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Abstract

The robust operation of power transmission grids is essential for most of today’s technical
infrastructure and our daily life. Adding renewable generation to power grids requires grid extensions
and sophisticated control actions on different time scales to cope with short-term fluctuations and
long-term power imbalance. Braess’ paradox constitutes a counterintuitive collective phenomenon
that occurs if adding new transmission line capacity to a network increases loads on other lines,
effectively reducing the system’s performance and potentially even entirely destabilizing its operating
state. Combining simple analytical considerations with numerical investigations on a small sample
network, we here study dynamical consequences of secondary control in AC power grid models. We
demonstrate that sufficiently strong control not only implies dynamical stability of the system but may
also cure Braess’ paradox. Our results highlight the importance of demand control in conjunction
with the grid topology to ensure stable operation of the grid and reveal a new functional benefit of
secondary control.

1. Introduction

Modern electrical power grids are complex interconnected networks in which supply and demand have to
match at all times since the grid itself cannot store any energy [ 1, 2]. To guarantee this match, different economic
mechanisms, like day-ahead and intra-day markets are used [3]. For unscheduled mismatches, e.g. random
fluctuations [4], disturbances or extreme weather, faster control mechanisms are required [5]. Such control
actions become increasingly important due to the rising share of renewable generation integrated into the grid
[6—8]. Control mechanisms are ordered by their time scale on which they act: suppose a power plant has to
unexpectedly shut down and all of a sudden there is a shortage of power in the system. The first second of the
disturbance is mainly uncontrolled, i.e. energy is drawn from the spinning reserve of the generators. Within the
next seconds, the primary control sets in to stabilize the frequency and to prevent alarge drop. To restore the
frequency back to its nominal value of 50 or 60 Hertz, secondary control is necessary [5]. However, in many
recent studies on power system dynamics and stability, the effects of control are completely neglected or only
primary control is considered [9-16]. Including secondary control might be crucial when determining stability
conditions. Even in cases where secondary control is modeled explicitly [17], its stability properties and
interaction with the network topology are typically not fully investigated.

Nonetheless, grid topology and control mechanisms have to adapt within the next years to cope with the
spatially distributed and fluctuating renewable generation. Grid adaptation includes additional transmission
lines, e.g., to connect distant renewable generators [ 18], and increasing capacity of existing lines [ 19, 20], e.g. to
prevent cascading failures [21]. Contrary to expectations, not all added lines are beneficial to the stability of a
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grid. Instead, adding some lines may cause the grid to lose its operating state via Braess’ paradox, which was
initially discovered for transportation networks [22] but may also occur in power grids [23-27].

Here, we present a dynamical analysis on the effectiveness and limitations of an implementation of
secondary control that depends on the voltage phase angle 6 of a synchronous machine. We dynamically show
how a simple implementation of secondary control restores a grid with a power mismatch back to the nominal
frequency. Furthermore, we investigate the stability of a grid with secondary control as a function of the network
topology. In particular, we find that secondary control reliably prevents Braess’ paradox if all nodes are
controlled. However, controlling only generators still allows Braess’ paradox as before, thereby highlighting the
importance of demand-side control in future grids.

This article is structured as follows. First, we introduce a simple model of the dynamics of the electric power
network in the presence of secondary control in section 2. Next, we present a stability analysis of the grid with
secondary control in section 3. Section 4 demonstrates the effectiveness of secondary control in the elementary
two-node system. Finally, we investigate how secondary control may prevent Baress’ paradox by controlling all
machines (section 5) and how it is limited when only controlling generators (section 6). We close the paper with
adiscussion on the impact of our results on current and future power grids.

2. Mathematical modeling of the electric power system

The electric power grid may be modeled as an interconnected network consisting of nodes linked by power
transmission lines (links). Each node in this coarse-grained model represents a local area including power
generation and consumption with net mechanical power input P;” being negative for effective consumer
regions, e.g. urban areas, and positive for effective generators. Let fz be the reference frequency of the power grid
(50 or 60 Hz) and wy = 27fg be the reference angular velocity. We model each node by the well-known swing
equation [1, 5,9, 10, 15, 28], which in the reference frame rotating at wg, is given by

éi = Wi (1)
_ _Wr
2H,PF

Wi (P (wi) — Pi(0i wi)). ()

The state of node i is characterized in the co-moving reference frame by the voltage phase angle 6; and the
angular velocity deviation w;. H; is the inertia constant of the generator with a nominal capacity P°. Due to the
choice of the reference frame, w; = 0 implies that the node is operating at the reference frequency fz. P?
represents the total power consumed and transmitted at node i:

n
P;(0;, w)) = (1 + &Wi)Pil + Y Bjjsin(0; — ), (3

WR j=1
where P! is the load dissipated when the frequency is fz and D; determines the fraction of the load that is
frequency dependent, for instance electrical motors or damper windings. The last term gives the power
transmitted from node i to other nodes with Bj;being proportional to the susceptance of line (i, ).

