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Demand-driven design of bicycle 
infrastructure networks for improved  
urban bikeability
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Malte Schröder    1 

Cycling is crucial for sustainable urban transportation. Promoting cycling 
critically relies on sufficiently developed infrastructure; however, designing 
efficient bike path networks constitutes a complex problem that requires 
balancing multiple constraints. Here we propose a framework for generating 
efficient bike path networks, explicitly taking into account cyclists’ demand 
distribution and route choices based on safety preferences. By reversing 
the network formation, we iteratively remove bike paths from an initially 
complete bike path network and continually update cyclists’ route choices 
to create a sequence of networks adapted to the cycling demand. We 
illustrate the applicability of this demand-driven approach for two cities. 
A comparison of the resulting bike path networks with those created for 
homogenized demand enables us to quantify the importance of the demand 
distribution for network planning. The proposed framework may thus 
enable quantitative evaluation of the structure of current and planned 
cycling networks, and support the demand-driven design of efficient 
infrastructures.

Human mobility critically depends on the existing infrastructure under-
lying it1,2. The transition to more sustainable mobility in particular 
requires a sufficiently developed infrastructure to promote, for exam-
ple, cycling over motorized mobility for short and medium-distance 
intra-urban trips3,4. During the COVID-19 pandemic, a number of cities 
such as Paris, New York and Bogotá pushed to open more street space 
to cyclists, expanded the size of side-walks, or blocked car traffic to 
enable social distancing5. Similarly, many cities have vouched to invest 
into cycling infrastructure6,7 and are gaining increasing support among 
the population for these investments.

In general, designing suitable and efficient infrastructure net-
works constitutes an intricate problem as the networks are subject to 
multiple, often opposing technical, economic and social constraints8–10. 
Examples for efficient network structures can be found in various 
biological11,12 and social networks13,14, balancing resource and energy 
costs with efficient physical or information transport and robustness 

to failures. For mobility and infrastructure networks, examples of 
efficient topologies include the core–periphery structure of air travel 
networks, balancing the cost of direct flights with the inconvenience 
of transfers11,15–17, and the emergent backbone structure in street net-
works of cities18,19.

For the design of bike path networks, three major constraints 
include: (1) budget constraints, which limit the total length of bike paths 
due to, for example, construction or maintenance cost15,20; (2) bike path 
networks have to support the mobility demand and enable fast travel 
between frequented locations without large detours15,16,18; (3) bike 
path networks should also enable safe travel of cyclists along highly 
frequented routes21. Different implementations of bike path infrastruc-
ture weigh these constraints differently. For example, colored bike 
lanes on the street do not cost much but only slightly protect cyclists, 
whereas physically separated bike lanes greatly improve cyclists’ safety 
but require more space and investment22,23. From a network structure 
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over their potential paths Πi→j. Effectively, cyclists choose the most 
direct path to keep the physical distance of their trip as short as pos-
sible but accept detours to avoid busy streets and use bike paths or 
low-traffic residential streets as alternative routes (Fig. 1).

This simplified route choice model enables efficient calculation 
of route choice decisions, particularly compared with more complex 
stochastic models32,33. To illustrate the concept, we focus here on the 
effect of the street type and take the penalties p0

ij of a street segment 
to depend on the volume of car traffic on the respective segment, where 
higher penalties correspond with larger car traffic volumes (that is, a 
lower perceived safety or convenience; see Methods for details). In 
principle, the approach can be extended to include additional factors 
(see Supplementary Note 1 for a brief discussion) such as slopes, (left) 
turns or crossings by appropriately modifying the cyclist preference 
graph (for example, adding more edges with a penalty for left turns) 
as well as more complex route choice models or heterogeneous prefer-
ences among cyclists27,28.

Network generation
We describe the bike path network of a city as a subgraph 
GB = (V, EB) ⊆ Gstreet of the city’s street network, in which each street 
segment eij ∈ E may (eij ∈ EB) or may not (eij ∉ EB) be equpped with a bike 
path. Even in this simple binary model, the number of possible bike 
path networks GB scales exponentially with the number M of edges in 
the street network, as each street segment may or may not be equipped 
with a bike path (there are thus 2M possible subgraphs). Testing all of 
these networks is impossible for real-world cities in reasonable time (see 
Supplementary Note 2 for a more detailed description of the underly-
ing optimization problem). Recent approaches utilize forward net-
work percolation models to construct bike path networks24,26 or apply 
percolation models to a fixed cyclist flow25 to find efficient networks.

