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ABSTRACT

Secure operation of electric power grids fundamentally relies on their dynamical stability properties. For the third-order model, a paradigmatic
model that captures voltage dynamics, three routes to instability are established in the literature: a pure rotor angle instability, a pure voltage
instability, and one instability induced by the interplay of both. Here, we demonstrate that one of these routes, the pure voltage instability,
requires infinite voltage amplitudes and is, thus, nonphysical. We show that voltage collapse dynamics nevertheless exist in the absence of any
voltage instabilities.
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Most aspects of our daily life essentially depend on a reliable
supply of electrical power, thereby imposing severe challenges
for the stable operation of power grids that consist of many
generators (producers of electric power) and loads (consumers
of power) connected with transmission lines. From a perspec-
tive of network dynamical systems, these challenges translate to
requiring steady states that are (asymptotically) stable against suf-
ficiently small dynamical perturbations such that all dynamical
variables relax back to their steady synchronous (phase-locked)
state with fixed phase differences and constant overall grid fre-
quency, as well as fixed voltage amplitudes. In contrast, instabil-
ities may cause growth or fluctuations of phase differences, devi-
ating and changing frequencies, and non-constant voltage levels,
all undesired in power grid operation. For the most basic model
class of power system dynamics that covers voltage dynamics,
three routes to instabilities have been established in the litera-
ture. Here, we demonstrate that only two of these three remain
in the physically relevant regime, while the third is physically
excluded as it is inconsistent with finite and positive voltage
amplitudes.

I. INTRODUCTION

Electric power supply substantially relies on the stable power
grid dynamics. Two classes of system variables are especially
important for reliable grid operation: grid frequency and termi-
nal voltage amplitudes.1–3 Instabilities to fluctuations and collapse
of terminal voltages have been identified as key contributing fac-
tors for large-scale blackouts, for instance, in the northeastern
United States (2003) and Athens/Greece (2004).2,3 The phenom-
ena of voltage collapse and voltage instability in power system
models have been extensively studied in the literature (see, e.g.,
Refs. 4–6).

Since more than a decade ago, beginning with the derivation
of a dynamic network model from the physics of coupled syn-
chronous machines7 and its collective dynamical phenomena such
as phase-locking and synchronization in larger networks,8 the self-
organized nonlinear dynamics of entire power grid networks have
drawn vast attention among research communities. The collective
dynamics of such systems were studied regarding global asymptotic
stability,6–9 real-world statistical properties of fluctuations,10,11 and
induced response dynamics12 up to dynamically induced cascading
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failures.13,14 All such works have contributed to a conceptual under-
standing of the stability properties and, in particular, various types
of instabilities in power grid dynamics on the system’s level. In one
of the most fundamental dynamic models, a power grid network
consists of nodes that are synchronous machines modeling elec-
trical motors or generators. A range of models of this class with
various degrees of detail have been studied in the literature.2,15 A
most commonly studied model consists of coupled swing equations,
employing the second order model of synchronous machines.7 Here,
the independent variables describing the state of each machine i are
given by the deviation of the power angle 2i(t) from an operating
point and its time derivative 2̇i(t) quantifying the local deviation
from the grid frequency, with a nominal value of 2π × 50 Hz in
Europe and 2π × 60 Hz in the United States.16 Grid frequency con-
stitutes an important quantity for grid operators to control the
dynamical state of power grids.1,2 The second order model of syn-
chronous machines takes the terminal voltage amplitudes Ei to be
constant and, therefore, cannot address any instabilities resulting
from the dynamics of voltages. The third-order model constitutes
the next higher-order model and enables a dynamical description of
terminal voltage amplitudes.2,6,9 In particular, three routes to insta-
bility are established in the literature6,9 for the third-order model:
one pure rotor angle instability, one pure voltage instability, as well
as an instability related to the interplay of rotor angle and voltage
dynamics. In this work, we differentiate between linear (asymp-
totic) stability of the voltage subsystem, known as the pure voltage
instability in the literature, and alterations of voltage variables upon
parameter changes that are not related to a change of the linear sta-
bility of the voltage subsystem. We refer to the first one as voltage
instability or instability of the voltage subsystem and the latter as
voltage collapse.