The power grid is subject to fluctuations, e.g. due to changing demand, volatile generation of renewables or
trading [4, 28-30]. To cope with these fluctuations, the grid is controlled on multiple time scales with primary
control being the fastest, followed by secondary control [31]. The primary frequency control adjusts the
mechanical power output proportional to the angular velocity deviation w; [5, 321,

. 1 pS

P" = —|Pf —P™ - — ], (4)

1 1 1
i Rjwr

where 7;is the characteristic response time of the primary control, P* is the spinning reserve power and R; is the
governor speed regulation. Secondary control is then applied through automatic generation control to restore
the frequency,

Ki

ljis = ——W (5)
WR

where x; is the gain parameter of the secondary control. Integrating equation (5) gives

P(t) = —ZL0,(t) + P, 6)
WR

where P,-rEf is the nominal spinning power. Introducing relation (6) into equations (3) and (4) and defining

, . WwR ref  pl - _ D 1 1 _ _ ki L— %R .. ms:
P = S (P; P),(0), a; = —2HiH“Pi , B = wi Y = ae and Kj; = 2H,'PiGBl] one obtains:

2



10P Publishing

NewJ. Phys. 20 (2018) 083005 EBT Tchuisseu et al

0; = w;, 7

wj = —ajw; + P; — Y Kjsin(0; — 0)) + Pf, (8)
j=1

7:Pf = —Pf — [Biwi(t) + 76 )

Here «; plays the role of an effective damping constant and P; is the net power fed into the grid or consumed at
nodeji, i.e., P;is positive for effective generators, while it is negative for effective consumers. Kj; determines the
capacity of aline, Py is the control power with time constant 7;, while 5;and y; essentially give the magnitude of
the primary and secondary control respectively. Equations (7) and (8) have the form of the well-known 2nd-
order Kuramoto model, which has been used for example in [9, 33] without control to describe the dynamics of
the power grid.

In the remainder of this article, we set the parameter 7; = 0, meaning that the control acts instantaneously.
This approximation does not affect the final steady state of the system, which we are mainly interested in,
simplifying the model considerably. The time constant 7; only changes the frequency of the oscillations during
the transient dynamics. Thereby, we can solve equation (9) for P and insert it into equation (8). In addition,
since the damping «; and primary control §; play a similar dynamical role, we absorb any contribution from j;
into «;, effectively setting 3; = 0. With that, our equation of motion for each node reads

0; = wij,

n
wj = —Q,jwj — '71’91' + P — Z K,‘j sin(0; — 9]) (10)
=1

The control term —+; 0; has the same form as the integral control used in [17]. Alternative control schemes have
been considered in[17, 34-38].

Throughout this article, we will initialize numerical simulations of the set of equations (10) using #,(0) = 0
and w;(0) = 0 for all nodes.

3. Steady state analysis and stability condition

The power grid is in a steady state if all rotatory machines are phase-locked, i.e, have the same frequency, which
ideally is the reference frequency of f = 50 or 60 Hz [39]. Mathematically, the phase-locked state is a fixed
point of (10) which is given by « = 0 and

N
> Kisin(0f — 07) = Pi — %07, (11)
j=1

foralli = 1,..., N. Without control, 7; = 0, these algebraic equations do not always have a solution for the

phases 6. As a trivial example, without enough transmission capacity, i.e, Z?’: 1 Kij < P, for finite power P; = 0

there cannot be any fixed point. However, when control is included in all nodes ~; > 0, Vi then there is always at

least one fixed point solution [17].

To derive the stability conditions of the synchronous state with respect to small perturbations, we linearize
equation (10) around (A%¥, ). We denote small perturbations around the fixed point as §; = 67 + 6; and

w; = W + dw;and define X; and X, as the n-dimensional vectors of §6; and éw;, respectively. Linearizing (10)

yields

Xl == XZ)
X, = -1 + D)X, — AX,, (12)

where I" and A are diagonal matrices with elements I';; = v;and A;; = «;respectively, representing the control
and the damping matrix. Matrix L = (L;) is a Laplacian matrix of the network topology, defined as

—K;j cos(6f — 0’;), i=j,

Li=4 & 13
' —> L, i=j. (13)
I=i
The Lyapunov exponents { \;} of the dynamical system (12) are given by the eigenvalues of the Jacobian
matrix
[ o 1
J= LL -T fA]' (14

Without secondary control, i.e., ¥ = 0, there is a single zero Lyapunov exponent which arises because the
stability is only defined up to an arbitrary phase shift, i.e., we could replace all phases by adding a constant

3
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Figure 1. Secondary control extends the stable operation as a function of the topology (11;). We plot the real part of the largest
eigenvalue A, (continuous lines) and A_ (dashed lines) as functions of the Laplacian eigenvalue 1), see equation (16). We assume that
the control is homogeneous throughout the network, i.e., 7; = +. (a) Without control, v = 0, the system becomes unstable as soon as
the Laplacian eigenvalue 11;becomes negative, as then Re(\) > 0. Note that equation (16) starts having two distinct solutions as soon
asa? = 4(p; + ). (b) With increasing control, ¥ > 0, the region of stability also increases. The plots use ahomogeneous damping
valueofa = 15 L

everywhere 6; — 6; = 0. + const.[13]. In this case the synchronous state is stable if the real part of the other
Lyapunov exponents is negative.