Here we employ a complementary approach that follows the idea 
of pruning links from a network—as previously employed in network 
community-detection algorithms34 and to study the structure of avia-
tion networks16. Specifically, we create a sequence {GB(M′)}M′ of bike 
path networks where M′ ∈ {0, 1,… ,M} street segments are outfitted 
with a bike path (see Fig. 2): we start from an optimal bike path network 
in which every street segment is equipped with a bike path (EB(M) = E) 
such that there is no penalty for any street segment (pij = pB

ij = 1 for all 
edges). We then compute the route choice decisions of the cyclists in 
their preference graph G (as described above) on the basis of their 

perspective, each of these aspects is simple to understand individually. 
For example, a connected bike path network in a city that minimizes 
the required budget is simply given by the minimum spanning tree 
of the underlying street network17,19. More sophisticated approaches 
to find connected network structures have recently been proposed. 
Such approaches, based on percolation processes24–26, optimize the 
connectivity of the bike path network; however, connectivity alone 
is not sufficient to support demand, as routes along streets equipped 
with bike paths would likely be indirect and require large detours. 
Shortest path trees would optimally support the demand only from 
and to a single location. By contrast, direct routes between other 
locations would require cycling along streets without dedicated bike 
infrastructure and would not be as safe27,28. Finally, the safest and most 
convenient network for cyclists—in which a bike path exists along every 
street—would naturally exceed any reasonable budget constraints20,29. 
However, efficient bike path networks have to simultaneously adhere 
to all three constraints to enable both convenient and safe travel with 
feasible investment30,31.

In this article we propose a framework for constructing a family 
of efficient bike path networks, all adapted to the given street network 
and demand distribution. The algorithm realizes inverted network 
growth: based on a simplified cyclist routing model and starting from 
a network fully equipped with bike paths, the algorithm generates a 
sequence of bike path networks by successively removing bike paths 
from the street segments with the least impact given the usage patterns 
in the current network. We observe that both convenience and safety 
of cycling in the network remain high, even if only a small part of the 
street network remains equipped with bike paths. Application of the 
algorithm to synthetic, homogeneous demand conditions enables us to 
quantify the importance of the cycling demand for the structure of the 
resulting bike path networks. The proposed framework is extendable 
to include different routing models and its applicability to different 
street networks and demand distributions may support planning of 
bike path networks that promote a desired cycling demand.

Results
Cyclist route choice model
The benefit of bike paths fundamentally depends on their usage 
and in turn on the routes of cyclists. We map cyclists’ route choices 
to a shortest-path problem on a preference graph G = (V, E) with 
N = ∣V∣ number of nodes (intersections) and M = ∣E∣ number of edges 
(street segments). We derive the preference graph G from the physi-
cal street network Gstreet. Both graphs share the same set of nodes 
V. Each edge eij ∈ E in the cyclist preference graph represents a 
street segment that connects intersections i, j ∈ V and is assigned a  
perceived distance

lij = lstreetij pij. (1)

Here, lstreetij  denotes the physical length of the corresponding street 
segment estreetij  in the street network and pij ∈ {pB

ij ,p
0
ij } is a penalty factor 

summarizing cyclists preferences against riding along the street seg-
ment eij. The set of street segments equipped with bike paths EB ⊆ E 
contains street segments eij ∈ EB without distance penalty pB

ij = 1. Street 
segments that are not in this set eij ∉ EB have penalty factors p0

ij > 1. The 
value of these penalty factors p0

ij may depend on different character-
istics of the individual street segments, representing the perceived 
safety or convenience for cycling.

