
New J. Phys. 20 (2018) 083005 https://doi.org/10.1088/1367-2630/aad490

PAPER

Curing Braess’ paradox by secondary control in power grids

Eder Batista TchawouTchuisseu1 , DamiàGomila1 , PereColet1 , DirkWitthaut2,3 ,
Marc Timme4,5 andBenjamin Schäfer4,5

1 Instituto de Física Interdisciplinar y SistemasComplejos, IFISC (CSIC-UIB), CampusUniversitat Illes Balears, E-07122 Palma de
Mallorca, Spain

2 Forschungszentrum Jülich, Institute for Energy andClimate Research—SystemsAnalysis andTechnology Evaluation (IEK-STE),
D-52428 Jülich, Germany

3 Institute for Theoretical Physics, University of Cologne, D-50937Köln, Germany
4 Chair forNetworkDynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical

University ofDresden, D-01062Dresden, Germany
5 NetworkDynamics,Max Planck Institute forDynamics and Self-Organization (MPIDS), D-37077Göttingen, Germany

E-mail: benjamin.schaefer@tu-dresden.de

Keywords: control, stability, power grid, Braess’ paradox, smart grid

Abstract
The robust operation of power transmission grids is essential formost of today’s technical
infrastructure and our daily life. Adding renewable generation to power grids requires grid extensions
and sophisticated control actions on different time scales to copewith short-termfluctuations and
long-termpower imbalance. Braess’ paradox constitutes a counterintuitive collective phenomenon
that occurs if adding new transmission line capacity to a network increases loads on other lines,
effectively reducing the system’s performance and potentially even entirely destabilizing its operating
state. Combining simple analytical considerations with numerical investigations on a small sample
network, we here study dynamical consequences of secondary control in ACpower gridmodels.We
demonstrate that sufficiently strong control not only implies dynamical stability of the systembutmay
also cure Braess’ paradox. Our results highlight the importance of demand control in conjunction
with the grid topology to ensure stable operation of the grid and reveal a new functional benefit of
secondary control.

1. Introduction

Modern electrical power grids are complex interconnected networks inwhich supply and demand have to
match at all times since the grid itself cannot store any energy [1, 2]. To guarantee thismatch, different economic
mechanisms, like day-ahead and intra-daymarkets are used [3]. For unscheduledmismatches, e.g. random
fluctuations [4], disturbances or extremeweather, faster controlmechanisms are required [5]. Such control
actions become increasingly important due to the rising share of renewable generation integrated into the grid
[6–8]. Controlmechanisms are ordered by their time scale onwhich they act: suppose a power plant has to
unexpectedly shut down and all of a sudden there is a shortage of power in the system. The first second of the
disturbance ismainly uncontrolled, i.e. energy is drawn from the spinning reserve of the generators.Within the
next seconds, the primary control sets in to stabilize the frequency and to prevent a large drop. To restore the
frequency back to its nominal value of 50 or 60Hertz, secondary control is necessary [5]. However, inmany
recent studies on power systemdynamics and stability, the effects of control are completely neglected or only
primary control is considered [9–16]. Including secondary controlmight be crucial when determining stability
conditions. Even in cases where secondary control ismodeled explicitly [17], its stability properties and
interactionwith the network topology are typically not fully investigated.

Nonetheless, grid topology and controlmechanisms have to adapt within the next years to copewith the
spatially distributed and fluctuating renewable generation. Grid adaptation includes additional transmission
lines, e.g., to connect distant renewable generators [18], and increasing capacity of existing lines [19, 20], e.g. to
prevent cascading failures [21]. Contrary to expectations, not all added lines are beneficial to the stability of a
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grid. Instead, adding some linesmay cause the grid to lose its operating state via Braess’ paradox, whichwas
initially discovered for transportation networks [22] butmay also occur in power grids [23–27].

Here, we present a dynamical analysis on the effectiveness and limitations of an implementation of
secondary control that depends on the voltage phase angle θ of a synchronousmachine.We dynamically show
how a simple implementation of secondary control restores a gridwith a powermismatch back to the nominal
frequency. Furthermore, we investigate the stability of a gridwith secondary control as a function of the network
topology. In particular, we find that secondary control reliably prevents Braess’ paradox if all nodes are
controlled. However, controlling only generators still allows Braess’ paradox as before, thereby highlighting the
importance of demand-side control in future grids.

This article is structured as follows. First, we introduce a simplemodel of the dynamics of the electric power
network in the presence of secondary control in section 2.Next, we present a stability analysis of the gridwith
secondary control in section 3. Section 4 demonstrates the effectiveness of secondary control in the elementary
two-node system. Finally, we investigate how secondary controlmay prevent Baress’ paradox by controlling all
machines (section 5) and how it is limitedwhen only controlling generators (section 6).We close the paperwith
a discussion on the impact of our results on current and future power grids.

