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Abstract
Secure electric energy supply and thus stable operation of power grids fundamentally relies on
their capability to cope with fluctuations. Here, we study how active voltage dynamics impacts the
collective response dynamics of networked power grids. We find that the systems driven by
ongoing fluctuating inputs exhibit a bulk, a resonance, and a localized grid frequency response
regime, as for static voltages. However, active voltage dynamics generically weakens the degree of
localization in the grid, thereby intensifying and spatially extending the high-frequency responses.
An analytic approximation scheme that takes into account shortest signal propagation paths
among the voltage, phase angle and frequency variables result in an asymptotic lowest-order
expansion that helps understanding the boosted high-frequency responses. These results moreover
offer a generic tool to systematically investigate fluctuation response patterns in power grid models
with and without active voltage dynamics.

1. Introduction

Climate change has been identified as ‘a major concern for humankind’ in the 2015 Paris agreement [1].
Its mitigation has thus been declared a major objective by the United Nations to reduce greenhouse gas
emissions and thereby limit average temperature rise to 1.5 K. Achieving the objective of a significant
reduction of greenhouse gas emissions, requires massive changes across all human activities, from agriculture
and forestry, transportation, building infrastructures, heating and most large-scale industrial processes all
the way to a reliable supply of electricity [2]. Such measures imply to decarbonize electric power generation
and thus to replace large centralized power plants by power generation units based on renewable energies,
such as solar- and wind power generators.

Renewable sources constitute smaller, more distributed and less predictable power inputs than traditional
large plants, causing fluctuations in supplied power [3–5]. Moreover, increased digitization and changes of
behavioral patterns at consumers of electric power cause more fluctuating power demands [6, 7].

Fluctuations in the collective dynamics of power grids specifically originate from fluctuating power inputs
due to rapidly changing local weather conditions and from decreasing the fraction of mechanical inertia in
the generators [8, 9] that are capable of dampening fluctuations. Fluctuating power demand in parallel to
increasing shares of renewable energy sources thus induces stronger and stronger fluctuations acting upon
operational steady states in electric energy transmission systems. To plan and operate future-compliant grids,
we thus need to thoroughly understand their distributed response dynamics to external fluctuations.

In this article, we study the impact of active dynamics of voltage amplitudes in power grid models onto
their collective response dynamics to fluctuating signals. We extend research on the standard second-order
network models of power grids that incorporate rotor angle and frequency dynamics [10] to third-order
models, the lowest order models that also capture voltage amplitude dynamics. Direct numerical simulations
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of response dynamics of these two model classes indicate that the collective responses of both model classes
are roughly similar and exhibit three different characteristic regimes for rotor angle and frequency
responses—homogeneous bulk responses at low frequencies, heterogeneous resonant responses at
intermediate, and localized responses at high frequencies.

Intriguingly, however, active voltage dynamics boosts the high-frequency responses such that responses
stay less localized and may have substantially larger amplitudes at specific response nodes in the network.
Analytically deriving a network linear response theory for the third-order model, we reveal the origin of this
boost. The dynamic voltage variables offer an effective shortcut along which frequency and phase angle
variables of one node dynamically influence other nodes in the grid.

Based on the results of linear response theory, we analytically demonstrate that and how strongly these
shortcuts increase the effective influence range of high-frequent perturbations from any node a fluctuation is
originating from.

2. Power grid dynamics with and without active voltage dynamics

Some of the most fundamental dynamical network models of power grids describe a grid as a set V of N
nodes (or vertices) representing synchronous machines and a set E of edges (links) representing the
transmission lines between the nodes [11–14]. Jointly, the vertex and edge sets thus define a graph
G = (V,E) that represents the physical structure of the grid as given by physical machines and physical
transmission lines. A range of synchronous machine dynamical systems’ models exist in the literature [12],
with various degree of detail. They range from the second-order model that takes into account two dynamical
variables per node to the sixth-order model with six dynamical variables per node. The second-order model
captures the phase angleΘn(t) of node n ∈ {1, . . . ,N} and its rate of change, the node’s local frequency, or
phase angle velocity ωn(t) = Θ̇n(t) as a function of time t, both relative to a reference frame rotating at grid
frequency Ω. In most Western countries, the base frequency is Ω= 2π50Hz while some areas, including, for
instance, a part of Japan have a base frequency of Ω= 2π60Hz.