Adopting this perspective of a cyclist preference graph, we take 
cyclists to choose their route based on the shortest path 
Π∗

i→j = argmin [Li→j(Πi→j)]  between their origin i and destination j, 
minimizing the perceived trip distance

Li→j(Πi→j) = ∑
e∈Πi→j

le (2)

c

1

2

3

1

2

3

ba

1

2

3

Fig. 1 | Cyclists’ route choices balance speed and safety. a, If all major streets 
(thick edges) are outfitted with dedicated bike paths (thick blue lines), cyclists 
choose the most direct route (1, solid black arrow) from their origin (pin) to a 
destination (flag) over alternative paths (dashed arrows). b, If only some major 
streets are equipped with a bike path, cyclists avoid busy roads without a bike 
path (thick gray lines) and may prefer a short detour (2, solid black arrow). c, 
If none of the streets have dedicated bike infrastructure, cyclists balance the 
distance and safety of their route choices and may prefer long detours (3, solid 
black arrow) via low-traffic residential streets (thin gray lines) to more direct 
routes with high car traffic.
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demand distribution ni→j, which denotes the number of cyclists trave-
ling from nodes i to j. To construct the family of bike path networks, 
one by one we remove the least important bike path e∗ij(M

′) from the 
network, EB(M′ − 1) = EB(M′) ⧵ {e∗ij(M

′)}, adjusting the penalty of that 
street segment from pij = pB

ij = 1 to pij = p0
ij > 1 in the cyclist preference 

graph G. We quantify the importance of a bike path eij ∈ EB(M′) in the 
current state of the bike path network (with M′ remaining bike paths) 
as the product p0

ij nij(M′) of the penalty p0
ij (if the street had no bike path) 

and the number of cyclists that using that street segment nij(M′). The 
product represents the graph-theoretical weighted betweenness cen-
trality of the edge in the cyclist preference graph. This approach mini-
mizes the negative impact of each removed bike path on the perceived 
distance of the cyclists in the current bike path network. After each 
change to the cyclist preference graph G, we update the route choice 
decisions of the cyclists, ensuring that the algorithm continually adapts 
to the cycling demand given the currently available set of bike paths 
EB(M′). The process terminates with an empty bike path network 
GB(0) = (V, ∅) once all of the bike paths have been removed.

See Supplementary Note 3 for a discussion on the computational 
runtime of the network generation.

In contrast to iteratively adding bike paths to an initially empty 
graph and building on the suboptimal cycling routes in networks with 
few bike paths, this procedure creates bike path networks adjusted to 
ideal cycling conditions; for example, it keeps bike paths that may not 
be important in the perfect network if the cyclists start to use them 
more heavily as the other bike paths are removed (see Supplementary 
Note 4 for details).

Inputs to our algorithm are: (1) the street network Gstreet, (2) the 
penalty factors p0

ij for each street segment not equipped with a bike 

path, (3) the demand distribution ni→j and (4) the cyclists’ route choice 
model. These parameters may either be as-is empirical values, or 
planned/desired ideal values (for example, describing the desired or 
predicted demand for cycling in a city). The latter application might 
be particularly relevant for planning bike path network extensions if 
urban quarters develop or are repurposed.

Application
We test the proposed algorithm using data from two German cities: 
Dresden and Hamburg (see Fig. 3). We take the street networks of both 
cities from OpenStreetMap (OSM)35—using the street classification as 
a proxy for their expected traffic load—as input data; we also take data 
from local bike-sharing services to model the cycling demand. We fix 
the penalty factors against those of physically protected bike path 
infrastructure based on the street type classification decoded in OSM 
(see the Methods for a detailed description of the data).

The two cities are representatives of two archetypes of local 
demand constellations: spatially homogeneous all-to-all demand and 
confined few-to-few demand. Bike-sharing usage patterns in Hamburg 
indicate a local demand structure that refers to the first archetype (see 
Fig. 3c,d), whereas corresponding data for Dresden hint at the latter 
archetype, which is reflected by the dominance of trips between the 
university and main train station (see Fig. 3a,b).