In this article, we demonstrate that the pure voltage instability
in the third-order model is inconsistent with finite voltage ampli-
tudes and thus physically impossible. It emerges as an artifact of
extending the parameter regime of the model to a regime where
at least one machine is practically disconnected from the transmis-
sion system. Employing Gershgorin’s circle theorem, we analytically
show that the relevant eigenvalues of the local Jacobian stay nega-
tive and bounded away from zero if all voltage amplitudes are kept
finite and positive. Thus, instabilities of the voltage subsystem are
not captured by the third-order model in the regime that is phys-
ically relevant. Moreover, we numerically demonstrate that voltage
collapse is still observable in the third-order model within the phys-
ically relevant parameter regime if active power demand cannot be
met due to limitations in the dynamic transmission capacities.

II. NECESSARY CONDITIONS FOR PURE VOLTAGE

INSTABILITIES IN THE THIRD-ORDER MODEL

The loss of acceptable voltage levels has been observed in dif-
ferent forms in real-world power systems.1 Mathematical models
of power systems predict the existence of both, voltage collapse,
and instabilities and capture transitions from normal operation to
dysfunctional states by bifurcations induced by varying parameters
across specific critical values.15

Let us consider the third-order model, a dynamical systems
model of a power grid that consists of N generators and consumers

modeled as synchronous machines, which are interconnected by
alternating current (AC) transmission lines. The third-order model
captures three dynamical variables per node i, a phase angle 2i(t),
its instantaneous rotation frequency ωi(t) = d2i/dt(t) and a volt-
age amplitude Ei(t). The dynamics of one synchronous machine i
reads2,6

2̇i = ωi,

ω̇i = Pi − αiωi − Pel
i (2, E),

Ėi = E
f
i − Ei + XiIi(2, E),

(1)

where the dot denotes differentiation with respect to time t. Here
2 ∈ R

N denotes the vector of the power angles, ω = 2̇ the angu-
lar frequency, both regarding the grid reference frame (rotating at,
e.g., � = 2π × 50 Hz in Europe), and E ∈ R

N
+ the vector of termi-

nal voltage amplitudes. Here, R+ denotes the set of non-negative
real numbers such that each component Ei ≥ 0. The remaining
machine parameters are the power input or output Pi ∈ R (neg-
ative for consumers and positive for generators), the mechanical

damping αi > 0, the voltage set point E
f
i > 0, and the reactance

Xi ≥ 0 of the synchronous machine i. The coupling functions Pel
i :

R
N × R

N → R and Ii : R
N × R

N → R represent, respectively, the
electrical powers and the currents exchanged between the N syn-
chronous machines through the transmission lines. A transmission
line connecting nodes i and j is modeled by a series admittance
yij = gij + ıbij ∈ C, with a conductance gij = gji > 0 and inductive
susceptance bij = bji < 0, as well as a parallel susceptance, also
called shunt susceptance γij > 0 modeling capacitive effects aris-
ing between the transmission line and its surroundings. In general,
all three quantities scale with the length of the transmission line.
While conductance gij and susceptance magnitude |bij| decrease pro-
portional to line length, the shunt susceptance increases roughly
proportionally to line length.17 For long transmission lines of sev-
eral hundred kilometers, one has to consider the line parameters to
be distributed across the line length. According to Ref. 17, for over-
head transmission lines up to approximately `0 = 240 km, a lumped
equivalent circuit model is assumed (also known as a 5-equivalent
circuit), where the series line elements yij are concentrated at the
center of the transmission line and the half of the shunts γij/2
= 0i = 0j are concentrated on both ends of the transmission line.
For shorter transmission lines, below about `0 = 80 km, shunts are
negligible, i.e., small compared to |bij| and 0i = 0j → 0 as `0 → 0.
If nodes i and j are not connected, all parameters gij = bij = 0i

= 0j = 0. Lossless transmission, i.e., neglecting Ohmic losses
(gij = 0) is taken as a reasonable idealization in high voltage power
grid modeling,2 such that transmitted powers and currents read2,9

Pel
i (2, E) =

N
∑

j=1

BijEiEj sin(2i − 2j),

Ii(2, E) =

N
∑

j=1

BijEj cos(2j − 2i).

