d). However, it increases prior to and reaches
zero during the transition. Although the last three finite-time
Lyapunov exponents have not been displayed here, they exhibit
qualitatively the same dynamics during the transition as the
fifth exponent. In total, the time series of cos θij and of
finite-time Lyapunov exponents in all studied fast-slow models
indicate that both orientation and instantaneous growth rates
are sensitive to an upcoming transition.
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FIG. 7. In the model of Josephson junctions, the first and the second vector have tangencies during and prior to critical transitions. The
angle between the first and the third vector decreases as well before transitions occur. These observations hold for both ranges of β although
the overall dynamics of covariant Lyapunov vectors is very different for different values of β. Left: β = 0.1; right: β = 2. (a) For β = 0.1,
the Josephson junction is effectively two dimensional. (b) For β = 2, the transitions include spiraling around the nullcline. In both figures, the
green, the orange, and the purple vectors represent the first, second, and third covariant Lyapunov vectors, respectively. The contour lines are
shifted projections of the trajectory onto the φ-ψ plane, showing the absolute value of the cosine of the angles between the covariant Lyapunov
vectors. [(c) and (d)] Times series of the fast variable φ. [(e)–(j)] Time series of the cosine of the angles between the covariant Lyapunov
vectors. [(k)–(p)] Time series of the finite-time Lyapunov exponents.

VII. PREDICTING CRITICAL TRANSITIONS

To demonstrate that the previous observations are not only
present in selected short segments of the time series, but are
typical and generic instead, we evaluate the existence of links
between changes in features of covariant Lyapunov vectors and
CTs statistically. Therefore, we set up prediction experiments
in which we use time series of angles between covariant
Lyapunov vectors and of finite-time Lyapunov exponents
as indicator variables. Dividing all time series from the
simulations described in the previous sections into training
and test data sets, containing at least 3 × 103 transitions each,
we evaluate how far both, the angle between the covariant
vectors and finite-time Lyapunov exponents, can predict
critical transitions. Similar tests have been used to quantify
links in the sense of Granger causality [33] between discrete
events and continuous variables of dynamical systems [34,35].
Following these approaches, we apply a simple Bayesian
classifier and analyze the success of predictions using receiver

operating characteristic curves (ROC curves) [36], which are
a common measure for the success of classification algorithms
in machine learning and data mining.

In order to identify relevant values of indicator variables, we
estimate conditional probability distribution functions on the
training data sets. In more detail, we use the training data sets
to estimate the conditional probability of an event (a critical
transition in this case) happening at time tn + �t in the future
given a certain value of an indicator variable at time tn.

Using these conditional probability distributions, we then
predict critical transitions in the test data sets. Therefore, we
choose a decision threshold between zero and the maximum
of the conditional probability distribution. For every value
the indicator variable assumes in the test data set, we check
if the conditional probability associated with this value is
above the threshold. If this condition is fulfilled, we predict
a critical transition to occur �t time steps in the future. We
then count the fraction of correct predictions of all observed
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FIG. 8. In a network of four coupled FitzHugh-Nagumo os-
cillators, covariant Lyapunov vectors also align during transitions.
The finite-time Lyapunov exponents exhibit qualitatively the same
behavior as observed for a single FitzHugh-Nagumo oscillator with
a = 0.4, b = 0.3, ε = 0.01, and D = 0.2. (a) Time series of the
fast variables of four fully connected FitzHugh-Nagumo oscillators
going through noise-induced transitions. (b) Time series of the
angle between the first and the second covariant Lyapunov vectors.
[(c) and (d)] Time series of the first and the fifth finite-time Lyapunov
exponents.

events (true positive rate) and put it into relation to the fraction
of false alarms out of all nonevents (false-positive rate) for
different threshold values. These two rates generate a point
on the ROC curve. For each value of the decision threshold,
we obtain a single point on the ROC curve (see Fig. 9).
Varying the decision threshold from zero to the maximum of
the conditional probability distribution, we obtain the complete
ROC curve.

For random predictions, the rate of correct predictions
and the rate of false alarms will be approximately the same,
resulting a diagonal (black line in Fig. 9). The more effective
and nonrandom the predictions are, the closer the ROC curve
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FIG. 9. The area under the curve (AUC) is a measure of the
effectiveness of predictions. Increasing the time lag �t decreases the
success of predictions. Different ROC curves for a FitzHugh-Nagumo
oscillator with noise strength D = 0.3.

will get to the upper left corner. A measure that summarizes
each ROC curve and allows for comparison of several indicator
variables is the area under the curve (AUC), which ranges
from zero to unity. We compute AUCs for the angle between
the covariant Lyapunov vectors, for finite-time Lyapunov
exponents and, additionally, for the sliding window variance,
which is a well-known indicator for critical slowing down [6].
In order to test the robustness of the precursors, we additionally
compute AUCs for different lead times (times between issuing
an alarm and the occurrence of the transition) �t , and different
noise strengths D, in the respective dynamical models. In
order to estimate 95% confidence intervals for AUCs, we
additionally compute 100 AUCs, generated by making random
predictions (yellow areas in Fig. 10 and Fig. 11) for each test
data set.