Algorithmic generation of bike path networks. We generate families 
of bike path networks {GB(M′)}M′ for both cities. We chose a network in 
which all primary and secondary (P + S) street segments (as per their 
classification in OSM) are equipped with bike paths and compare this 
network to our generated network with the same total length 
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observables

Remove
bike path

Select least
important

edge
Bike path left

Set and calculate 
perfect initial state

Yes
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Fig. 2 | Constructing a sequence of efficient bike path networks. a, Block 
diagram of the algorithm. b, Illustration of bike path networks GB(M′) with 
different numbers M′ of street segments equipped with bike paths. Edges 
represent major busy streets (thick lines) or minor residential streets (thin lines), 
and whether the street is equipped with a bike path (blue) or not (gray). The black 
dotted lines indicate cyclists' route choices. (i) We start from a full bike path 
network GB(M) = G, in which all M street segments of the network G are equipped 
with a bike path (M′ = M). (ii) We first remove all of the bike paths that are not 

used by any cyclists, nij = 0, leaving us with the smallest subgraph GB(M0) that still 
optimally serves the given demand. (iii, iv) We then remove the least important 
edges one by one, defined by the smallest product p0

ij nij of the penalty factor and 
the number of cyclists using the bike path, updating the cyclists' route choice and 
recording one network GB(M′) for each number M′ of bike paths. (v) The 
algorithm terminates with an empty bike path network GB(0) once all of the bike 
paths have been removed.
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Λ(M′) = ∑e∈EB(M′)l
street
e  of bike paths such that Λ(M′) = ΛP+S. Taking the 

installation and maintenance cost of the bike path network propor-
tional to its length, we thus compare networks with the same budget. 
Due to some antiparallel one-way streets, our algorithm may place 
slightly more bike paths along other streets than effectively exist in the 
P + S network. As we assume bidirectional paths, our algorithm may 
equip only one of the antiparallel streets with a bike path, instead of 
both as in the P + S network.

Figure 4 illustrates both types of networks for Dresden and Ham-
burg. The network generated by our algorithm largely coincides with 
the primary and secondary roads due to the high penalty if bike paths 
are removed; however, we observe strong differences in the density of 
the bike path coverage. Especially in Dresden, the resulting bike path 
network is much denser along the central north–south axis of high 
station density and bike-sharing usage, indicating that our algorithm 
correctly adapts the network to the input demand conditions (Fig. 
4c). The differences for Hamburg are smaller due to the comparatively 
homogeneous demand across the city, although our algorithm intro-
duces bike path shortcuts through residential areas in cases of high 
demand or to connect stations to the bike path network.

To quantitatively compare the bike path families for both cities, 
we normalize the length of bike paths λ = Λ(M′)/Λ(M0) with respect to 
the length Λ(M0) after removing all of the unused bike paths (see Fig. 
2b). We define the total perceived distance of all trips in the cyclist 
preference graph as

ℒ(λ) = ∑
i,j∈V

ni→j Li→j(Π∗
i→j(λ), λ) (3)

where Li→j(Π, λ) = ∑e∈Πle(λ) (compare with equation (2)). Here, le(λ) 
denotes the effective length of the street segment e in the cyclist pref-
erence graph G, given a set of bike paths EB(M′) with normalized length 
λ (that is, including penalties only for those streets from which we have 
removed the bike path); Π∗

i→j(λ) denotes the shortest path in this cyclist 
preference graph and thus the route chosen by cyclists going from i to 
j. To compare the total perceived distance across both cities, we meas-
ure the overall performance b(λ) of the resulting network as  
the bikeability

b(λ) = ℒ(0) − ℒ(λ)
ℒ(0) − ℒ(1) , (4)
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Fig. 3 | Street networks and bike-sharing demand in Dresden and Hamburg. 
a, Street network (gray lines), bike-sharing-station locations and station 
activity (colored circles) in Dresden between November 2017 and March 
202044. b, Distribution of station usage, measuring the combined number of 
in- and outgoing trips per station in Dresden. Bike-sharing usage is strongly 
heterogeneous and is dominated by two heavily used stations (pink) along 
the north–south axis between the central train station (center) and university 
campus (south). Station density reflects this usage pattern and is highest in the 

central city (north/center) and near the university campus (south). c, Street 
network, bike-sharing-station locations and station activity in Hamburg between 
January 2014 and May 201745. d, Distribution of station usage, measuring the 
combined number of in- and outgoing trips per station in Hamburg. The station 
activity distribution is homogeneous across a broad spectrum of total number 
of trips. This homogeneous usage is also reflected in a more homogeneous 
distribution of bike-sharing stations, which is slightly denser only in the inner  
city (south).
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where we again normalize the absolute values to the best- (λ = 1) and 
worst-case (λ = 0) scenarios; b(0) = 0 describes the network with no bike 
paths, whereas b(1) = 1 is the optimal network with bike paths along all 
of the shortest paths. We remark that our definition of bikeability dif-
fers from past measures36 in that it quantifies the efficiency of the bike 
path network with respect to a specific demand distribution. The total 
difference between the physical trip length of cyclists and the direct 
shortest paths is only on the order of 10%, consistent with the empirical 
observations of cyclists’ route choice behavior27,28.