(2)

Here, symmetric susceptances (Bij = Bji = −bij ≥ 0)2 constitute a

symmetric susceptance matrix B = BT ∈ R
N×N, with the diagonal

elements Bii < 0 being self-susceptances. Kirchhoff’s nodal law
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requires that the self-susceptances are the negative sum over all off-
diagonal elements in the same row, plus the shunt susceptances at
the node, yielding

Bii = 0i −

N
∑

j=1,j6=i

Bij < 0. (3)

First, we consider the parameters 0i as free model parameters
and study their implications on the system’s stability. Later, we
will discuss the physically relevant magnitude of 0i. The system
equation (1) with substituted coupling function equation (2) reads

2̇i = ωi, (4a)

ω̇i = Pi − αiωi +

N
∑

j=1

BijEiEj sin(2j − 2i), (4b)

Ėi = E
f
i + (Xi0i − 1)Ei + Xi

N
∑

j=1,j6=i

Bij(Ej cos(2j − 2i) − Ei). (4c)

Power grids are operated near a fixed point state, which for the third-
order model is a fixed point

(2∗, ω∗, E∗), (5)

given by a simultaneous solution to Eqs. (4a)–(4c) at zero rates of
change,

2̇i = ω̇i = Ėi = 0 for all i ∈ {1, 2, . . . , N}. (6)

The existence of fixed points depends on the specific choices of

the nodal parameters E
f
i, Pi, Xi, the line susceptances Bij and 0i. For

instance, a fixed point only exist if the powers Pi are in balance,

0 =

N
∑

i=1

Pi. (7)

Furthermore, from the paradigmatic Kuramoto model,18 it is well
known that the coupling strengths have to be sufficiently large to
compensate the powers Pi to allow the system to settle into a fixed
point. Since for the third-order model (4c) the fixed point coupling
strengths

Kij := BijE
∗
i E∗

j (8)

are bound by

Kij ≤ Bij

(

E
f

l

1 − Xl0l

+ Xlµ

)2

≤ Bij

(

E
f

l

1 − Xl0l

)2

, (9)

with the index l denoting the largest of the fixed point voltage
amplitude E∗

l ≥ E∗
i for all i ∈ {1, 2, . . . , N} and µ ≤ 0, we conclude

that E
f
i and susceptances Bij with i 6= j have to be sufficiently large.

Furthermore, the reactances Xi have to be sufficiently small. We
derive necessary conditions for the existence of a fixed point in the
Appendix.

Fixed voltages E∗
i and fixed frequencies ω∗

i are desired in power
grid operations, as well as that the system relaxes back to the fixed
point when exposed to small perturbations.

Whether the system relaxes back toward the fixed point is char-
acterized by the linear stability of the corresponding fixed point of
the system.19 At a fixed point (2∗, 0, E∗), the evolution of the linear
response (ϑ , ν, ε) of the system [(4a)–(4c)] is governed by





ϑ̇

ν̇

ε̇



 =





0 IN 0
3 −αIN A
AT 0 C









ϑ

ν

ε



 =: J





ϑ

ν

ε



 , (10)

where IN ∈ R
N×N denotes an identity matrix and 3, A, C ∈ R

N×N are
submatrices of the Jacobian matrix J. The submatrices are defined
via their matrix elements,

3ij =

{

BijE
∗
i E∗

j cos(2∗
j − 2∗

i ) for i 6= j,

−
∑

k 6=i BikE
∗
i E∗

k cos(2∗
k − 2∗

i ) for i = j,

Aij =

{

BijE
∗
i sin(2∗

j − 2∗
i ) for i 6= j,

∑

k BikE
∗
k sin(2∗

k − 2∗
i ) for i = j,

Cij =

{

XiBij cos(2∗
j − 2∗

i ) for i 6= j,

Xi0i − 1 − Xi

∑

k 6=i Bik for i = j.