2.Mathematicalmodeling of the electric power system

The electric power gridmay bemodeled as an interconnected network consisting of nodes linked by power
transmission lines (links). Each node in this coarse-grainedmodel represents a local area including power
generation and consumptionwith netmechanical power inputPmi being negative for effective consumer
regions, e.g. urban areas, and positive for effective generators. Let fR be the reference frequency of the power grid
(50 or 60 Hz) andωR=2πfR be the reference angular velocity.Wemodel each node by thewell-known swing
equation [1, 5, 9, 10, 15, 28], which in the reference frame rotating atωR, is given by
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The state of node i is characterized in the co-moving reference frame by the voltage phase angle θi and the
angular velocity deviationωi.Hi is the inertia constant of the generator with a nominal capacity Pi

G. Due to the
choice of the reference frame,ωi=0 implies that the node is operating at the reference frequency fR. Pi
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P
D

P B, 1 sin , 3i i i
i

R
i i

j

n

ij i j
e l

1
åq w

w
w q q= + + -

=

⎛
⎝⎜

⎞
⎠⎟( )) ( ) ( )

where Pi
l is the load dissipatedwhen the frequency is fR andDi determines the fraction of the load that is

frequency dependent, for instance electricalmotors or damperwindings. The last term gives the power
transmitted fromnode i to other nodes withBij being proportional to the susceptance of line (i, j).

The power grid is subject tofluctuations, e.g. due to changing demand, volatile generation of renewables or
trading [4, 28–30]. To copewith thesefluctuations, the grid is controlled onmultiple time scales with primary
control being the fastest, followed by secondary control [31]. The primary frequency control adjusts the
mechanical power output proportional to the angular velocity deviationωi [5, 32],
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where τi is the characteristic response time of the primary control, Ps is the spinning reserve power andRi is the
governor speed regulation. Secondary control is then applied through automatic generation control to restore
the frequency,
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where ik is the gain parameter of the secondary control. Integrating equation (5) gives
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where Pi
ref is the nominal spinning power. Introducing relation (6) into equations (3) and (4) and defining
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Hereαi plays the role of an effective damping constant and Pi is the net power fed into the grid or consumed at
node i, i.e., Pi is positive for effective generators, while it is negative for effective consumers.Kij determines the
capacity of a line, Pi

c is the control powerwith time constant τi, whileβi and γi essentially give themagnitude of
the primary and secondary control respectively. Equations (7) and (8) have the formof thewell-known 2nd-
order Kuramotomodel, which has been used for example in [9, 33]without control to describe the dynamics of
the power grid.

In the remainder of this article, we set the parameter τi=0,meaning that the control acts instantaneously.
This approximation does not affect the final steady state of the system,whichwe aremainly interested in,
simplifying themodel considerably. The time constant τi only changes the frequency of the oscillations during
the transient dynamics. Thereby, we can solve equation (9) forPc and insert it into equation (8). In addition,
since the dampingαi and primary controlβi play a similar dynamical role, we absorb any contribution fromβi
intoαi, effectively settingβi=0.With that, our equation ofmotion for each node reads
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The control term−γi θihas the same form as the integral control used in [17]. Alternative control schemes have
been considered in [17, 34–38].

Throughout this article, wewill initialize numerical simulations of the set of equations (10) using θi(0)=0
andωi(0)=0 for all nodes.

3. Steady state analysis and stability condition

The power grid is in a steady state if all rotatorymachines are phase-locked, i.e, have the same frequency, which
ideally is the reference frequency of fR=50 or 60Hz [39].Mathematically, the phase-locked state is afixed
point of (10)which is given by 0i*w = and

K Psin , 11
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for all i=1,K,N.Without control, γi=0, these algebraic equations do not always have a solution for the
phases i*q . As a trivial example, without enough transmission capacity, i.e, K Pj

N
ij i1å <= for finite power P 0i ¹

there cannot be any fixed point.However, when control is included in all nodes i0,ig > " then there is always at
least one fixed point solution [17].

To derive the stability conditions of the synchronous state with respect to small perturbations, we linearize
equation (10) around ,i i* *q w( ).We denote small perturbations around the fixed point as i i*q q= + idq and

i i*w w= +δωi and defineX1 andX2, as the n-dimensional vectors of δθi and δωi, respectively. Linearizing (10)
yields
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where G and A are diagonalmatrices with elementsΓii=γi andAii=αi respectively, representing the control
and the dampingmatrix.Matrix L=(Lij) is a Laplacianmatrix of the network topology, defined as
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The Lyapunov exponents {λj} of the dynamical system (12) are given by the eigenvalues of the Jacobian
matrix
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Without secondary control, i.e., γ=0, there is a single zero Lyapunov exponent which arises because the
stability is only defined up to an arbitrary phase shift, i.e., we could replace all phases by adding a constant
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everywhere const.i i iq q q = +˜ [13]. In this case the synchronous state is stable if the real part of the other
Lyapunov exponents is negative.

The inclusion of secondary control breaks the phase invariance and, as a consequence, for γ>0, there is no
generic zero Lyapunov exponent, except at bifurcation points.Hence, the synchronous state of the system is
stable if and only if the real part of all Lyapunov exponents is negative.