Figure 5 illustrates the bikeability across the generated sequence 
of bike path networks. Interestingly, a small fraction of bike paths with 
a small relative length of λ > 0.1 is sufficient to achieve more than 50% 
of the maximal bikeability in both cities. The larger area under the bike-
ability curve for Dresden compared with Hamburg is consistent with the 
differences in the demand structure between the two cities: we achieve 
a faster improvement in Dresden due to the more concentrated demand 
distribution, whereas we have to cover most of the city of Hamburg 
due to the more homogeneous demand. See Supplementary Fig. 3 for 
a brief overview of the bikeability of a further twelve cities.

A comparison with the bikeability of the primary–secondary bike 
path network with the same relative length λP+S of bike paths highlights 
the better adaptation to the demand structure in our algorithm. The 
bikeability is already high when all large roads are equipped with bike 
paths (about 0.87 for Dresden and 0.82 for Hamburg). Yet our algorithm 
manages to further increase this value to about 0.97 for Dresden and 
0.95 for Hamburg (capturing more than 70% of the remaining potential 
of an optimal network b(1) = 1). Moreover, by adjusting the network to 
the route choice behavior, cyclists keep to streets equipped with bike 

paths for more than 89% of their total trip distance, compared with 
only about 60% in the primary–secondary network (see Fig. 5b,d). A 
negligible but non-zero fraction of the distance is cycled on tertiary 
and secondary streets without a bike path. See Supplementary Notes 
5 and 4 for a comparison with static and dynamic forwards percolation 
approaches, respectively.

Impact of demand structure. We attribute the difference between 
the two cities in the above analysis to the structure of the bike-sharing 
demand distributions. To quantify the impact of the demand struc-
ture on our bike path network families and their bikeability curves, 
we compare the above results to synthetic bike path networks with 
homogenized demand. We create these homogeneous demand set-
tings by first distributing demand equally between all stations and 
then distributing the stations as equidistantly as possible in the street 
network (see Fig. 6a and Methods).

Comparing the bikeability curves b(λ) and bhom(λ) in the empirical 
and the homogeneous demand settings, respectively, we find a com-
paratively large difference for Dresden and a much smaller difference 
for Hamburg (Fig. 6b,c). We quantify these differences by the area

βhom = ∫
1

0
[b(λ) − bhom(λ)] dλ, (5)

between the two bikeability curves, which describes the impact of the 
patterns—as well as the structure of the station and demand distri-
bution—on the bikeability (βhom ≈ 0.015 for Dresden, βhom ≈ 0.007 for  
Hamburg; compare with Fig. 6). This confirms our above analysis that 
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Fig. 4 | Demand-efficient bike path networks. a–f, Networks for Dresden (a–c) 
and Hamburg (d–f) with bike-sharing-station locations (purple, compare with 
Fig. 3). a,d, Bike path networks generated by the algorithm (blue) with the same 
total length as all of the primary and secondary streets, Λ(M′) = ΛP+S. 
b,e,Networks for the scenario in which only the primary and secondary streets 
(as per their OSM classification) are equipped with bike paths (black).  

c,f, Comparisons between both networks. The networks generated by the 
proposed algorithm largely coincide with the primary–secondary networks 
(orange edges in c and f) but more accurately reflect the input demand structure 
by also keeping highly used tertiary or residential streets equipped with bike 
paths and exhibiting a higher density of bike paths in high-demand areas.
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the heterogeneous, centralized demand and station distribution in 
Dresden enhances the bikeability as fewer streets have to be equipped 
with bike paths to cover a large fraction of the total demand, whereas 
there is a much smaller effect in Hamburg. A similar approach may be 
used to quantitatively compare the impact that different street net-
works, or different types of cycling or desired demand distributions 
may have on the resulting bike path networks.