(11)

The matrix J has one eigenvalue λ0 = 0 corresponding to the eigen-
vector v0 = (1, 0, 0)T, indicating that the system is marginally stable
along v0.6,8,9 Nevertheless, since a shift along v0 does not change the
physical state of the system, we, thus, only consider the system’s
linear stability in the orthogonal space6

D
⊥=

{

x ∈ R
3N|xv0 = 0

}

. (12)

As shown by Sharafutdinov et al. (Proposition 1 in Ref. 6), the
asymptotic stability of the system in D⊥ (a negative definite J)
implies that both submatrices 3, the rotor angle subsystem, and C,
the voltage subsystem, are negative definite themselves, i.e.,

J is negative definite ⇒ 3 and C are negative definite. (13)

Moreover, the proposition gives more restrictive conditions on the
interplay between both subsystems that we do not mention here as
they have no implication on the further analysis in this work. In
this way, three routes to instability in the third-order model of syn-
chronous machines are established:6 one pure rotor angle instability,
where 3 loses negative definiteness; one pure voltage instability,
where C loses negative definiteness; and a third route resulting
from an interplay between both subsystems, where a fixed point
for both voltage and rotor angle equation cannot be determined
simultaneously.

In particular, if the real parts of any eigenvalue of either one
of the two submatrices C or 3 crosses zero from below (exclud-
ing λ0 = 0 for 3), the entire systems’ fixed point becomes linearly
unstable. Related earlier work has shown that one condition for 3

to be negative definite is2,20

|2j − 2i| ≤
π

2
(14)

for all adjacent synchronous machines i and j, i.e., those directly
connected by a transmission line. We now focus on the analysis
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of the voltage subsystem characterized by the matrix C by apply-
ing the Gershgorin disk theorem.21 The broadly applicable theorem
states21–25 that for any square matrix M ∈ C

N×N all the eigenvalues
λM

j for all j ∈ {1, 2, . . . , N} are in the union

λM
j ∈

N
⋃

i=1

Gi (15)

of N disks

Gi :=







z ∈ C | |z − Mii| ≤
∑

j6=i

|Mij|







. (16)

The diagonal elements Mii define the center of the disk, while the
sum across the absolute values of the off-diagonal elements of the
same row defines its radius. Since linear stability of the voltage sub-
system alone is ensured if all eigenvalues λC

i of the matrix C have a
negative real part, we evaluate under which conditions all the Ger-
shgorin disks are entirely on the left-hand side of the imaginary
axis.

To this end, we define the directed margin di

di := sup
{

Re(q) | q ∈ Gi

}

(17)

between the imaginary axis and the Gershgorin disk (see Fig. 1). A
negative margin for all i ensures linear stability of the voltage sub-
system characterized by C. Thus, for parameters where all di < 0,
voltage instabilities do not occur. For general setups of the net-
work and machine parameters, the margins di of symmetric matrix
C satisfy

di = Cii +

N
∑

j6=i

|Cij|

= −1 + Xi0i − Xi

N
∑

j=1,j6=i

Bij

+ Xi

N
∑

j=1,j6=i

|Bij cos(2∗
j − 2∗

i )|

= −1 + Xi0i + Xi

N
∑

j6=i

Bij(| cos(2∗
j − 2∗

i )| − 1)

≤ −1 + Xi0i. (18)

In the first step, we apply the definition of the Gershgorin disk
Gi to matrix M = C. In the second step, we substitute matrix ele-
ments of C according to Eq. (11), exploiting that Xi > 0. In the
third step, as Bij > 0 for i 6= j, we factor it out and regroup the
terms. Finally, bounding the cosine function by its upper bound
1 = max{cos(x) | x ∈ R} provides an upper bound for di. We set the
upper bound Xi0i − 1 = 0 of di and obtain

Xcrit(0) =
1

0
, (19)

a lower bound for the critical parameter Xcrit with 0 = max{0i | i ∈

{1, 2, . . . , N}}. For all 0 ≤ X ≤ Xcrit(0) the matrix C is negative def-
inite as shown via the Gershgorin disk theorem. For X > Xcrit, the

FIG. 1. Negative margins di ensure linear stability of the voltage subsystem: The
voltage subsystem of N = 2 coupled third-order synchronous machines is eval-
uated in terms of the margin di . The two Gershgorin disks coincide, and the
true positions of the eigenvalues are precisely on the borders of the disks. The
parameters are P1 = −P2 = 1.5, B12 = B21 = 2, Ef = 2, 1.0, and 01 = 02