As the simplest dynamical systems’ model in its class, the second-order model received broad attention in
research, see, e.g. [14]. Recent advances focused on relating the physical network topology and other
structural model parameters to dynamical systems responses including fluctuations, perturbations and
failures [15–19]. A central theme is on short-term fluctuations that prevail across grids [10, 20–22]. Below
we compare the collective dynamics of grid responses in the second-order model with temporally fixed
voltage amplitudes to those in the third-order model, the lowest-order model exhibiting voltage dynamical
variables. Besides our motivation to better understand similarities and differences in the collective response
properties of grids with and without active voltage dynamics, we are generally interested in how the structure
of the differential equation models influence non-equilibrium response properties of networked dynamical
systems.

The driven second-order model of power grid dynamics is given by

βnΘ̈n +αnΘ̇n = Pn +
N∑

m=1

Knm sin(Θm −Θn)+ δnkεH(t)e
ıω(p)t, (2.1)

for all n ∈ {1, . . . ,N}, where the Heaviside function is H(t) = 1 for t⩾ 0 and H(t) = 0 otherwise, and ı is the
imaginary unit. Moreover,Θn(t) ∈ R denotes the phase angle at time t and it is first time derivative
ωn(t) = Θ̇(t)n the local phase angle frequency. The quantity δnk is the Kronecker delta function, indicating
that only node k is externally driven. As we focus on linear response theory below, first order approximations
of network responses to distributed driving signals acting on several nodes and containing various
frequencies then follow by the superposition of individual responses.

The remaining machine parameters are the mechanical input or output power Pn ∈ R (negative for
consumers and positive for generators), the inertia βn > 0, the mechanical damping αn > 0. Sinusoidal
driving is acting on one machine k with amplitude ε and frequency ω(p). The coupling strength

Knm = BnmE
∗
nE

∗
m (2.2)

between synchronous machine n andm is the maximal transmissible power between them. The voltage
amplitudes E∗n and E∗m are constants fixed in time and both multiply a susceptance Bnm > 0 for each
transmission line connecting nodes n andm, i.e. present in the network. Note, that the model class in this
study assumes lossless transmission, i.e conductance Gnm = 0 between all pairs of machines n andm.
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Figure 1. Boosted fluctuation responses in power grids with active voltage dynamics. (a) Physical network topology of a power
grid model. Nodes mark synchronous machines as producers (squares) and consumers (disks). Links mark connections between
pairs of nodes by transmission lines. (b) Response amplitudes |Aωn | (equations (4.5) and (4.6)) of frequency variables ωn of seven
selected nodes n (marked in panel (a) in the second-order model given that only node k= 1 is perturbed. The collective response
dynamics exhibits a bulk (ω(p) is sub-resonant), a resonant (as marked in (b)) and a localized regime (else), depending on the
driving frequency ω(p). Vertical gray lines mark support of eigenfrequencies of the system. (c) Response amplitudes systematically
decay with the topological distance dG = dG(n,k) from the driven node and with ω(p). (d) Response amplitudes |Aωn | in the
third-order model exhibit qualitatively the same three collective response regimes, yet response amplitudes in the localized regime
appear to decay differently from those of the second-order model. (e) Closeups of the localized regime reveal that third-order
dynamics boosts response amplitudes by several orders of magnitude in the localized response regime at distant nodes whereas at
close nodes, response amplitudes seem to be similar to those of the second-order model. Network parameters: Bnm = 4 if machine
n andm are connected, Bnn =−

∑
m ̸=n Bnm and Bnm = 0 otherwise. P= 3 for generators and P=−1 for consumers, αn = 0.01,

βn = 1, E f = 2. Reactance X= 1 for third-order dynamics, and X= 0 for second-order dynamics. The response amplitudes
displayed are obtained from numerically evaluating the analytic linear response theory, equations (4.5) and (4.6).