Discussion
Promoting cycling as a way to improve the sustainability of urban mobil-
ity is a complex problem. The attractiveness of cycling depends on the 

available infrastructure and safety of the trips, alternative mobility 
options, other mode choice decisions that influence the amount of car 
traffic, as well as aspects such as topography and weather21.

Existing approaches to study bike path networks rely on various 
types of input data and focus on different properties; for example, 
improving connectivity of existing bike paths24, purely structural net-
work growth models26 or standard forward percolation models based 
on static route choice data25. Compared with these more abstract per-
colation models, our adaptive inverse percolation framework trades 
computational speed for the explicit inclusion of cyclist demand. 
Compared with more detailed infrastructure models, we trade accuracy 
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(compare with Fig. 5) and homogenized demand data for Dresden (b) and 
Hamburg (c). The comparatively smaller area between the curves (shaded gray, 
equation (5)) for Hamburg suggests a more homogenous empirical demand, in 
line with our observations in Fig. 4.
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of the route choice model for the ability to adaptively adjust route 
choices as the network evolves.

Similar network pruning or inverse percolation techniques—as 
used in cascading failure models37,38—have previously been applied 
to understand the structure of transportation networks and their 
robustness16,18. The approach may therefore also find applications in 
designing and analyzing infrastructure and transportation networks 
beyond cycling. Combining the suggested approach with additional 
optimization steps, for example, by using successive addition and 
removal of individual bike paths or simulated annealing techniques15 to 
explore the vicinity of networks constructed by our greedy approach, 
may further improve the quality of the resulting networks.

The proposed framework relies on several types of input, all with 
potential limitations in terms of data quality, modelling accuracy and 
interpretability of the results; however, the framework is highly adap-
tive and can easily be extended to overcome these challenges provided 
more detailed input data are available.

First, the quality and type of input data is critical for the resulting 
networks and their interpretation. Available street network data are 
mostly of high quality (see Methods) and even existing bicycle infra-
structure may be included in the framework by preventing the removal 
of bike paths from specific street segments in the network; however, 
the resulting bike path networks have to be interpreted in the context 
of the demand input (compare our results for Dresden). For example, 
the empirical bike-sharing demand used to illustrate the framework 
may be strongly influenced by the currently (non-)existing infrastruc-
ture and the type of users of the service, thus skewing the generated 
networks to further improve already efficient parts of the network. At 
the same time, the framework is not limited to empirical demand data. 
Constructing efficient networks for desired and predicted demand may 
help guide extensions of bicycle infrastructure networks by suggest-
ing efficient network structures4,25. Combining full mobility demand 
with a suitable mode choice model may even enable us to capture 
effects of induced additional demand when sufficient infrastructure  
is provided.

Second, the framework relies on a simplified route choice model 
to enable fast computation by mapping the route choice of cyclists to 
an effective shortest-path problem. We illustrated the framework with 
an effective network capturing only the effect of car traffic volume on 
cyclists route choice. A more detailed definition of the penalties, includ-
ing additional deterrents such as slopes and (left) turns, may improve 
the accuracy of the route choice model. Furthermore, explicit safety 
considerations such as accident risk may be included in the penalties as 
proposed in ref. 39, enabling more accurate quantification of the actual 
safety in addition to the perceived safety. A more accurate representa-
tion of cyclist route choice behavior and heterogeneous preferences 
among cyclists, as assumed in common probabilistic route choice 
models, may be indirectly possible by considering multiple types 
of cyclists and creating a cyclist preference graph with appropriate 
penalties for each user type.

All of these potential extensions naturally require more details 
in the input data, such as information on traffic signals, street qual-
ity or expected driving behavior for car traffic across the street net-
work. Recent contributions to the data-driven analysis and planning 
of cycling infrastructure and route choice as well as data collection 
methods are essential to establish a foundation of input data and ensure 
reliable results and predictions24–26. Although, eventually, first-hand 
on-site experience and detailed case-by-case modelling must deter-
mine the sensibility and feasibility of the suggested networks, with 
sufficiently accurate input data our framework may provide scenarios 
for efficient bicycle infrastructure networks, helping to guide planned 
extensions of existing infrastructure networks4,25. Our framework may 
thus complement current urban planning approaches22 by helping to 
develop a more detailed understanding of the theoretical properties 
of efficient bike network structures across cities and offering a baseline 

of an efficient network to develop a more detailed long-term strategy 
to expand bicycle infrastructure.