= 0.

matrix may have positive eigenvalues λC
i > 0 but due to the upper

bound approximation in Eq. (18) and this is not guaranteed and,
hence, referred to as potentially unstable region in Fig. 2. For our
further analysis, we will rely on the stable regime and do not need
further knowledge about the potentially unstable region. We have
derived a bound Xcrit(0), for which

X < Xcrit(0) ⇐⇒ voltage stability,

X ≥ Xcrit(0) ⇐⇒ potential voltage instability
(20)

holds. Our result shows that under the assumption of weakly diag-
onally dominance26 of the admittance matrix Y = G + ıB, i.e., 0i

≤ 0, the system exhibits no voltage instability neither for finite nor
infinite voltage amplitudes.

III. ABSENCE OF PURE VOLTAGE INSTABILITIES FOR

N =2

The above analysis proves for Xi ≤ Xcrit(0) the linear stability
of the voltage subsystem. However, it does not take into account
whether fixed points exist in the potentially unstable region at all.
Hence, we do not know at this point whether a transition to an
unstable voltage subsystem at all is possible or not. For instance,
in the simplest system of N = 2 coupled third-order synchronous
machines, one can show that all fixed points are found in the stable
region of the voltage subsystem for arbitrary choices of 0. The fixed
point of this system configuration is explicitly given via the set of
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FIG. 2. The minimal stable region of the voltage subsystem depends on the
parameter0: the matrix of the voltage subsystem is negative definite in the purple
region such that no pure voltage instability occurs here. In particular, for 0 ≤ 0,
the voltage subsystem alone is linearly stable for all X ∈ R

+. This analysis holds
for arbitrary system sizes N, parameter settings, and, thus, network topologies.

equations,

0 = ω∗
1 ,

0 = ω∗
2 ,

0 = P1 − α1ω
∗
1 + B12E

∗
1E∗

2 sin(2∗
2 − 2∗

1),

0 = P2 − α2ω
∗
2 + B12E

∗
1E∗

2 sin(2∗
1 − 2∗

2),

0 = Ef − E∗
1 + X0E∗

1 + XB12(E
∗
2 cos(2∗

2 − 2∗
1) − E∗

1),

0 = Ef − E∗
2 + X0E∗

2 + XB12(E
∗
1 cos(2∗

2 − 21) − E∗
2),

(21)

which effectively reduces to

0 = P + B12E
∗E∗ sin(12∗), (22a)

0 = Ef − E∗ + X0E∗ + XB12(E
∗ cos(12∗) − E∗), (22b)

with E1 = E2 = E∗ (which follows from subtracting the voltage
equations from one another) and 12∗ = 2∗

2 − 2∗
1 . In this configu-

ration, C reads

C =

(

−X(B12 − 0) − 1 XB12 cos(12),
XB12 cos(12) −X(B12 − 0) − 1

)

(23)

and has the two real eigenvalues

λC
± = −X(B12 − 0) − 1 ± XB12 cos(12). (24)

To investigate where the voltage subsystem changes its linear sta-
bility, we analyze the system, rearranging Eq. (24) for its largest

eigenvalue via Eq. (24) λC
+ such that

XB12 cos(12) = X(B12 − 0) + 1 + λC
+. (25)

We substitute the latter into Eq. (22b) and find

0 = Ef − E∗ + X0E∗ + E∗(XB12 − X0 + 1) − XB12E
∗ + λC

+E∗,

0 = Ef + λC
+E∗.

⇒ E∗ = −
Ef

λC
+

. (26)

Given that Ef > 0 is a strictly positive machine parameter, we con-
clude that for N = 2, a transition from λC

+¡0 (stable) to λC
+ > 0

(unstable operating point) requires a passing of E∗ through infinity;
moreover, λC

+ > 0 requires a non-physical negative voltage ampli-
tude E∗ < 0, under any configuration of all parameters of the model
system. The N = 2 model system, therefore, shows no physically
meaningful transition to a linear unstable voltage subsystem, i.e., no
pure voltage instability. Instead of observing a transition from a lin-
early stable fixed point to a linearly unstable fixed point, we instead
observe the loss of a physical meaningful fixed point. For short
transmission line lengths `0 ≤ 80 km, the shunt susceptances are
negligible,17 with 0i → 0 as `0 → 0, which results in Xcrit(0) → ∞