The susceptance parameters are Bnm = 0 if there is no line between the nodes n andm ̸= n. Finally, the
diagonal elements are Bnn =−

∑
m( ̸=n)Bnm. Together, these terms form a susceptance matrix B with

elements

(B)nm =


Bnm > 0 for (n,m) ∈ E
Bnn =−

∑
m ̸=nBnm < 0 for n=m, and

Bnm = 0 otherwise.
(2.3)

The matrix B− diag(B) constitutes a weighted adjacency matrix of the graph G that represents the power
grid with its nodes and transmission lines, see figure 1(a).

Recent research [22] revealed three distinct response regimes that are delineated by the collection of
eigenfrequencies at the normal operating state of the second-order grid model. We reiterate the main
findings, see figures 1(a) and (b). At low driving frequencies below the eigenspectrum, the grid responds
homogeneously with all nodes responding to fluctuations with almost the same amplitudes. In this bulk
regime the amplitudes only slightly change with (sufficiently small) driving frequency. For intermediate
driving frequencies within the band of eigenfrequencies of the system, pronounced resonances emerge
depending also on the exact driving and response node location within the network topology and the
operating state the system is perturbed from, see [10, 22] for details. At high driving frequencies ω(p) beyond
the system’s eigenspectrum, the collective response dynamics exhibits localization [18, 22]. As a consequence,
nodes away from a driven node respond noticeably weaker and the response amplitudes also decay with
increasing driving frequency ω(p), see figures 1(b) and (c).

Dynamical voltage amplitudes have been proven to be crucial for system stability [23, 24]. In particular
the lack of sufficiently large voltage amplitudes has been identified as the root cause in real-world power
system blackouts, for instance in the northeastern United States (2003) and Athens/Greece (2004) [12, 25].
We are thus motivated to generalize the previous studies to the third-order model, the lowest-order model
exhibiting dynamical voltage variables.

The third-order model considers dynamical voltage amplitudes En(t) instead of temporally fixed ones E∗n ,
thereby extending the differential equation (2.1) of the second-order model to the system

βnΘ̈n +αnΘ̇n = Pn +
N∑

m=1

BnmEnEm sin(Θm −Θn)+ δnkεH(t)e
ıω(p)t

Ėn = E f − En +X
N∑

m=1

BnmEm cos(Θm −Θn), (2.4)

3



J. Phys. Complex. 4 (2023) 025019 M Thümler and M Timme

of coupled ordinary differential equations. It exhibits additional machine parameters: the voltage setpoint Ef

and the reactance X. For future analysis, we rewrite the coupled system of first-order and second-order
differential equations as a system of Ñ= 3N first-order differential equations

Θ̇n = ωn

βnω̇n = Pn −αnωn +
N∑

m=1

BnmEnEm sin(Θm −Θn)+ δnkεH(t)e
ıω(p)t

Ėn = E f − En +X
N∑

m=1

BnmEm cos(Θm −Θn), (2.5)

by introducing explicit variables ωn(t) = Θ̇n(t). The second-order model is recovered in the limit X→ 0. In
this limit, the voltage equations obtain globally attractive voltage amplitude fixed points E∗n = E f, effectively
reducing the system (2.5) of 3N dynamical equations to a system of 2N dynamical equations after a transient.

To ensure reliable supply of electrical power, grids are operated close to a stable fixed point, here
(Θ∗,0,E∗) [23, 26], withΘ∗ ∈ RN and E∗ ∈ RN

+, where R+ denotes the set of positive real numbers, defined

via (2.5) with Θ̇n = ω̇n = Ėn = 0 for all nodes n. Numerically evaluating the linear response amplitudes for
the frequency response of the third-order model (figures 1(b) and (c)) reveals three response regimes as for
the second-order model: a bulk regime for low, a resonance regime for intermediate and a localized regime
for large perturbation frequencies ω(p). In the localized regime, the responses decay systematically slower
with perturbation frequency ω(p) than for the second-order model, as illustrated for selected synchronous
machines 4–7, see figures 1(d) and (e). This finding also implies that responses to fluctuations at any given
node reach farther into the grid and away from the driven node if voltage amplitudes are dynamic.

Can we explain these observations? Specifically, what is the mechanism underlying the boosted responses
and associated weakened localization? More quantitatively, how do the responses scale with driving
frequency and distance between driven and response nodes?