Overall, the framework presented in this article may enable quan-
titative analysis of bike path networks with a large range of tools from 
network science by providing a way to quickly generate and compare 
families of efficient bike path networks in different settings and under 
different conditions.

Methods
Street networks
We download physical street networks for Hamburg and Dresden from 
OSM35,40. Although OSM data are crowdsourced, it is of high quality in 
developed countries, especially in Western Europe41. For other regions 
of the world, OSM is sometimes the only feasible source of data42.

For both cities, we restrict ourselves to the area covered by the 
local bike-sharing schemes. We exclude city peripheries that are either 
sparsely populated with a low density of bike-sharing stations or a long 
distance from the city center. This results in a reasonably bikeable area 
of approximately 65 km2 (Dresden) and 49 km2 for Hamburg (Fig. 3).

We simplify these raw street networks by merging nodes within a 
radius of less than 35 m (for example, simplifying the detailed structure 
of intersections) and placing the resulting aggregated node at the cen-
troid of their former positions40. Finally, we discard bike-inaccessible 
roads based on the OSM street classification hierarchy43, in particu-
lar, edges labeled as: motorway, motorway_link, trunk, or trunk_link, 
which describe highways or high-speed motorways where cycling is 
not possible.

Based on the remaining nodes and edges (see Fig. 3), we create the 
physical street network Gstreet by assigning each street segment a length 
lstreetij  corresponding to its physical length in the OSM data.

Penalty factors
To fix the penalty factors in these networks without detailed infor-
mation on traffic volume, we rely on the street type classification 
decoded in OSM as a proxy for the traffic load. Within the OSM cat-
egory of car-accessible streets, we use OSM’s classification hierarchy 
of: primary, secondary, tertiary or residential streets, replacing link 
street types with their corresponding normal street types, for example, 
primary_link with primary. Street segments not labeled with one of 
the four aforementioned classifications are assigned the residential 
status, as most other OSM classifications are reserved for small streets, 
for example, living_street. In case of ambiguity on the street segment 
length or street type, we always choose the first value in the list of the  
OSM data.

We assume that the expected traffic load and thus the correspond-
ing penalty factor p0

ij monotonically increases from residential to pri-
mary roads. Based on this input, we construct the cyclist preference 
graph G with the perceived edge lengths lij = pij lstreetij  (equation (1)).

The penalty factors p0
ij quantify the trade-off between the distance 

a cyclist is willing to ride along a street with a bike path to avoid a spe-
cific street segment a without bike path. To illustrate our framework, 
we take penalty values representing the perceived distance compared 
with physically protected bike paths as they are the safest option for 
cyclists; however, the penalties can be adapted to represent other types 
of bike path implementations. We employ penalty factors as estimated 
in ref. 28; the authors associated different penalties with different prop-
erties of the route and street segment by contrasting actually chosen 
bike routes with possible alternatives in a logit route choice model. We 
take the penalty factors representing accepted detours for streets with 
more than 30,000 vehicles per day, 20,000 to 30,000 vehicles per day, 
and 10,000 to 20,000 vehicles per day. Due to lack of detailed informa-
tion on traffic volume, we directly match these penalties to the OSM 
street types: primary street segments are assigned a penalty p0

ij = 7.0, 
secondary p0

ij = 2.4, and tertiary p0
ij = 1.4. We add a smaller penalty factor 

p0
ij = 1.1 for residential street segments. These values serve as illustrative 
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examples of the influence of car traffic and may vary depending  
on the location, trip purpose, bicycle infrastructure or for  
individual cyclists.