(see Fig. 2). The Xi constitute finite and positive machine parame-
ters such that for general system sizes N ≥ 2 with transmission line
lengths up to `0 = 80 km, the voltage subsystem is always linearly
stable. In Sec. IV, we extend this observation to transmission line
lengths up to `0 = 240 km by first considering real-world parame-
ters, showing that real-world systems are generally far away from the
critical reactance Xcrit (see Fig. 2), and a general mathematical anal-
ysis under the condition of finite and positive voltage amplitudes E∗

i

in the voltage subsystem is always linearly stable.

IV. ABSENCE OF PURE VOLTAGE INSTABILITIES N >2

Typical series line resistance and reactances, as well as paral-
lel shunt reactances, are available in the existing literature. Here,
we consider averaged values of 0i and bij for 18 different overhead
transmission lines available in Hernandez et al.17,27 (Table 13.13a),
for which the average susceptance is given by 〈bij〉`0 ≈ −3 �−1 km,
while the shunt susceptance per kilometer is given by 〈0i〉/`0

≈ 2.5 × 10−6(� km)
−1 at a frequency of 60 Hz. The shunt suscep-

tance is increasing with line length, while the series susceptance is
decreasing in magnitude with line length. For a length `0 = 80 km,
we find that 0i is in the order of 0.5% compared to the magnitude of
the series susceptance, while for 240 km, it is of the order of 5%. The
critical reactance Xcrit in Eq. (19) is given by the inverse of the shunt
susceptance 0i. In other words, to allow the system to potentially
show positive eigenvalues λC of the matrix C, one would require that
the absolute shunt reactance |1/0i| of the transmission system is
equal to the reactance Xi of the stator winding of the synchronous
machine. For a transmission line of `0 = 240 km, reactance Xi of
the stator winding would need to exceed 1600 �, while real-world
parameters (example of an 555 MW synchronous generator)26 are in
the range of up to 0.3 �, way afar from the critical reactance.

Moreover, we show that even in the case of the reactance
Xi → Xcrit, the fixed point voltage E∗

i of at least one machine has
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to approach infinity as 0iXi → 1; thus, Xi → Xcrit. Inspecting the
voltage fixed point equation (4c) for the largest fixed point volt-
age amplitude E∗

i ≥ E∗
j for all j ∈ {1, 2, . . . , N} yields [see Appendix

Eq. (A10)]

E∗
i ≥

Ef

1 − Xi0i

for 0iXi < 1, (27)

from which we conclude that E∗
i → ∞ for Xi0i → 1 from below,

thus Xi → Xcrit as defined in Eq. (19). Moreover, for Xi0i > 1, we
find

E∗
i ≤

Ef

1 − Xi0i

for 0iXi > 1, (28)

thus E∗
i being negative, which constitutes a nonphysical solution

for an amplitude. Even worse, as E∗
i ≥ E∗

j all fixed point voltage
amplitudes have to be negative in the potentially unstable voltage
subsystem regime. We conclude that the theoretically existing fixed
point solutions with a positive eigenvalue λC of the matrix C are thus
non-physical and do not represent the physical reality in the world’s
power grids.

V. VOLTAGE COLLAPSE IN THIRD-ORDER

SYNCHRONOUS MACHINE DYNAMICS

Despite the fact that the physical third-order model of syn-
chronous machines does not exhibit pure voltage instabilities, i.e.,
linearly unstable voltage subsystems, we emphasize that it still cap-
tures the known phenomenon of voltage collapse, i.e., substantial
voltage changes upon parameter changes2,3,26,28 Voltage collapse has
been discussed as one of the root causes of various real-world power
outages.2,3 In this section, we illustrate numerically that the third-
order model of synchronous machines has the capability to undergo
voltage collapse. The underlying cause, instead of a linear instabil-
ity of the voltage subsystem, is a saddle-node bifurcation at which
the existence of two fixed points is lost, including the stable one.
The saddle-node bifurcation occurs when transmission line capac-
ities at the respective voltage levels are not sufficient to meet the
power demand P of the consumer. We investigate this (see Fig. 3)
for a simple system of N = 2 nodes and one transmission line, as in
Sec. II.