In the case inwhich the damping and control parameters are the same for all nodes, namelyαi=α and
γi=γ, the stability of the synchronized state can be analyzed using themaster stability function technique [40].
We diagonalize the Laplacianmatrix L by substituting Y M X1

1
1= - , Y M X2

1
2= - , whereM is thematrix

composed of the eigenvectors of L such that that MLM 1L = - is the diagonalizedmatrix composed by the
eigenvalues of Lμj.We assume symmetric couplingKij=Kji; thereby guaranteeing real eigenvaluesμj.
Equation (12) can be rewritten as
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The Lyapunov exponents are given by:
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Without control, γ=0, stability is guaranteed if all eigenvaluesμj of the Laplacianmatrix are positive, see
equation (16) and [11, 13]. If however a given eigenvalueμj is negative, one of the corresponding eigenvalues
λj± is positive and the other one is negative; therefore, the synchronous state is unstable.With added secondary
control, i.e., γ>0, the region of stability increases, see figure 1, wherewe plot the real part of Lyapunov
exponents Re jl [ ]as a function ofμj.Mathematically, the system is stable within the region defined by
μj+γ>0, see also [11, 41].

The eigenvalues {μj} depend on the topology of the network. Changing the capacity of a line, adding
additional lines or removing themwill change the values of {μj} and thus change {λj}, potentially leading to
instabilities. In the following, we denote the non-zero Lyapunov exponentwith the largest real part asλm and the
corresponding eigenvalue of L asμm.

4. Two-node system

Let us now investigate the elementary system consisting of twonodes, a generator (P1>0) and a consumer
(P2<0)first without secondary control to then investigate the benefits of adding such control.

Figure 1. Secondary control extends the stable operation as a function of the topology (μj).We plot the real part of the largest
eigenvalueλ+ (continuous lines) andλ− (dashed lines) as functions of the Laplacian eigenvalueμj, see equation (16).We assume that
the control is homogeneous throughout the network, i.e., γj=γ. (a)Without control, γ=0, the systembecomes unstable as soon as
the Laplacian eigenvalueμj becomes negative, as then Re 0l >( ) . Note that equation (16) starts having two distinct solutions as soon
as 4 j

2a m g= +( ). (b)With increasing control, γ>0, the region of stability also increases. The plots use a homogeneous damping
value ofα=1 s−1.
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4.1. Uncontrolled two-node system
Without control, γ1=γ2=0, and assuming homogeneous dampingα1=α2=α, the dynamics is given by
the following equations for the phase differenceΔθ=θ1−θ2 and the frequency difference

1 2q w w wD = - = D˙ withΔP=P1−P2:

P K
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q w
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The systemhas a steady state if and only if 2K�ΔP, see also [13]. The physical reason for the absence of afixed
point for 2K<ΔP is that the electric power flowing through a line cannot exceed themaximal capacityK.

For 2K>ΔP the two steady states,T1 andT2, obtained from (17), and their respective eigenvalues are
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The steady stateT1 is a stable fixed point sincewe assume the dampingα to be positive. In contrast, the steady
stateT2 is a saddle since its eigenvaluesλ+ is a positive real number.

For K P2 = D ,T1 andT2 collide via a saddle node bifurcation on a cycle (SNIC), entering a limit cycle for

K P

2
< D . Such limit cycles often cause large frequency deviations that would result in the shut down of (parts of)

the grid and are therefore undesirable [13]. But even for sufficient transmission capacity, i.e. K P2  D , the grid
enters a limit cycle if we have unbalanced power, P P 01 2+ ¹ so that, from equation (10) the synchronous
angular velocity is given as

P P

2
. 20syn

1 2w
a

=
+ ( )

Hence, the grid is no longer at its reference frequency of fR=50 or 60Hzbut below it forP1+P2<0 and
above it forP1+P2>0. To restore the frequency to the reference, we apply our secondary controller in the
next subsection.

4.2. Two-node systemwith secondary control
Next, we consider the two-node systemwhere one node applies a secondary control, i.e., we set the control
parameters γ1=0 and γ2=γ in the equation ofmotion (10). Then, the steady state of the controlled system is
obtained as
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ForP1>K, there is no steady state and the system approaches a limit cycle, as the power cannot be transferred
via the line and node 1 is uncontrolled. ForP1<Khowever, therewill be afixed point, even if the power is
unbalanced P P 01 2+ ¹ , in contrast to the uncontrolled system (figure 2).While the uncontrolled system (solid
lines) approaches a limit cycle withωsync, as obtained by equation (20), the controlled system is attracted to the
fixed point, i.e. a stable operating state of the grid.