As candidates for indicator variables we use the following
quantities:

(1) αij the angle between the covariant Lyapunov vectors
estimated without iterating to the future (see Sec. II B),

(2) θij the angle between the covariant Lyapunov vectors
calculated using Ginelli et al.’s method (see Sec. II A)

(3) λi finite-time Lyapunov exponents (see Sec. II C) and
(4) σ and the sliding-window estimate of the variance.
Note that the indices i and ij indicate the order of the

respective Lyapunov vectors and exponents and vary according
to the dimension of the system under study. In order to
calculate covariant vectors and their approximations, we
used a sampling interval of dt = 0.001. We orthogonalized
perturbations every 10 time steps and simulated in total
between 7 × 105 and 6 × 106 time steps in order to record
at least 6 × 103 transitions within each data set. Half of
each data set is used for training, i.e., estimating conditional
probabilities, and the other half for predicting transitions and
computing ROCs and AUCs. In order to obtain estimates of
the sliding-window variance which is a common indicator for
critical transitions, we used a sliding window average of 10
steps.

Figure 10 and Fig. 11 show the results for predictions of
transitions in a single FitzHugh-Nagumo oscillator and in a
model for Josephson junctions for different noise strengths
(increasing from left to right), and different lead times, �t . As
the AUCs in Fig. 10 indicate, all predictions are far better than
random predictions (ROC on the diagonal, AUC = 1/2). For
all indicator variables and models tested we found that AUCs
obtained from the indicator variables we used are outside
the 95% confidence bands estimated by making random
predictions within the test data set. Consequently, we can
conclude that their exist a Granger causal links between the
dynamics of the angles between covariant Lyapunov vectors
(i.e., the occurrence of tangencies) and the occurrence of
critical transitions.

For small lead times, �t , and without noise (D = 0), we
observe predictions that are very close to the optimal value,
AUC ≈ 1, as it is expectable for a system without noise.
Increasing the lead time and the noise strength decreases
the prediction’s success. For larger lead times and increased
noise strength angles between covariant Lyapunov vectors,
their approximations and finite time Lyapunov exponents lead
to better predictions than using the sliding window estimate
of the variance. This seems surprising since the variance is
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FIG. 10. AUCs of the angle between the covariant Lyapunov vectors estimated without iterating to the future, αij , and with Ginelli et al.’s
method, θij , finite-time Lyapunov exponents, λ, and the variance, σ , for different noise strengths, D, and different lead times, �t , for a single
FitzHugh-Nagumo oscillator. In the presence of noise, predictors based on covariant Lyapunov vectors can predict CTs better than conventional
indicator variables, such as σ 2

1 . The lead time, �t , indicates the time lag between the prediction and the event. The noise strengths being
(a) D = 0, (b) D = 0.3, and (c) D = 0.6. Yellow (gray) shaded regions represent 95% confidence intervals estimated from random predictions
on the same data sets.

typically considered to be a very robust indicator for CTs
and it indicates the potential of α1,2 and θ1,2 and finite time
Lyapunov exponents as indicator variables. It is also surprising
that the results for the Josephson junctions indicate that for
large noise strength the approximated angles αi,j leads to better
predictions than the angles computed through Ginelli’s method
θi,j . One reason for this could be the fact that the approximated
angles are computed using only information from the present
and the close past and are therefore more sensitive to the onset
of a transition than θi,j .

VIII. CONCLUSIONS

Extreme events and critical transitions have been discussed
from a dynamical systems perspective in the past [26,37–42].
In this contribution we investigated the time-resolved behavior
of covariant Lyapunov vectors with respect to the onset of
critical transitions, as modeled by fast-slow systems.

We verified that the alignment of covariant Lyapunov
vectors can be linked to critical transitions in a Granger causal
sense. Verification was done by carrying out a set of prediction
experiments which consist of identifying indicatory behavior

of time series derived from covariant Lyapunov vectors in
training data sets, predicting critical transitions occurring in
test data sets and evaluating the prediction success using
common measures of forecast verification. The testing was
necessary, since in systems with increased noise strength some
transitions could potentially occur without previous alignment
or some alignments might occur without a following critical
transition. For all prediction experiments we found that the
angle between covariant Lyapunov vectors was able to predict
the occurrence of critical transitions significantly better than
chance. In order to verify the existence of a Granger causal
link, it is sufficient to verify that the predictions based on the
alignment are better than random predictions. This condition
is fulfilled for all indicator variables related to (covariant)
Lyapunov vectors. That is, we found a Granger causal link
between the alignment of covariant Lyapunov vectors prior to
and during critical transitions and the occurrence of critical
transitions. Additionally we found another Granger causal
link between the specific dynamics in the time series of
finite-time Lyapunov exponents prior and during CTs and the
occurrence of critical transitions. For systems with increased
noise strength and predictions with longer lead time the