Figure 3 displays the loss of existence of two fixed points upon
parameter changes of the active power P and a possible way of
restoring higher voltage levels. Beyond the critical value of the power
Pmax = B12(E

∗)2 [see Eq. (22a)], where Pmax has to compensate for
the power P that needs to be transported across a transmission line,
the stable fixed point is lost, and the third-order dynamics causes
the voltage amplitudes to drop significantly. The third-order model,
thus, captures the phenomenon of voltage collapse. However, the
root cause is not the loss of the stability of the voltage subsystem
but a power overload of the transmission line and the related loss
of fixed points. Even at P below the previously valid critical value
of the power Pmax, the system does not relax back to the stable fixed
point. Significantly smaller power values P < B12(E(t))2 are needed
to stabilize the power transmission. See Fig. 3 for details of the
example.

FIG. 3. Voltage collapse without pure voltage instability. (a) Fixed point volt-
age amplitude E∗ changes with the active power P in a N = 2 node system.
The system exhibits two relatively large voltage fixed points, one stable (solid
line) and one unstable (dashed line) that annihilate in a saddle-node bifurcation
(near P = 2.5), beyond which no real solution for Eqs. (22a) and (22b) exists.
(b) Consistently negative eigenvalues indicate that the voltage subsystem is lin-
early stable for the whole range of P and the stable and unstable branch of the
entire third-order dynamics where the fixed point exists. (c) and (d) Time evolution
of the voltage amplitudeE(t) upon temporally changing powerP(t). At t = 10, the
power demand P increases (instantaneously) from 2.25 to 3, at t = 30 the power
demand P is lowered to 2 and again at t = 70 to P = 0.1. Network parameters
are 01 = 02 = 0, B12 = B21 = 2, X = 1.0, α = 0.1, and Ef = 2.

VI. CONCLUSION

Interestingly, real-world power outages have indeed been tied
to effects described as voltage instabilities. However, this terminol-
ogy referred to voltage drops,1,2 which we have observed numeri-
cally in the third-order model upon changes of parameters without
changes in the stability of any operating state. The power overload of
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transmission lines is the root cause of the voltage collapse. We, thus,
emphasize that the term “voltage collapse” is to be carefully sepa-
rated from the term “voltage instability,” which relies on the linear
stability of the voltage subsystem. These two phenomena are math-
ematically not connected. Another class of power system models,
given by algebraic differential equations, was studied extensively in
the literature4,5 in terms of voltage collapse. The fundamental differ-
ence of that model class is that consumers are assumed to have fixed
power angles, 2, as well as fixed active and active power demand.
Thus, they represent algebraic constraints to the dynamics of the
generators. In such a setup, linearly stable, low voltage fixed points
may be identified. It is particularly difficult to operate a system that
is trapped at such a fixed point and bring it back to a high voltage
fixed point.4,5 A detailed analysis of a three bus system is given in
Ref. 29. In contrast to the third-order model of power grids, these
extended models exhibit changes of local stability properties upon
parameter changes.

For the third-order model, it is sufficient to ensure that line
capacity constraints are satisfied to ensure stable, high voltage oper-
ation. Given the results presented above, two research paths open
up to further study voltage stability properties in power system
models. First, one could factor in Ohmic losses, i.e., Gij > 0, and
analyze whether local stability properties of the voltage subsystem
undergo a bifurcation. Second, one could investigate non-local sta-
bility properties in the third-order model by numerically analyzing
basin stability30,31 for voltage and rotor angle perturbations. The
basin size may depend strongly on the line load. Furthermore, it
would be of interest to extend the basin stability argument to the
model of differential algebraic equations.4,5

ACKNOWLEDGMENTS

We thank Malte Schröder and Philip Marszal for valuable com-
ments on the manuscript. We gratefully acknowledge support from
the Bundesministerium für Bildung und Forschung (BMBF, Federal
Ministry of Education and Research) under Grant No. 03EK3055F.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

APPENDIX: NECESSARY CONDITIONS FOR THE

EXISTENCE OF FIXED POINT

Here, we motivate our statement in the main text about param-
eter configurations under which fixed points of Eq. (4a)–(4c), i.e.,
points where 2̇i = ω̇i = Ėi = 0 for all i exist.