The inclusion of secondary control breaks the phase invariance and, as a consequence, for v > 0, thereisno
generic zero Lyapunov exponent, except at bifurcation points. Hence, the synchronous state of the system is
stable if and only if the real part of all Lyapunov exponents is negative.

In the case in which the damping and control parameters are the same for all nodes, namely o; = aand
v; = 1, the stability of the synchronized state can be analyzed using the master stability function technique [40].
We diagonalize the Laplacian matrix L by substituting ¥, = M~'X|, ¥, = M~ 'X,, where M is the matrix
composed of the eigenvectors of L such that that A = MLM! is the diagonalized matrix composed by the
eigenvalues of L 1. We assume symmetric coupling Kj; = Kj; thereby guaranteeing real eigenvalues ;.

d%i| 0 1 ]| Y
E[Yzj] B [_”J‘ - _a][Yzj]' (15)

The Lyapunov exponents are given by:
1
.M:_%iEML4%+w. (16)

Without control, v = 0, stability is guaranteed if all eigenvalues i, of the Laplacian matrix are positive, see
equation (16) and [11, 13]. Ifhowever a given eigenvalue j;is negative, one of the corresponding eigenvalues
Aj + is positive and the other one is negative; therefore, the synchronous state is unstable. With added secondary
control, i.e.,y > 0, the region of stability increases, see figure 1, where we plot the real part of Lyapunov
exponents Re[ ;] as a function of ;. Mathematically, the system is stable within the region defined by
i+ v > 0,seealso [11,41].

The eigenvalues { j1;} depend on the topology of the network. Changing the capacity of aline, adding
additional lines or removing them will change the values of { 44;} and thus change { \;}, potentially leading to
instabilities. In the following, we denote the non-zero Lyapunov exponent with the largest real part as \™ and the

corresponding eigenvalue of L as 1™,

Equation (12) can be rewritten as

4. Two-node system

Let us now investigate the elementary system consisting of two nodes, a generator (P; > 0) and a consumer
(P, < 0)first without secondary control to then investigate the benefits of adding such control.

4
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4.1. Uncontrolled two-node system

Without control, v, = 7, = 0, and assuming homogeneous damping o; = o, = «, the dynamics is given by
the following equations for the phase difference A§ = 6, — 6, and the frequency difference

A0 = w; — w, = AwwithAP = P, — Py

A = Aw,
Aw = —aAw + AP — 2K sin(A0). 17)
The system has a steady state ifand only if 2K > AP, see also [13]. The physical reason for the absence of a fixed

point for 2K < APis that the electric power flowing through a line cannot exceed the maximal capacity K.
For 2K > APthe two steady states, T} and T5, obtained from (17), and their respective eigenvalues are

-

AO* = arcsin(g), Aw* =0,
T: < 2K > (18)
2
AL(T) = —% + % — JaK? — AP?
AO* =7 — arcsin(ﬁ), Aw* =0,
T 2K (19)
AUD) = _% + \/%2 + JaK? — Ap2

The steady state T is a stable fixed point since we assume the damping « to be positive. In contrast, the steady
state T, is a saddle since its eigenvalues A, is a positive real number.

For 2K = AP, T} and T, collide via a saddle node bifurcation on a cycle (SNIC), entering a limit cycle for
K < %. Such limit cycles often cause large frequency deviations that would result in the shut down of (parts of)
the grid and are therefore undesirable [13]. But even for sufficient transmission capacity, i.e. 2K > AP, the grid
enters a limit cycle if we have unbalanced power, P; + P, = 0 so that, from equation (10) the synchronous
angular velocity is given as

P+ P

Weyn = P (20)

Hence, the grid is no longer at its reference frequency of fy = 50 or 60 Hz butbelow it for P; + P, < 0and
aboveitfor P, + P, > 0.Torestore the frequency to the reference, we apply our secondary controller in the
next subsection.

4.2. Two-node system with secondary control

Next, we consider the two-node system where one node applies a secondary control, i.e., we set the control
parametersy; = 0and~, = yin the equation of motion (10). Then, the steady state of the controlled system is
obtained as

P+ P . (P
of = Ot + arcsm(—l),
ol K
P+ P
0% — L+ 2
Y
wi =0,
Wi =

For P; > K, there is no steady state and the system approaches a limit cycle, as the power cannot be transferred
via the line and node 1 is uncontrolled. For P, < Khowever, there will be a fixed point, even if the power is
unbalanced P, + P, = 0, in contrast to the uncontrolled system (figure 2). While the uncontrolled system (solid
lines) approaches alimit cycle with wyy,,, as obtained by equation (20), the controlled system is attracted to the
fixed point, i.e. a stable operating state of the grid.