Next, we perform a stability analysis of the fixed point. LetX=(δθ1, δθ2, δω1,δω2) be a small perturbation of
thefixed point. The equations ofmotion of these small perturbations are given by

t tX D X , 21=˙ ( ) · ( ) ( )
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where thematrixD is defined as
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The characteristic polynomial ofmatrixD is given as
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where the parameters a1, a2, a3 and a4 are given by
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To analyze the stability of the full four-dimensional system, we need to obtain an expression for the eigenvalues.
Unfortunately, a fourth or higher order polynomial does not have an easy to analyze solution so that we apply the
RouthHurwitz (RH) criterion to determine the stability [42]. TheRH criterion is amethodwhich contains the
necessary and sufficient conditions for the stability of the system.Given the polynomial
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1
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where the coefficients ai are real constants, i n1, ..,= , we define the nHurwitzmatrices using the coefficients ai
of the characteristic polynomial:
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According to the RHcriterion, all roots of the polynomial P(λ) have negative real part if and only if the
determinants of all Hurwitzmatrices are positive: Bdet 0i >( ) , for all i=1, 2,K, n [42]. Applying the RH
criterion to the steady state of our two-node system, wefind that the steady state is stable if and only if the
following conditions are fulfilled:

Figure 2. Including control restores the frequency back to the reference value.We plot the time evolution of the angular velocity
deviationsωwithout control (solid lines) andwhen controlling one node (dashed lines).With control, the system returns toω=0,
i.e., the grid returns to its reference frequency fR. Red and green curves represent the consumer and generator of a two-node system
respectively with parameters γ=0.1 s−2,α=0.1 s−1,K=1.5 s−2,P1=1 s−2, P 1.2 s2

2= - - .
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For the parameters used in this study, the three first conditions from (27) are always fulfilled sinceα, γ, a>0.
Hence, the steady state is stable if and only if d>0. In terms of the control parameter γ, we obtain the following
inequality

a a2 4 0, 282 2 4 2 2a g a g a a+ + + >( ) ( )

which again is always true; hence, as long as there is non-zero control, γ>0, the synchronous state, whose
existence is guaranteed [17], is always stable, regardless of the further specific parameters of the system,
highlighting the potential of secondary control. Next, we shall investigate how secondary control interacts with
changes of the network topology that lead to Braess’ paradox in uncontrolled systems.

5. Braess’paradox prevented by secondary control

Adding lines to a transmission network is intuitively expected to improve its synchronization ability. However,
adding certain lines instead causes the grid to lose its synchronous state.More general, the effect of adding edges
to a network, thereby causing problems and decreasing performances was first predicted in 1968 for traffic
networks [22] and it is since known as Braess’ paradox. It was observed in traffic systems inNewYork, USA [43],
and Stuttgart, Germany [44], when closing a streetmade the traffic go faster (inverse Braess’ paradox).

In electric networks, Braess’ paradox has been predicted in general network analysis [45], DCpower flow
[46] and recently in oscillator power grids [23, 24, 27]. Building additional transmission capacity under specific
conditions causes Braess’ paradox and thereby the grid loses itsfixed point andwe observe a blackout.
Fortunately, not every network is susceptible to Braess’ paradox. Braess’ paradox can be understood in terms of
thefixed point solutions as given by equation (11).Without control (γi=0), the existence offixed points is not
guaranteed, as discussed in section 3, and in fact adding a line to a network can result in the equations to be
overdetermined and therefore to have no solution.We interpret this in the light of the critical couplingKc of the
grid [13]: the critical coupling is defined as theminimumvalue ofK so that for a homogeneously coupled grid,
i.e. K Kkij ij= with unweighted adjacencymatrix k, the algebraic equations (11)with γ=0 have at least one
solution. Thereby,Kc gives theminimumcapacity necessary to synchronize the grid. Adding a line or increasing
the capacity of an existing line effectivelymay increase the critical couplingKc [23]. IncreasingKcmeans thefixed
point can only be restored by increasing the capacityK for all lines. Besides, even if thefixed point solution exists
after amodification of the network, the network eigenvaluesμimight have changed so that the availablefixed
point became unstable.

To study the effect of Braess’ paradox inmore detail, we investigate an example network composed of eight
nodes, where adding one additional transmission line or increasing the capacity of an existing line leads to a
desynchronization of the network [24]. The network is shown infigure 3. The grid is such that generation and
consumption are not evenly distributed, for instance, generator node 4 is connected to consumer nodes 5 and 8
while generator node 3 is not connected to any consumer. Infigure 4, we plot the time evolution of the phase of
each node for the original uncontrolled network, compared to the controlled network, in particular when
modifying the network by increasing the capacity of an existing line or adding a new line.