3. The physical grid and shortcuts via voltage variables

To obtain (approximate) analytical evidence, we first generalize the linear response theory and its evaluation
as a function of graph distance and driving frequency from the second- to the third-order model. The
third-order model includes products of active voltage variables in the interaction terms (2.5). As a
consequence, the linearization creates three kinds of terms, two equivalent terms with one voltage variable
fixed at and the other deviating from the value at the system’s operating point and one additional term with
both voltages fixed and the phase variables deviating from their values at the operating point.

To make progress, we generalize our framework to analyze both second- and third-order models in the
same notation. So first let us denote the set of Ñ dynamic variables in a model by Ṽ . To simplify notation, we
equivalently refer to the same set of variables simply by integer indices 1, . . . , Ñ. For second-order dynamics
Ñ= 2N whereas Ñ= 3N for third-order dynamics. In summarized form, the dynamical evolution
equation (2.5) reads

ẋ= f(x)+ εg(t) (3.1)

with x(t) ∈ RÑ, the autonomous part of the right hand side (excluding external driving) is mediated by some
f : RÑ → RÑ and the driving signal by a term εg(t). The Ñ= 3N components xν(t) of x(t) represent original
variables as

xν(t) =


Θν(t) for 1⩽ ν ⩽ N
ων−N(t) for N< ν ⩽ 2N
Eν−2N(t) for 2N< ν ⩽ 3N

. (3.2)

for ν ∈ {1, . . . , Ñ}. The components gν(t) are given by

gν(t) = δνκH(t)e
ıω(p)t, (3.3)
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Figure 2. Shortest path in the network of interacting variables depends on model detail. (a) Physical network topology of a power
grid. Nodes are producers or consumers of electrical power. Edges stand for transmission lines. In blue the shortest path, with
graph distance dG = 4, between the solar panel to the wind wheel is highlighted. (b) Extracted shortest path between the solar
panel and the wind wheel in physical network topology (top) and in the network of interacting response variables (bottom).
Edges that are present in the third-order model, but not in the second-order model are marked in orange. The graph distance
d(ω1,ω5) is d(ω1,ω5) = 2dG = 8 for the second-order model and d(ω1,ω5) = dG + 1= 5 for the third-order model
respectively. Connections from AC grids to DC components, such as photovoltaic units, are not captured by the model class
analyzed above. Virtual synchronous machines where AC dynamics is artificially added to the power source’s DC dynamics create
new classes of nodes that should supplement the modeled synchronous generators, likely qualitatively impacting the three
response regimes [28], see also discussion for further details.

with κ= k+N. Now we define Ẽ as the set of variable indices (ν,µ)mediating direct variable interactions.
Specifically, we say (ν,µ) ∈ Ẽ if and only if variable xµ enters the right hand side of the component
differential equation of variable xν , i.e. if

∂fν(x)

∂xµ
̸≡ 0, (3.4)

i.e. if the partial derivative is not identically zero, see [27]. The sets Ẽ and Ṽ form an abstract graph G̃(Ṽ, Ẽ)
that represents the network of interacting variables. We note that G̃ is a directed graph because variable
interactions are not symmetric, despite the symmetric coupling in physical power grids (transmission lines
work in both directions) and thus an underlying undirected physical graph G.

Figure 2 schematically illustrates the relation of the graph G̃ of dynamical variables xν to the underlying
physical graph G of nodes n for a sample power grid. For the second-order model, the network G̃ of variables
xν in general consists of the phase anglesΘn and phase velocities ωn constituting the vertices Ṽ of G̃ (dark
blue nodes in figure 2(b)); and three types of links that constitute the edges Ẽ of G̃. Two types of links
connect each local phase variableΘn with the local phase velocity ωn and vice versa. These links reflect the
fact that in the system of differential equations, the rate of change of ωn is given by a function that contains
Θn and vice versa.

The third type of link connects from a given phaseΘm to the phase velocities ωn at all nodes neighboring
in the physical graph G, i.e. if (n,m) ∈ E . Such a link exists ifΘm appears in a coupling term sin(Θm −Θn)
on the right hand side of the differential equation that defines the rate of change of ωn, see equation (2.1).