Next, we perform a stability analysis of the fixed point. Let X = (66, 66, w;,0w,) be a small perturbation of
the fixed point. The equations of motion of these small perturbations are given by

X(t) =D - X(¢), (21
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Figure 2. Including control restores the frequency back to the reference value. We plot the time evolution of the angular velocity
deviations w without control (solid lines) and when controlling one node (dashed lines). With control, the system returns tow = 0,
i.e., the grid returns to its reference frequency fz. Red and green curves represent the consumer and generator of a two-node system
respectively with parametersy = 0.1 s %, a = 0.1s ,K = 1.55 3P = 1s %, P, = —1.2572.

where the matrix D is defined as

0 0 1 0
0 0 0 1
D=|_g cos(0f — 0%) K cos(0F — 0%) —a 0 (22)
Kcos(fF — 0%) —y —Kcos(fF —0%) 0 —a
The characteristic polynomial of matrix D is given as
X+ aN + aN+a)+a,=0, (23)

where the parameters ay, a,, a; and a, are given by

a = 2a,

@ =a’®+ v+ 2a,
as = 2aa + oy,
as = avy,

a= K cos(0F — 0%) = K2 — P?. (24)

To analyze the stability of the full four-dimensional system, we need to obtain an expression for the eigenvalues.
Unfortunately, a fourth or higher order polynomial does not have an easy to analyze solution so that we apply the
Routh Hurwitz (RH) criterion to determine the stability [42]. The RH criterion is a method which contains the
necessary and sufficient conditions for the stability of the system. Given the polynomial

PO =X+ a N . 4a,_ )+ ay, (25)

where the coefficients a; are real constants, i = 1, .., n, we define the n Hurwitz matrices using the coefficients a;
of the characteristic polynomial:

By = (a),
ay 1
B2: >
as dy
a 1 0 0 . 0
as dy da 1 0
B.=las as a5 a 0 (26)
0 0 0 0 . a,

According to the RH criterion, all roots of the polynomial P()\) have negative real part if and only if the
determinants of all Hurwitz matrices are positive: det(B;) > 0, foralli = 1,2, ...,n[42]. Applying the RH
criterion to the steady state of our two-node system, we find that the steady state is stable if and only if the
following conditions are fulfilled:
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Figure 3. [llustration of the eight-node test system displaying Braess’ paradox. Four identical consumers (circles) are connected with
four identical generators (squares), using homogeneous coupling. When modifying the network, we consider increasing the capacity
on either line (1, 6) or (3, 4) or adding the new line (2, 4). Parameters for simulations on this systemare v = 1 s~ K = 1.03 5%,

—2
vy=01s".

a1>0,
613>0,
a4>0,

amayas — ai — ala, =d > 0. 27)

For the parameters used in this study, the three first conditions from (27) are always fulfilled since ar, 7, a > 0.
Hence, the steady state is stable ifand only if d > 0. In terms of the control parameter , we obtain the following
inequality

a*y? + 2aty + 4aa’(a + o?) > 0, (28)

which again is always true; hence, as long as there is non-zero control, v > 0, the synchronous state, whose
existence is guaranteed [17], is always stable, regardless of the further specific parameters of the system,
highlighting the potential of secondary control. Next, we shall investigate how secondary control interacts with
changes of the network topology that lead to Braess’ paradox in uncontrolled systems.

5. Braess’ paradox prevented by secondary control

Adding lines to a transmission network is intuitively expected to improve its synchronization ability. However,
adding certain lines instead causes the grid to lose its synchronous state. More general, the effect of adding edges
to anetwork, thereby causing problems and decreasing performances was first predicted in 1968 for traffic
networks [22] and it is since known as Braess’ paradox. It was observed in traffic systems in New York, USA [43],
and Stuttgart, Germany [44], when closing a street made the traffic go faster (inverse Braess’ paradox).

In electric networks, Braess’ paradox has been predicted in general network analysis [45], DC power flow
[46] and recently in oscillator power grids [23, 24, 27]. Building additional transmission capacity under specific
conditions causes Braess’ paradox and thereby the grid loses its fixed point and we observe a blackout.
Fortunately, not every network is susceptible to Braess’ paradox. Braess’ paradox can be understood in terms of
the fixed point solutions as given by equation (11). Without control (; = 0), the existence of fixed points is not
guaranteed, as discussed in section 3, and in fact adding a line to a network can result in the equations to be
overdetermined and therefore to have no solution. We interpret this in the light of the critical coupling K. of the
grid [13]: the critical coupling is defined as the minimum value of K so that for a homogeneously coupled grid,
i.e. Kjj = Kk;; with unweighted adjacency matrix k, the algebraic equations (11) with v = 0 have atleast one
solution. Thereby, K. gives the minimum capacity necessary to synchronize the grid. Adding aline or increasing
the capacity of an existing line effectively may increase the critical coupling K, [23]. Increasing K, means the fixed
point can only be restored by increasing the capacity K for all lines. Besides, even if the fixed point solution exists
after a modification of the network, the network eigenvalues £; might have changed so that the available fixed
point became unstable.

To study the effect of Braess’ paradox in more detail, we investigate an example network composed of eight
nodes, where adding one additional transmission line or increasing the capacity of an existing line leads to a
desynchronization of the network [24]. The network is shown in figure 3. The grid is such that generation and
consumption are not evenly distributed, for instance, generator node 4 is connected to consumer nodes 5 and 8
while generator node 3 is not connected to any consumer. In figure 4, we plot the time evolution of the phase of
each node for the original uncontrolled network, compared to the controlled network, in particular when
modifying the network by increasing the capacity of an existing line or adding a new line.