Figure 3. Illustration of the eight-node test systemdisplaying Braess’ paradox. Four identical consumers (circles) are connectedwith
four identical generators (squares), using homogeneous coupling.Whenmodifying the network, we consider increasing the capacity
on either line (1, 6) or (3, 4) or adding the new line (2, 4). Parameters for simulations on this system areα=1 s−1;K=1.03 s−2,
γ=0.1 s−2.
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Let us review the results in detail, startingwith the original networkwithout control. As shown in panel (a),
after a short transient, the original network enters a phase-locked state where allmachines run stably in
synchrony. The stationary powerflux through line (i, j) is given by F K sinij i j i j, ,* *q= D( )where i j i j,* * *q q qD = -
is the stationary phase difference. The stationary phase differences can be obtained from the fixed point given by
equation (11) usingNewton’smethod. In the following, wewillmainly focus on the phase differences as
indicators of how theflows are evolving andwhich lines have to carry additional load. As shown infigure 5 a for
the steady state of the original configuration (ΔK3,4=0) lines (3, 2), (3, 7), (6, 5) and (6, 8) carry no load
( F 0i j i j, ,* *qD = = )while all other lines have identical load. Thus, the total power generated by node 3 goes to
node 4 and from there it feeds the consumer nodes 5 and 8. Conversely, the power generated by nodes 2 and 7
goes to consumer 1, where half is consumed and half is fed to node 6. The steady state can be seen as composed of
two subgrids, one being themirror of the other. Let us call subgrid A the one composed by nodes 3, 4, 5 and 8
and B the one composed by other nodes.

Now, consider an increase in the capacity of line (3, 4), connecting two generator nodes, byΔKwithout
applying any control γ=0. From a dynamical point of view, the capacity increase translates into a larger
coupling coefficient between nodes 3 and 4. As a consequence, the phase difference between themdecreases, as

Figure 4. Increasing the capacity of an existing line or adding a new line destabilizes the uncontrolled grid (Braess’ paradox). Braess’
paradox in power grids was observedwhen increasing the capacity of a line or adding an additional line caused the grid to lose its stable
fixed point (panels (a)–(c)), see also [23]. In contrast, applying secondary control guarantees stability (panels (d)–(f)).Weuse the eight-
node systemdepicted infigure 3, doubling the capacity of line (3, 4) in panels (b) and (e) or adding a new line (2, 4) for panels (c) and
(f). Parameters are γ=0.1 s−2, andα=1 s−1,K=1.03 s−2 for all nodes and generator and consumer power set to P 1 sgen

2= - ,
P 1 scon

2= - - , respectively. As infigure 2, red and green lines indicate consumers and generators respectively.

Figure 5. Increasing capacity leads to an increase of the load on themaximally loaded lines. Shown are the stationary phase differences
(as indications of the load) between nodeswhen increasing the capacity of line (3, 4) of the grid shown in figure 3without control
(panel (a)) andwith control in all nodes γ=0.1 s−1 (panel (b)).Without control, there is nofixed point beyond the critical added
capacityΔKc≈0.6 s−2 and thus the system goes to a desynchronized state.With control in all the nodes, the synchronized state is
always stable. K 1.03 si j,

2= - for all lines except the onewith added capacity. Other parameters as in figure 4.
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shown infigure 5(a) (magenta line). However, this has a side effect: phase differences 4,5 4,8* *q qD = D increase

(green line) as does the power flowon lines (4, 5) and (4, 8), F F 1 s4,5 4,8
2* *= > - . The power arriving fromnode 4

to consumers 5 and 8 is slightly larger than their consumption, thus the remaining power is fed to node 6 and the
phase differences 6,5 6,8* *q qD = D (red line) are no longer 0. They are slightly negative, signaling aweakflow
towards consumer 6.Hence, node 6 no longer gets all the power fromnode 1 and 1,6*qD decreases (cyan line).
Theflow send to consumer 1 by generators 2 and 7 is also reduced,meaning that phases 2,1 7,1* *q qD = D slightly
decrease (black line). Finally, since now generators 2 and 7 feed less power to node 1, the remaining power is send
to node 3 and the phases 3,2 3,7* *q qD = D (blue line) are no longer 0, rather slightly negative, indicating aweak
flow towards node 3. Thus, the increase of capacity has induced aweak power flowbetween the two subgrids.
Furthermore, it has broken themirror symmetry between the subgrids. Comparing the flowswith the original
ones, the difference can be seen as aweak overall counter-clockwise flow. For the lines for which the original flow
was in the opposite direction to this newly induced flow, the effect of the added capacity is beneficial since the
flow is actually reduced. However, lines (4, 5) and (4, 8), for which the originalflowhas the same direction as the
induced overallflow, have to carry a larger load. Eventually lines (4, 5) and (4, 8) reach themaximumpower they
can deliver and at K 0.6 sc

2D ~ - the systemdoes no longer have afixed point.
Wemay also investigate this loss of synchrony in terms of the stability analysis performed in section 3.

Figure 6 shows the real part of the largest non-zero Lyapunov exponent Re ml[ ]and the corresponding
eigenvalue of the Laplacianmatrixμm (black lines). For a small amount of added capacity, the overall effect is
positive:μm increases, thus Re ml( ) decreases and therefore the stability of the synchronized solution is
improved, as intuitively expected. ForΔK3,4=0.05 s−2,μm reaches 1/4 so thatλmbecomes complex and
Re ml( ) remains clamped at−1/2, which is themost negative value it can take. As the capacity is further
increased,μm reaches amaximumatΔK=0.16 s−2 and then decreases. ForΔK3,4=0.32 s−2,μm<1/4 and
Re ml( ) starts to increase. Finally at K Kc3,4D = D ,μm=0 and Re 0ml =( ) . Thus, the fixed point is stable while
it exists and atΔKc the systemundergoes a saddle node bifurcation, losing the stablefixed point, which signals
the Braess’ paradox for this system. ForΔK3,4>ΔKc the system enters a desynchronized regime, as shown in
figure 4(b) and [23].