Bike-sharing demand data
We take demand data from local bike-sharing services in Dresden and 
Hamburg as demand input for the algorithm (Fig. 3). For both cities, we 
map the bike-sharing stations to their respective nearest node in the 
street network and obtain the origin–destination-resolved demand 
statistics by counting the overall number of trips ni→j made throughout 
the entire observation period per pair (i, j) of stations. To quantify 
the total usage of each station, we compute the sum of bike rentals 
and returns at the station (see Fig. 3b,d). The two datasets represent 
two archetypes of local demand constellations: confined few-to-few 
demand in Dresden (Fig. 3a,b) and spatially homogeneous all-to-all 
demand in Hamburg (Fig. 3c,d).

Dresden. Dresden’s local bike-sharing scheme operated on a com-
bined station-based and free-floating mode during the observation 
period. Although bikes could be rented or returned on an as-needed 
basis within a pre-defined area in the inner city center, they needed 
to be rented from, and returned to, one of 159 stations outside of the 
free-floating zone44.

To estimate the local bike demand, we use a proprietary dataset of 
approximately 440,000 bike-sharing trip records conducted by stu-
dents of the local universities between November 2017 and March 2020 
(except February and September 2018), which accounts for about 80% 
of all trips of the service44. The dataset contains, among other things, 
information on the trip origin and destination if the trip started or 
ended at a station, as well as the pickup and drop-off timestamps. The 
dataset does not contain positional information on trips conducted 
in free-floating mode.

To be able to fix the demand distribution to nodes in the street net-
work, we exclude trips for which no origin or destination information 
is available (for example, trips starting or ending in the free-floating 
zones). Furthermore, we exclude nine stations that are distant from 
the city center and are thus not included in the core polygon illus-
trated in Fig. 3a, leaving approximately 163,000 trip records for the 
demand analysis. The remaining 150 stations are mapped to 142 nodes 
of the street network G (eight stations are mapped to the same node 
as another station, for example, two stations on two sides of a large 
street crossing).

Hamburg. In 2017, Hamburg’s station-based bike-sharing scheme 
operated 206 stations, of which 129 were distributed in the core city 
(see Fig. 3b). Between January 2014 and May 2017 the service facilitated 
approximately 8.6 million rides for which detailed trip information is 
publicly available45. The data contains, among others, information on 
trip origin and destination station, pickup and drop-off timestamps, 
as well as user or bike-related information.

We again exclude trips where no origin or destination informa-
tion is available as well as trips which start and end at the same station, 
leaving about 6.4 million trips in our region of interest (approximately 
74% of all trips). After mapping the 129 stations to the street network 
G, we keep 127 unique locations (two stations are mapped to the same 
node as another station).

Homogenized demand
To quantify the impact of the demand distribution on the bikeability, 
we compare our results for the empirical demand distribution with 
results for homogenized demand distributions. We generate these 
randomized comparisons in three steps: (1) create approximately 
homogeneous demand and station distribution; (2) generate bike path 
ensembles for ten realizations of the demand and station distribution; 
(3) average the bikeability results from the different realizations.

We create these homogeneous demand settings by first  
distributing demand equally between all stations, setting n(hom)

i→j = 1 for 
all bike-sharing-station pairs i and j, where i ≠ j. Second, we distribute 
the stations as equidistantly as possible in the street network.  
To achieve this station distribution, we create a triangular lattice  
in the polygon of the physical street network with a slightly  
higher total number of lattice points. We then map each lattice point 
to the closest node in the underlying street network G and delete  
excess points starting with those lattice points whose position in the 
triangular lattice is furthest from its corresponding node in G until we 
are left with the same number of nodes as station in our original  
data (Fig. 6a).

We create bike path networks as described above, compute the 
resulting bikeability and other measures, and average them over ten 
realizations of random homogeneous station distributions.

Data availability
The bike-sharing trip records used to estimate the cycling demand in 
Hamburg are publicly available from ref. 45. The specific data used for 
Hamburg in this paper can be found at Zenodo with the code46. The 
bike-sharing trip records for Dresden are a proprietary asset of the 
Studierendenrat of the Technische Universität Dresden and nextbike 
GmbH, and cannot be made accessible by the authors. Source Data are 
provided with this paper.

Code availability
The code for our algorithm and a guide to reproducing the results is 
available through GitHub (https://github.com/PhysicsOfMobility/
BikePathNet) under AGPL-3.0 license. The specific version of the pack-
age used to produce the results for this manuscript is available from 
Zenodo (ref. 46).
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