7
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Original configuration Increasing capacity Adding line
2t a) Sync b) No Sync c) No Sync
3 1
o
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21 d) Sync e) Sync f) Sync
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=8B ~ e
‘E N — < ~
8 -1
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0 5 10 15 10 15 10 15 20
t[s] t[s] t[s]
Figure 4. Increasing the capacity of an existing line or adding a new line destabilizes the uncontrolled grid (Braess’ paradox). Braess’
paradox in power grids was observed when increasing the capacity of a line or adding an additional line caused the grid to lose its stable
fixed point (panels (a)—(c)), see also [23]. In contrast, applying secondary control guarantees stability (panels (d)—(f)). We use the eight-
node system depicted in figure 3, doubling the capacity of line (3, 4) in panels (b) and (e) or adding a new line (2, 4) for panels (c) and
(f). Parameters are y = 0.1 s 2anda = 1s 1, K = 1.03 s %forall nodes and generator and consumer power set to P, = 1 s72,
Pon = —1 572, respectively. As in figure 2, red and green lines indicate consumers and generators respectively.
0.6 0.6 . . . . . .
a) b)
0.5 0.5 1 (45).(48)
No f.p
0.4 / 1 0.4F | (1,6)
E | — (34
=03 R Ay X1 ] G4
By ! 3 — (32,67
0.2 oo T 02t .
! - (6,5), (6,8)
0.17 ‘ 0.1F i
> — 21,7
0 ; 0F -
0 01 02 03 04 05 06 0.7 0 01 02 03 04 05 06 07
_2 _2
Az, (s7) AK, 4 (s7)

Figure 5. Increasing capacity leads to an increase of the load on the maximally loaded lines. Shown are the stationary phase differences
(as indications of the load) between nodes when increasing the capacity of line (3, 4) of the grid shown in figure 3 without control
(panel (a)) and with control in allnodes y = 0.1 st (panel (b)). Without control, there is no fixed point beyond the critical added
capacity AK, ~ 0.6 s~ >and thus the system goes to a desynchronized state. With control in all the nodes, the synchronized state is
always stable. K; ; = 1.03 s~2 for all lines except the one with added capacity. Other parameters as in figure 4.

Let us review the results in detail, starting with the original network without control. As shown in panel (a),
after a short transient, the original network enters a phase-locked state where all machines run stably in
synchrony. The stationary power flux through line (3, j) is given by Fi}k = Ki; sin(Aij) where Aﬁ?fj =0F - 9;‘5
is the stationary phase difference. The stationary phase differences can be obtained from the fixed point given by
equation (11) using Newton’s method. In the following, we will mainly focus on the phase differences as
indicators of how the flows are evolving and which lines have to carry additional load. As shown in figure 5 a for
the steady state of the original configuration (AKj; 4 = 0) lines (3, 2), (3, 7), (6, 5) and (6, 8) carry no load
(A@;’fj = F['; = 0) while all other lines have identical load. Thus, the total power generated by node 3 goes to
node 4 and from there it feeds the consumer nodes 5 and 8. Conversely, the power generated by nodes 2 and 7

goes to consumer 1, where halfis consumed and halfiis fed to node 6. The steady state can be seen as composed of

two subgrids, one being the mirror of the other. Let us call subgrid S4 the one composed by nodes 3, 4,5 and 8
and Sg the one composed by other nodes.

Now, consider an increase in the capacity of line (3, 4), connecting two generator nodes, by AK without
applying any control vy = 0. From a dynamical point of view, the capacity increase translates into a larger
coupling coefficient between nodes 3 and 4. As a consequence, the phase difference between them decreases, as

8
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-2 -2
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Figure 6. Introducing control guarantees non-zero ™ and thereby negative dynamical eigenvalues Re(\™). We display the largest
Laplacian eigenvalues ;™ as a function of the added capacity of line (3, 4) in panel (a) and the largest non-zero Lyapunov exponent
Re[A™]in panel (b). Black lines indicate the case without control (y = 0) and blue lines the case with control in all nodes

(y=0.1 s~ 2). Parameters as in figure 5.

shown in figure 5(a) (magentaline). However, this has a side effect: phase differences A0} ; = A6} ¢ increase
(green line) as does the power flow on lines (4, 5) and (4, 8), Fz 5= Ff ¢ > 1 s72. The power arriving from node 4
to consumers 5 and 8 is slightly larger than their consumption, thus the remaining power is fed to node 6 and the
phase differences AG7 ; = AB ; (redline) are no longer 0. They are slightly negative, signaling a weak flow
towards consumer 6. Hence, node 6 no longer gets all the power from node 1 and Af ¢ decreases (cyan line).
The flow send to consumer 1 by generators 2 and 7 is also reduced, meaning that phases Af% | = A7 slightly
decrease (blackline). Finally, since now generators 2 and 7 feed less power to node 1, the remaining power is send
to node 3 and the phases Af%, = A5, (blue line) are no longer 0, rather slightly negative, indicating a weak
flow towards node 3. Thus, the increase of capacity has induced a weak power flow between the two subgrids.
Furthermore, it has broken the mirror symmetry between the subgrids. Comparing the flows with the original
ones, the difference can be seen as a weak overall counter-clockwise flow. For the lines for which the original flow
was in the opposite direction to this newly induced flow, the effect of the added capacity is beneficial since the
flow is actually reduced. However, lines (4, 5) and (4, 8), for which the original flow has the same direction as the
induced overall flow, have to carry alarger load. Eventually lines (4, 5) and (4, 8) reach the maximum power they
can deliver and at AK, ~ 0.6 s~2 the system does no longer have a fixed point.