Similar effects can be triggered by an increase of the capacity of line (1, 6). In this case, theweak overallflow is
clockwise, overloading lines (2, 1) and (7, 1) and the synchronized state disappears again atΔKc≈0.6 s−2.
Finally, adding a new line, e.g., (2, 4) alters the topology of the grid andwithout control, there is nofixed point
anymore and the grid desynchronizes as shown infigure 4(c) and [23].

Is Braess’ paradox still present after adding secondary control? Let us consider the same eight-node network
and the same cases as before but nowwith control in all the nodes γi=γ>0. As shown infigures 4(e) and (f),
controlling the network guarantees a stable state even after doubling the capacity of line (3, 4) or adding a new
line (2, 4), thereby preventing Braess’ paradox.

As indicated in section 3, when control is included in all nodes, there is always afixed point solution. Even if
the transmission capacityKij is insufficient orwould normally cause Braess’ paradox, the term i i*g q- in
equation (11) balances both sides of the equation and guarantees a solution. In fact

P 29i i i* *g qD = - ( )

is the power provided by the secondary control in the stationary regime. The effective power generated/
consumed at each node in the stationary regime is given by

Figure 6. Introducing control guarantees non-zeroμm and thereby negative dynamical eigenvalues Re ml( ).We display the largest
Laplacian eigenvaluesμm as a function of the added capacity of line (3, 4) in panel (a) and the largest non-zero Lyapunov exponent
Re ml[ ] in panel (b). Black lines indicate the casewithout control (γ=0) and blue lines the case with control in all nodes
(γ=0.1 s−2). Parameters as infigure 5.
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P P P . 30i i i
eff *= + D ( )

Thereby, we do not need to increase the capacity of all lines because the control reduces the total power flow
in the system.

We illustrate this for a two-node systemwith γ1=γ2=γ. The critical coupling is then given as

K K 2, 31c c
New g q= - D ( )/

i.e. the controller reduces the load on the lines, enabling afixed point with lower capacity. Following the same
argumentation, secondary control also cures Braess’ paradoxwhichwould otherwise require an increase of the
transmission capacity.

To better understand how the controller stabilizes the network, we plot the stationary change of powerwith
respect to the nominal values Pi*D as the capacity of line (3, 4) increases infigure 7(a). Consider first the original
network,ΔK3,4=0. The added control changes the effective power of each node.With control, generators have
negative and consumers positive power change, i.e., consumption is reduced aswell as generation. As a
consequence, the power flow through the loaded lines is reduced and the phase differences are smaller than in
the uncontrolled case. Furthermore, the control induces a (small)flowbetween the two subgrids. This steady
state ismore robust with respect to perturbations than the uncontrolled case for two reasons: first, the range for
which Re ml( ) is negative now extends to negative values ofμm as shown infigure 1(b). Second, as shown in
figure 6, for this steady stateμm=0.447, which is in fact larger than that of the steady statewithout control. As a
consequence Re 1 2ml = -[ ] which is way below the value for the uncontrolled case and is themost negative
value it can take.

As capacity is added to line (3, 4), 3,4*qD decreases as expected, see themagenta line infigure 5(b), thus
control gradually decreases the effective power of node 4, while increasing that of the other generators so that
effective power in the different generator nodes becomesmore similar as shown infigure 7. In the sameway,
control gradually decreases the consumption of node 1, while increasing the consumption of the other nodes.
Although the phase differences 4,5 4,8* *q qD = D increase, lines (4, 5) and (4, 8)never get overloaded. As shown in
figure 6, blue lines, as additional capacity is added, the eigenvalueμmkeeps increasing and the largest dynamical
eigenvalue Re ml[ ] remains clamped at−1/2, signalingmaximum stability. Therefore, the synchronized steady
state is always stable, curing Braess’ paradox.

What is the cost of this cure? By introducing the secondary control, all controlled nodes have to provide
control power in formof PiD * . Themore power that has to be provided, themore costly the secondary
controller becomes.When curing Braess’ paradox, wemight have just shifted the paradox from the powerflow
to the control costs. To analyze this, we consider the sumof the absolute values of the stationary power provided
by the controlled system, Pi i*å D∣ ∣, which can be seen as an indicator of the overall costs of control. As shown in
figure 7(b), asΔK3,4 increases, the overall costs, Pi i*å D∣ ∣, do not increase, on the contrary, they decrease.
Therefore, if all nodes are controlled, an increase in line capacity is beneficial, not only for the stability but also in
decreasing the overall costs of control, and thus Braess’ paradox is completely avoided.