α1,2α1,3 α2,3 θ1,2 θ1,3 θ2,3  λ1   λ2  λ3  σ
2

0.5

0.6

0.7

0.8

0.9

1

A
U

C

(a)

0.995

1

Δt = 0
Δt = 0.2
Δt = 0.4

α1,2α1,3 α2,3 θ1,2 θ1,3 θ2,3  λ1   λ2  λ3  σ
2

0.5

0.6

0.7

0.8

0.9

1

A
U

C

(b)

α1,2α1,3 α2,3 θ1,2 θ1,3 θ2,3  λ1   λ2  λ3  σ
2

0.5

0.6

0.7

0.8

0.9

1

A
U

C

(c)

FIG. 11. AUCs of the angle between the covariant Lyapunov vectors estimated without iterating to the future, αij , and with Ginelli et al.’s
method, θij , finite-time Lyapunov exponents, λ, and the variance, σ , for different noise strengths, D, and different lead times, �t , for the
Josephson junction. In the presence of noise, predictors based on covariant Lyapunov vectors can predict CTs better than conventional indicator
variables, such as σ 2

1 . The lead time, �t , indicates the time lag between prediction and occurrence of the CT. The noise strengths being
(a) D = 0, (b) D = 0.4, and (c) D = 0.8. Yellow (gray) shaded regions represent 95% confidence intervals estimated from random predictions
on the same data sets.
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angle between covariant Lyapunov vectors predict critical
transitions even better than common indicator variables for
critical slowing down, such as the sliding-window estimate of
the variance.

Summarizing observations and all prediction experiments,
we found a generic behavior for all systems studied: Covariant
Lyapunov vectors align during CTs, which corresponds to the
observations in Ref. [26]. The alignment can also be described
in terms of the angle between stable and marginal manifold(s),
i.e., tangencies or near tangencies can be understood as
deviations from hyperbolicity [19,21,23–25]. We argued that
a rapid change in the stability of the marginal manifold
is generic to critical transitions. Further more we showed
that rapid changes in the stability are accompanied by a
change in the order of the finite-time Lyapunov exponents that
results in tangencies between covariant Lyapunov vectors. The
alignment can also be understood as an alignment of stable and
marginal manifold.

Considering the observed phenomena with respect to
known approaches to critical transitions, studying covariant
Lyapunov vectors allows us to obtain additional insight to the
mechanism typically referred to as critical slowing down. Criti-
cal slowing down describes the fact that a system approaching a
bifurcation point looses its resilience to external perturbations,
i.e., the rate of recovering from external perturbations slows
down. In this contribution we discover that it is not only
the increase in the growth rates of perturbations but also
constraints on possible growth directions that cause critical
slowing down. The alignment of covariant Lyapunov vectors
acts as a temporal reduction of the dimension of the tangent
space in which perturbations can grow. During and close to the
transitions this tangent space is effectively one dimensional,
allowing only perturbation growth in the direction of the
trajectory, i.e., in the direction of the transition. In other words,
shortly before the transition, while the vectors tend to align,
any perturbation in any direction will grow such that it triggers

the transition. During the transition any perturbation will
grow such that it is contributing to the transition. In fact, the
alignment of both possible directions of perturbation growth,
previous to and during the CTs, indicates that the dimension
of the tangent space is reduced during the transition, allowing
only one possible change of the trajectory: towards the next
(meta) stable state.

The results of the prediction experiments demonstrate that
giving alarms for critical transitions based on alignments of
covariant Lyapunov vectors can predict the occurrence of
critical transitions better than or equally as well as common
indicator variables associated with critical slowing down such
as the sliding-window variance. Furthermore, we proposed and
tested a method for estimating approximations of covariant
Lyapunov vectors which allows to obtain an indicator variable
(the angle between vectors) without knowing the far future of
the system. The results of the prediction experiments indicate
that this approximated indicator variable is suitable to be
applied in predictive settings. From a practical perspective
one can also ask, in how far these observations can be used
in order to predict critical transitions. When tested against
the sliding-window variance (a common indicator variable for
critical slowing down), we found that in the presence of noise,
using the angle between the vectors or its approximation results
in better predictions. This effect becomes especially visible for
increased lead times, i.e., larger time lags between prediction
and occurrence of the event. Also, finite-time Lyapunov
exponents can in some cases lead to improved predictions
compared to the sliding-window variance. Although covariant
Lyapunov vectors and finite-time Lyapunov exponents have
been computed from models in this contribution, there are
approaches to estimate them from times series [43–48]. There-
fore, it would be interesting to study in future contributions
how robust the results concerning the quality of the predictions
are if covariant Lyapunov vectors and finite-time Lyapunov
exponents are estimated from data records.
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