We may also investigate this loss of synchrony in terms of the stability analysis performed in section 3.

Figure 6 shows the real part of the largest non-zero Lyapunov exponent Re[ A™] and the corresponding
eigenvalue of the Laplacian matrix ™ (black lines). For a small amount of added capacity, the overall effect is
positive: 4™ increases, thus Re(\™) decreases and therefore the stability of the synchronized solution is
improved, as intuitively expected. For AK; 4 = 0.05s 2, 1™ reaches 1,/4 so that \™ becomes complex and
Re(A\™) remains clamped at —1/2, which is the most negative value it can take. As the capacity is further
increased, "™ reaches a maximum at AK = 0.16 s~ 2and then decreases. For AK;4 = 0.32 s, u™ < 1/4and
Re(A™) starts to increase. Finally at AKs 4 = AK;, p™ = 0and Re(\™) = 0. Thus, the fixed point is stable while
itexists and at AK_ the system undergoes a saddle node bifurcation, losing the stable fixed point, which signals
the Braess’ paradox for this system. For AK; 4 > AK_ the system enters a desynchronized regime, as shown in
figure 4(b) and [23].

Similar effects can be triggered by an increase of the capacity of line (1, 6). In this case, the weak overall flow is
clockwise, overloading lines (2, 1) and (7, 1) and the synchronized state disappears again at AK, ~ 0.6 s .
Finally, adding a new line, e.g., (2, 4) alters the topology of the grid and without control, there is no fixed point
anymore and the grid desynchronizes as shown in figure 4(c) and [23].

Is Braess’ paradox still present after adding secondary control? Let us consider the same eight-node network
and the same cases as before but now with control in all the nodes y; = v > 0. As shown in figures 4(e) and (f),
controlling the network guarantees a stable state even after doubling the capacity of line (3, 4) or adding a new
line (2, 4), thereby preventing Braess’ paradox.

As indicated in section 3, when control is included in all nodes, there is always a fixed point solution. Even if
the transmission capacity Kj; is insufficient or would normally cause Braess’ paradox, the term —~; 0F in
equation (11) balances both sides of the equation and guarantees a solution. In fact

AP = =07 (29)

is the power provided by the secondary control in the stationary regime. The effective power generated/
consumed at each node in the stationary regime is given by
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Figure 7. Braess’ paradox is completely cured with added control. (a): we plot the change in power of the stationary state when
applying a control of v = 0.1 in all nodes. The control leads to a positive power change in consumers and negative in generators. (b):
the total power that needs to be induced by the controller is reduced with added capacity on line (3, 4), hence the costs of control are
reduced with added capacity. Parameters as in figure 5.

Pt = p + APF. (30)

Thereby, we do not need to increase the capacity of all lines because the control reduces the total power flow
in the system.
We illustrate this for a two-node system with y; = 7, = . The critical coupling is then given as

KN = K. — yA0/2, 31)

i.e. the controller reduces the load on the lines, enabling a fixed point with lower capacity. Following the same
argumentation, secondary control also cures Braess’ paradox which would otherwise require an increase of the
transmission capacity.

To better understand how the controller stabilizes the network, we plot the stationary change of power with
respect to the nominal values AP* as the capacity ofline (3, 4) increases in figure 7(a). Consider first the original
network, AK; 4 = 0. The added control changes the effective power of each node. With control, generators have
negative and consumers positive power change, i.e., consumption is reduced as well as generation. Asa
consequence, the power flow through the loaded lines is reduced and the phase differences are smaller than in
the uncontrolled case. Furthermore, the control induces a (small) flow between the two subgrids. This steady
state is more robust with respect to perturbations than the uncontrolled case for two reasons: first, the range for
which Re(A™) is negative now extends to negative values of ;™ as shown in figure 1(b). Second, as shown in
figure 6, for this steady state ™ = 0.447, which is in fact larger than that of the steady state without control. Asa
consequence Re[X™] = —1/2 which is way below the value for the uncontrolled case and is the most negative
value it can take.

As capacity is added to line (3, 4), A0} , decreases as expected, see the magenta line in figure 5(b), thus
control gradually decreases the effective power of node 4, while increasing that of the other generators so that
effective power in the different generator nodes becomes more similar as shown in figure 7. In the same way,
control gradually decreases the consumption of node 1, while increasing the consumption of the other nodes.
Although the phase differences A0% ; = A0} g increase, lines (4, 5) and (4, 8) never get overloaded. As shown in
figure 6, blue lines, as additional capacity is added, the eigenvalue ™ keeps increasing and the largest dynamical
eigenvalue Re[ X™] remains clamped at —1/2, signaling maximum stability. Therefore, the synchronized steady
state is always stable, curing Braess’ paradox.