Similarly, adding the new line (2, 4)with control applied to all nodes, reduces total control costs. The
changes of power Pi*D and the total load on the lines are visualized infigure 8. As before, generators have
negative and consumers positive power change i.e., the total consumption and the total generation are decreased
with respect to the uncontrolled case.

Figure 7.Braess’ paradox is completely curedwith added control. (a): we plot the change in power of the stationary state when
applying a control of γ=0.1 in all nodes. The control leads to a positive power change in consumers and negative in generators. (b):
the total power that needs to be induced by the controller is reducedwith added capacity on line (3, 4), hence the costs of control are
reducedwith added capacity. Parameters as infigure 5.
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6. Controlling only the generators

So far, we have assumed that all nodes in the network can be controlled. Effective consumer nodes, however,
may have limited generation capacity and therefore limited control capability. Therefore, let us now assume that
secondary control is only available at the nodes with positive power generation (generators), as usual in today’s
power grids [5]. Since the total consumption isfixed, the total generation also has to stay constant, thus the
control can only redistribute the effective power delivered by the generators among them. In this case, the
effectiveness of the control depends strongly on the topology, e.g. which line is getting upgraded.We consider
two cases.

First, we consider an increase of the capacity of line (3, 4) byΔK3,4, whichwithout control eventually leads to
Braess’ paradox (figure 4(b)). Adding control in generators only does not help to improve the situation. In fact,
as shown infigure 9(a) the phase differences 4,5 4,8* *q qD = D increase faster withΔK3,4 and thefixed point
disappears at K 0.49 sc

2D ~ - , i.e. for a lower value thanwithout control. So, controlling only the generators
does not prevent Braess’ paradox reliably. To understand this phenomenon, consider the original grid. Since
node 4 has to feed two consumer nodes, control increases the effective power of 4, while it decreases that of the
other generators, as shown infigure 9(c) at K 03,4D = . The total power generation in subgrid A becomes
smaller than in subgrid B . Since consumers have a fixed power, a small netflux has to go from subgrid A to B .
The additionalflow is transmitted through lines (6, 5) and (6, 8), which now carry a smallflux towards 6 and
through lines (3, 2), (3, 7)which carry flux towards 2 and 7. As a consequence, the fluxes F F4,5 4,8* *= become
larger than in the uncontrolled case. Adding additional capacity at line (3, 4) leads to a reduction of the effective
power in generator 4 and an increase of power for the other generators so that the overall net flow from subgrid

Figure 8.Controlling all nodes changes the power dispatch in the system and allows stable operationwithout Braess’ paradox.We
display the eight-node system susceptible to Braess’ paradoxwith an added line (2, 4). Including secondary control causes all nodes to
adapt their power in the stationary state as Pi i i* *g qD = - . Therefore, consumers (circles) consume less (red: positive power change),
similarly generators (squares) generate less (blue: negative power change). Thereby, the systempreserves its steady state even after
including a line that causes an overload in the uncontrolled system. In addition, we note a very heterogeneous load of the lines (line
color: darker colors indicate higher load). Specifically, the lines (4, 5) and (4, 8) are highly loaded, i.e., the phase differences 4,5*qD and

4,8*qD become very large. Parameters as in figure 5.

Figure 9.The effectiveness of control only in generators in curing Braess’ paradox depends on the topology. Herewe plot the
stationary phase differences (panels (a) and (b)) and the effective power of the generators (panels (c) and (d))when increasing the
capacity of lines (3, 4) (panels (a) and (c)) or (1, 6) in (panels (b) and (d)), for the grid shown infigure 3.When increasing the capacity of
line (3, 4), the instability takes place for smaller values ofΔK than in the case without control (compare the green linewith that of
figure 5(a)). On the contrary, when adding capacity to line (1, 6), the control prevents the failure of the network. Parameters as in
figure 5.
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A to B decreases. However, the added capacity, as discussed in the context offigure 5, breaks the symmetry and
in fact theflow through (6, 5) and (6, 8) actually increases, while that through (3, 2), (3, 7) decreases (which can
even reverse). The increasing flow arises as a combination of aflowbetween the subgrids for the original network
and aweak counter-clockwise flow induced by the added capacity. To account for the increasing flux going
through (6, 5) and (6, 8), the flux through lines (4, 5) and (4, 8),whichwere already quite loaded, also has to
increase. Thus, with control only in generators, the angles 4,5*qD and 4,8*qD are larger thanwithout control and
thus instability takes place at a smaller value ofΔKc

Nevertheless, the oscillatory regime reached after the instability is somehowdifferent in the cases with and
without control, as shown infigure 10(a).With control,most of the nodes remain synchronized at the reference
frequency and only two nodes showphase slips at a slow time scale. On the contrary, without control all nodes
rotate showing phase slips at amuch faster rate (comparewith figure 4(b)) for the sameΔK3,4 noting the
different time scale of bothfigures.