For our quantitative analysis of how response amplitudes decay (see next section), we consider shortest
paths pn,m between two nodesm and n in the physical graph G in relation to the shortest directed paths p̃ν,µ
from one variable xµ to another xν in G̃. In the example illustrated in figure 2(a), a shortest path p5,1 in the
physical graph G between nodem= 1 (represented by a photovoltaic array) and node n= 5 (represented by a
wind power station) traverses four transmission lines in the grid and is thus of length dG(5,1) = |p5,1|= 4,
see figure 2(b). In the second-order model, the effective distance along the shortest path p̃ν,µ on the variable

graph G̃ from the phase velocity variable xµ = ω1 at nodem= 1 to xν = ω5 at node n= 5 is d(2nd)G̃ (ω5,ω1) =

|pν,µ|= 8, see also figure 2(b). As a consequence, a fluctuation signal acting upon variable ω1 at node 1
influences at least 8− 1= 7 intermediate variables before affecting ω5, although the physical graph distance
dG̃(ω5,ω1) = 4 is much smaller.
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In general we find for the second-order model (2.1) that the shortest path distance dG̃(ων ,ωµ) from one
phase angle velocity ωm to another ωn is given in terms of the inter-node distance dG(n,m) as

d(2nd)G̃ (ωn,ωm) = 2dG(n,m). (3.5)

The active voltage variables, as they for instance appear in the third-order model, shorten these inter-variable
distances. In the example of figure 2(b), the additional voltage amplitude variables reduce the shortest path
distance from d(2nd)G̃ (ω5,ω1) = 8 to d(3rd)G̃ (ω5,ω1) = 5. In general, such shortcuts enabled by active voltage
dynamics in the third-order model result in an inter-variable distance of

d(3rd)G̃ (ωn,ωm) = dG(n,m)+ 1. (3.6)

Interestingly, further variables added to the third-order model, as they appear, e.g. in higher-order dynamical
power grid models, do not further shorten the shortest path.

4. Quantifying the fluctuation response boost

We now analytically quantify the different localization patterns of high-frequency responses of second- and
third-order dynamics by studying them in the same generalized representation of the form (3.1).

Write the asymptotic series of the response x(t) in the form

x(t)∼
∞∑
j=0

a( j)(t)εj = x∗ + a(1)(t)ε+O(ε2), (4.1)

as the perturbation amplitude ε→ 0, see [29]. Here the generalized state vector x∗ denotes the vector of all
dynamical variables at the system’s operating point (a linearly stable fixed point of the formal
equation (3.1)). Linear response theory consists of deriving and solving differential equations for the
first-order coefficients a(1)(t). For notational simplicity, we drop the superscript ‘(1)’ in the following, as it
indicates the order of the approximation that we keep fixed at first order.

Expanding f(x) about the fixed point x∗ in powers of ε and substituting into (4.1), we obtain a set of Ñ
coupled equations

εȧ(t)+O(ε2) = ε(Ja(t)+ g(t))+O(ε2), (4.2)

where the Jacobian J has the elements

Jνµ =
∂fν(x)

∂xµ

∣∣∣∣
x∗

(4.3)

for ν,µ ∈ {1, . . . , Ñ}. Collecting all terms first order in ε yields

ȧ(t) = Ja(t)+ g(t), (4.4)

which is solved by the components (see appendix)

aν(t) = Aνe
ıω(p)t −Bν(t) (4.5)

with the steady response factor

Aν =
Ñ∑

ℓ=1

Vνℓ
V−1
ℓκ

ıω(p) −λℓ
(4.6)

and the transient response

Bν(t) =
Ñ∑

ℓ=1

Vνℓ
V−1
ℓκ

ıω(p) −λℓ
eλℓt. (4.7)