Corollary A.1. The powers Pi across the network of third-order
synchronous machines have to be in balance

0 =

N
∑

i=1

Pi (A1)

to allow the entire system to settle to a fixed point.
Proof. To show that such balance is a necessary condition for

the existence of a fixed point, we take the sum over all N nodes2,6 of
the rotor angle equation (4b), yielding

0 =

N
∑

i=1

(Pi − αiω
∗
i ) +

N
∑

i=1

N
∑

j=1

BijE
∗
i E∗

j sin(2∗
j − 2∗

i ). (A2)

The sine functions are antisymmetric, while B is symmetric against
an exchange of indices such that the double sum equals zero.
Furthermore, Eq. (4a) implies that ω∗

i = 0 for all i and, therefore,

0 =

N
∑

i=1

Pi. (A3)

�

The second assertion is that the voltage set points E
f
i have to be

sufficiently large for a fixed point to exist. We identify the effective
coupling strengths Kij in Eq. (4b),

Kij = BijE
∗
i E∗

j . (A4)

From the paradigmatic Kuramoto model,18 it is known that the cou-
pling strength needs to be sufficiently large in order to compensate
the parameters Pi for all i to allow the system to settle in a phase-
locked state. Due to the first condition, Eq. (A1) a phase-locked state
is also a fixed point.

Corollary A.2. The fixed point coupling strength
Kij = BijE

∗
i E∗

j of the rotor angle dynamics is bound by

Kij ≤ Bij

(

Ef

1 − Xi0i

+ Xiµ

)2

≤ Bij

(

Ef

1 − Xi0i

)2

, (A5)

with µ ≤ 0 for networks of N third-order synchronous machines with

E
f
i = Ef for all i ∈ {1, 2, . . . , N}.

Proof. We prove that relation equation (A5) holds for every
synchronous machine individually. We assume that a fixed point of
the entire system 2

∗ ∈ R
N, E∗ ∈ R

N exists. We exploit the following
properties:

E
f
i = Ef > 0,

E∗
i > 0,

Xi > 0,

Bij ≥ 0,

0i ≥ 0,

cos(x) ≤ 1 for all x ∈ R

(A6)

for all i ∈ {1, 2, . . . , N}. Among the finite number of fixed point
voltage amplitudes, E∗

i we pick the largest E∗
i such that for all j 6= i

E∗
i ≥ E∗

j (A7)
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holds. For the synchronous machine i, the voltage amplitude fixed
point defining equations reads

0 = Ef + (Xi0i − 1)E∗
i

+ Xi

N
∑

j=1,j6=i

Bij(E
∗
j cos(2∗

j − 2∗
i ) − E∗

i ). (A8)

We exploit that Bij, E∗
j , Xi are non-negative, as well as the upper

bound of cos(x) to evaluate

0 ≤ Ef + (Xi0i − 1)E∗
i + Xi

N
∑

j=1,j6=i

Bij(E
∗
j − E∗

i )

= Ef + (Xi0i − 1)E∗
i + Xiµ, (A9)

with µ ≤ 0 because we have chosen the largest voltage amplitude E∗
i .

We conclude

0 ≤ Ef + (Xi0i − 1)E∗
i + Xiµ

≤ Ef + (Xi0i − 1)E∗
i

⇒ E∗
i >

Ef

1 − Xi0i

. (A10)

Lacking shunts, i.e., 0i = 0, the latter is equivalent to

E∗
i ≤ Ef, (A11)

and as E∗
i ≥ E∗

j for all j ∈ {1, 2, . . . , N}, we have shown that rela-
tion equation (A11) holds for all i ∈ {1, 2, . . . , N} without shunts and
Eq. (A10) holds in the presence of shunts. The coupling strength Kij

is bounded by

Kij = BijE
∗
i E∗

j ≤ Bij

(

Ef

1 − Xi0i

)2

. (A12)

From this, we conclude that parameter Ef has to be set sufficiently
large to provide sufficient coupling strength for the system to settle
into a fixed point. �
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