Next, we consider an increase of the capacity of line 1, 6( ), connecting two consumer nodes, byΔK1,6. As
discussed in section 5without control, increasingΔK1,6 increases the load on lines (2, 1) and (7, 1)until the
systembecomes unstable at K 0.6 sc

2D ~ - , leading to Braess’ paradox. Applying control exclusively to
generator nodes does indeed help in this case. The range of existence of the fixed point is extended to any value of
ΔK1,6 preventing the paradox completely, see figure 10(b). Let us analyze why here the synchronous state is
stabilizedwhile this was not the case when increasing the capacity of line (3, 4). Consider the case of no added
capacity: the phase differences and the effective power delivered by each generator are the same in both cases as
shown infigure 9. The phase difference for lines (2, 1) and (7, 1) (black) is smaller than that of lines (4, 5) and
(4, 8) (green). This is because the control in generators increases the angles 4,5*qD and 4,8*qD while it decreases

2,1 7,1* *q qD = D , compared to the systemwithout control. In this situation, adding extra capacity in line (1, 6)will
increase the difference 2,1 7,1* *q qD = D and thus theflux carried on lines (2, 1) and (7, 1). However, the added
capacity will, as before, reduce the overall net flow from subgrid A to B , slowing down the growth of the phase
differences 2,1 7,1* *q qD = D . The aftermath is that lines (2, 1) and (7, 1)do not get saturated in this case and Braess
paradox is avoided.

7.Discussion

The above results indicate that simple secondary controlmay successfully restore the grid frequency of an
unbalanced power grid and is also capable of preventing Braess’ paradox.

Secondary control, when applied to all nodes, improves the stability of the grid, regardless of topology, and
even allows stable operation formismatched power [1, 5, 47].While primary control stabilizes the frequency,
secondary control restores the frequency to the reference value and guarantees the existence of a stablefixed
point.We have systematically computed the fixed point stability of the power gridwith secondary control as a
function of both the network topology and the control action. Control improves stability, increasing the range of
network topologies for which the synchronized steady state is stable. Thereby, we have extended previous
stability analysis of uncontrolled systems [11] or systems including secondary control restricted to balanced
power [38].

Secondary control in all nodes also prevents the loss of the operational state via Braess’ paradox. As shownby
Witthaut andTimme [23, 24], the addition of certain transmission linesmay lead to a loss of the operational state

Figure 10.Controllingonly the generators does not reliably preventBraess’paradox.We show the time evolutionof thephases of the nodes
for the grid as shown infigure 3 after increasing the capacity of one line, specifically (a): K 1.0 s3,4

2D = - or (b): K 1.0 s1,6
2D = - .When

adding capacity to line (3, 4), the control on the generators cannot prevent a loss of thefixedpoint (panel (a)).However, the angles donot
diverge as drastically as in anuncontrolled case, comparefigure 4(b). In contrast, applying control only on the generators fully prevents
Braess’paradox,when line (1, 6) ismodified. Parameters as infigure 5.
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of a power grid. Using primary control only [13] does not suffice to prevent Braess’ paradox.We have now
demonstrated that secondary control prevents the desynchronization in networks prone to Braess’ paradox if all
nodes, i.e., effective consumers and generators alike, are controlled (figures 4 and 8). The control reduces the
total amount of net power generated and consumed at each node of the grid, guaranteeing that the transmitted
power does not exceed the transmission capacity. Thereby, it offers a trade-off between grid extension and
investments in control, assuming some amount of local generation is possible. Once secondary control is
implemented in all nodes, subsequent line capacity increases are beneficial, both for stability and also in
decreasing the overall power delivered by the control and thus its cost, fully avoiding Braess’ paradox.

In today’s grid, secondary control is implemented only inpower plants. Thus, nodeswith generationmuch
larger than consumption, i.e., generator nodes, have a large control capabilitywhile nodes inwhich consumption is
larger than generation (effective consumer nodes)have very little, if any, control capability. If only generator nodes
are controlled, then the controlwill only redistribute the effective power delivered by the generators among them
and as a consequence the grid topology determines thebenefits of the controller.Wehave observed that if the
capacity of a line connecting twogenerator nodes is increased, the control does not prevent Braess’paradox.On the
contrary, in the case of increasing the capacity of a line connecting two consumer nodes, secondary control is
capable of redistributing thepowerflowso that no lines are overloaded and the paradox is avoided.

Concluding, using secondary control on all nodes in a network improves its stability and robustness with
respect to dynamical and topological perturbations. If control ismainly available in generator nodes, the
effectiveness of the control depends strongly on the topology of the network. This stresses the importance of
involving consumers, e.g. via demand control schemes or local generation (prosumers) in future grids
[15, 16, 28, 48]. Alternatively, other options to provide secondary control at the consumer side, e.g. by using
distributed storage or back-up generation, have to be considered. Finally, further research is necessary to extend
our results, e.g., to alternative controlmechanisms. One example is to allow τ>0 in equation (9), i.e.,making
the power provided by each node explicitly time-dependent.
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