What is the cost of this cure? By introducing the secondary control, all controlled nodes have to provide
control power in form of AP} . The more power that has to be provided, the more costly the secondary
controller becomes. When curing Braess’ paradox, we might have just shifted the paradox from the power flow
to the control costs. To analyze this, we consider the sum of the absolute values of the stationary power provided
by the controlled system, 3"/ AP, which can be seen as an indicator of the overall costs of control. As shown in
figure 7(b), as AKj 4 increases, the overall costs, ZilAPi*I, do notincrease, on the contrary, they decrease.
Therefore, if all nodes are controlled, an increase in line capacity is beneficial, not only for the stability but also in
decreasing the overall costs of control, and thus Braess’ paradox is completely avoided.

Similarly, adding the new line (2, 4) with control applied to all nodes, reduces total control costs. The
changes of power AP;* and the total load on the lines are visualized in figure 8. As before, generators have
negative and consumers positive power change i.e., the total consumption and the total generation are decreased
with respect to the uncontrolled case.
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Figure 8. Controlling all nodes changes the power dispatch in the system and allows stable operation without Braess’ paradox. We
display the eight-node system susceptible to Braess’ paradox with an added line (2, 4). Including secondary control causes all nodes to
adapt their power in the stationary state as AP;" = —~,67. Therefore, consumers (circles) consume less (red: positive power change),
similarly generators (squares) generate less (blue: negative power change). Thereby, the system preserves its steady state even after
including a line that causes an overload in the uncontrolled system. In addition, we note a very heterogeneous load of the lines (line
color: darker colors indicate higher load). Specifically, the lines (4, 5) and (4, 8) are highly loaded, i.e., the phase differences AQT’S and
AB g become very large. Parameters as in figure 5.
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Figure 9. The effectiveness of control only in generators in curing Braess’ paradox depends on the topology. Here we plot the
stationary phase differences (panels (a) and (b)) and the effective power of the generators (panels (¢) and (d)) when increasing the
capacity of lines (3, 4) (panels (a) and (c)) or (1, 6) in (panels (b) and (d)), for the grid shown in figure 3. When increasing the capacity of
line (3, 4), the instability takes place for smaller values of AK than in the case without control (compare the green line with that of
figure 5(a)). On the contrary, when adding capacity to line (1, 6), the control prevents the failure of the network. Parameters as in
figure 5.

6. Controlling only the generators

So far, we have assumed that all nodes in the network can be controlled. Effective consumer nodes, however,
may have limited generation capacity and therefore limited control capability. Therefore, let us now assume that
secondary control is only available at the nodes with positive power generation (generators), as usual in today’s
power grids [5]. Since the total consumption is fixed, the total generation also has to stay constant, thus the
control can only redistribute the effective power delivered by the generators among them. In this case, the
effectiveness of the control depends strongly on the topology, e.g. which line is getting upgraded. We consider
two cases.

First, we consider an increase of the capacity ofline (3, 4) by AKj 4, which without control eventually leads to
Braess’ paradox (figure 4(b)). Adding control in generators only does not help to improve the situation. In fact,
as shown in figure 9(a) the phase differences A0} ; = Af} ¢ increase faster with AK; 4 and the fixed point
disappears at AK, ~ 0.49 s~2, i.e. for alower value than without control. So, controlling only the generators
does not prevent Braess’ paradox reliably. To understand this phenomenon, consider the original grid. Since
node 4 has to feed two consumer nodes, control increases the effective power of 4, while it decreases that of the
other generators, as shown in figure 9(c) at AK; 4 = 0. The total power generation in subgrid S, becomes
smaller than in subgrid Sg. Since consumers have a fixed power, a small net flux has to go from subgrid S to S.
The additional flow is transmitted through lines (6, 5) and (6, 8), which now carry a small flux towards 6 and
through lines (3, 2), (3, 7) which carry flux towards 2 and 7. As a consequence, the fluxes F;'f 5= ij ¢ become
larger than in the uncontrolled case. Adding additional capacity at line (3, 4) leads to a reduction of the effective
power in generator 4 and an increase of power for the other generators so that the overall net flow from subgrid
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Figure 10. Controlling only the generators does not reliably prevent Braess’ paradox. We show the time evolution of the phases of the nodes
for the grid as shown in figure 3 after increasing the capacity of one line, specifically (a): AK; 4 = 1.0 s72 or (b): AKy 6 = 1.0 s72. When
adding capacity to line (3, 4), the control on the generators cannot prevent a loss of the fixed point (panel (a)). However, the angles do not
diverge as drastically as in an uncontrolled case, compare figure 4(b). In contrast, applying control only on the generators fully prevents
Braess’ paradox, when line (1, 6) is modified. Parameters as in figure 5.

S to Sp decreases. However, the added capacity, as discussed in the context of figure 5, breaks the symmetry and
in fact the flow through (6, 5) and (6, 8) actually increases, while that through (3, 2), (3, 7) decreases (which can
even reverse). The increasing flow arises as a combination of a flow between the subgrids for the original network
and a weak counter-clockwise flow induced by the added capacity. To account for the increasing flux going
through (6, 5) and (6, 8), the flux through lines (4, 5) and (4, 8),which were already quite loaded, also has to
increase. Thus, with control only in generators, the angles A9} ; and A@} 4 are larger than without control and
thus instability takes place at a smaller value of AK,

Nevertheless, the oscillatory regime reached after the instability is somehow different in the cases with and
without control, as shown in figure 10(a). With control, most of the nodes remain synchronized at the reference
frequency and only two nodes show phase slips at a slow time scale. On the contrary, without control all nodes
rotate showing phase slips at a much faster rate (compare with figure 4(b)) for the same AKj; 4 noting the
different time scale of both figures.

Next, we consider an increase of the capacity of line (1, 6), connecting two consumer nodes, by AKj 4. As
discussed in section 5 without control, increasing AK; ¢ increases the load onlines (2, 1) and (7, 1) until the
system becomes unstable at AK, ~ 0.6 s~2,leading to Braess’ paradox. Applying control exclusively to
generator nodes does indeed help in this case. The range of existence of the fixed point is extended to any value of
AK; ¢ preventing the paradox completely, see figure 10(b). Let us analyze why here the synchronous state is
stabilized while this was not the case when increasing the capacity of line (3, 4). Consider the case of no added
capacity: the phase differences and the effective power delivered by each generator are the same in both cases as
shown in figure 9. The phase difference for lines (2, 1) and (7, 1) (black) is smaller than that of lines (4, 5) and
(4, 8) (green). This is because the control in generators increases the angles Ad} ; and A} ; while it decreases
AG%, = AB%,, compared to the system without control. In this situation, adding extra capacity in line (1, 6) will
increase the difference A0 | = A@7, and thus the flux carried on lines (2, 1) and (7, 1). However, the added
capacity will, as before, reduce the overall net flow from subgrid S to Sg, slowing down the growth of the phase
differences A0 | = A6% . The aftermath is thatlines (2, 1) and (7, 1) do not get saturated in this case and Braess
paradox is avoided.

7. Discussion

The above results indicate that simple secondary control may successfully restore the grid frequency of an
unbalanced power grid and is also capable of preventing Braess’ paradox.

Secondary control, when applied to all nodes, improves the stability of the grid, regardless of topology, and
even allows stable operation for mismatched power [1, 5, 47]. While primary control stabilizes the frequency,
secondary control restores the frequency to the reference value and guarantees the existence of a stable fixed
point. We have systematically computed the fixed point stability of the power grid with secondary control as a
function of both the network topology and the control action. Control improves stability, increasing the range of
network topologies for which the synchronized steady state is stable. Thereby, we have extended previous
stability analysis of uncontrolled systems [11] or systems including secondary control restricted to balanced
power [38].

Secondary control in all nodes also prevents the loss of the operational state via Braess’ paradox. As shown by
Witthaut and Timme [23, 24], the addition of certain transmission lines may lead to a loss of the operational state
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of a power grid. Using primary control only [13] does not suffice to prevent Braess’ paradox. We have now
demonstrated that secondary control prevents the desynchronization in networks prone to Braess’ paradox if all
nodes, i.e., effective consumers and generators alike, are controlled (figures 4 and 8). The control reduces the
total amount of net power generated and consumed at each node of the grid, guaranteeing that the transmitted
power does not exceed the transmission capacity. Thereby, it offers a trade-off between grid extension and
investments in control, assuming some amount of local generation is possible. Once secondary control is
implemented in all nodes, subsequent line capacity increases are beneficial, both for stability and also in
decreasing the overall power delivered by the control and thus its cost, fully avoiding Braess’ paradox.

In today’s grid, secondary control is implemented only in power plants. Thus, nodes with generation much
larger than consumption, i.e., generator nodes, have a large control capability while nodes in which consumption is
larger than generation (effective consumer nodes) have verylittle, if any, control capability. If only generator nodes
are controlled, then the control will only redistribute the effective power delivered by the generators among them
and as a consequence the grid topology determines the benefits of the controller. We have observed that if the
capacity of a line connecting two generator nodes is increased, the control does not prevent Braess’ paradox. On the
contrary, in the case of increasing the capacity of aline connecting two consumer nodes, secondary control is
capable of redistributing the power flow so that no lines are overloaded and the paradox is avoided.

Concluding, using secondary control on all nodes in a network improves its stability and robustness with
respect to dynamical and topological perturbations. If control is mainly available in generator nodes, the
effectiveness of the control depends strongly on the topology of the network. This stresses the importance of
involving consumers, e.g. via demand control schemes or local generation (prosumers) in future grids
[15, 16, 28, 48]. Alternatively, other options to provide secondary control at the consumer side, e.g. by using
distributed storage or back-up generation, have to be considered. Finally, further research is necessary to extend
our results, e.g., to alternative control mechanisms. One example is to allow 7 > 0in equation (9), i.e., making
the power provided by each node explicitly time-dependent.
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