Here, V and V−1 denote the similarity transform matrices under which J takes diagonal form and λℓ denotes
the ℓth eigenvalue of J. The index κ := k+N indicates the perturbed response variable in the network of
interacting response variables, on which the response amplitudes depend. The transients (4.7) decay with
time because all eigenvalues λℓ have negative real parts due to the (linear) stability of the fixed point x∗. We
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are interested in the steady response amplitude |Aν |, the absolute value of the complex number Aν ∈ C, at a
given variable xν . The response regime analysis of the second-order model [22] extends to the third-order
dynamics via the response amplitudes |Aν |. The resonance regime is bounded by the smallest and largest
imaginary part Im(λℓ) of the eigenvalues λℓ, as one denominator of equation (4.6) is minimized if
Im(λℓ) = ω(p). The homogeneous bulk regime [22] extends to the third-order model for frequency and
phase-angle dynamics, as a consequence of the invariance of the model class to collective shifts of allΘn.
Such an invariance does not extend to the voltage variables, where each voltage response variable approaches
a node-specific value in the limit of ω(p) → 0 (see appendix).

Here, we focus on the localized response regime as shown in figures 1(b) and (d). To retrieve a leading
order asymptotic scaling for large frequencies, as ω(p) →∞, we determine the largest exponent of ω(p)

appearing in |Aν |. The following steps (explicated in full detail in the appendix) yield the leading order
approximation. First we expand each term in (4.6) to obtain a common denominator for all terms. The
common denominator is a polynomial in ω(p) of degree Ñ. The second step is to determine a relation
between the exponents of ω(p) and the summed exponents of all eigenvalues λℓ that appear in every

numerator. We find that the powers of
(
ω(p)

)q
are appearing in terms with λ

Ñ−1−q
ℓ . Last, we utilize

(
Jd
)
νκ

=
∑
ℓ

Vνℓλ
d
ℓV

−1
ℓκ (4.8)

for which we have (
Jd
)
νκ

= 0 if d< dG̃(xν ,xκ) and (4.9)

(
Jd
)
νκ

̸= 0 if d= dG̃(xν ,xκ). (4.10)

The latter links the shortest signal propagation path length dG̃ , via the lowest order, non-zero matrix element

(JdG )νκ, with the largest power of (ω(p))Ñ−1−dG with a non-zero prefactor. Because the common
denominator is a polynomial of ω(p) of degree Ñ, we finally find the asymptotic leading term approximation

|Aν | ∼
|Φ[d]

νκ|
(ω(p))d+1

as ω(p) →∞. (4.11)

Here, we denote the distance dG̃(xν ,xκ) between perturbed response variable xκ(t) and receiving response

variable xν(t) simply by d and a complicated variable-specific factor by |Φ[d]
νκ|.

In particular, the asymptotic scaling relation (4.11) indicates that the response amplitudes of the phase
velocity variables ωn decay exponentially with distance d= dG̃(ωn,ωk) to the frequency variable ωk at the

driven node k and algebraically with the driving frequency ω(p).
For simplicity we in the following denote the amplitudes in terms of the original dynamical variables

(instead of in terms of the abstract indices ν), i.e. as

Aν =:


AΘν

for 1⩽ ν ⩽ N
Aων−N for N< ν ⩽ 2N
AEν−2N for 2N< ν ⩽ 3N

. (4.12)

Applying the graph distance mappings (3.6) for the third-order model and (3.5) for the second-order model,
respectively, reveals

|A(3rd)
ωn

| ∼
|Φ(3rd)

nk |
(ω(p))dG+2

as ω(p) →∞

|A(2nd)
ωn

| ∼
|Φ(2nd)

nk |(
ω(p)

)2dG+1
as ω(p) →∞. (4.13)

The power law exponents at response variable ωn at synchronous machine n at distance dG from the
perturbed machine k is summarized in table 1.

In particular, responses are of the same order of magnitude (same exponent) for nodes that are nearest
neighbors to the driven node k (at physical graph distance dG = 1); differences in exponent emerge at dG = 2
and become more and more pronounced as the physical graph distance dG grows. More quantitatively, the
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Table 1. Exponents in leading term approximations of the response amplitudes in the localized response regime: deviation between
second-order and third-order model in leading term exponent grows linearly in dG between synchronous machines, such that difference
between second-order and third-order model becomes more expressed at larger distances dG̃ .

dG 1 2 3 4 5 . . .

2nd-order m., leading exponent dG̃ + 1= 2dG + 1 3 5 7 9 11 . . .
3rd-order m., leading exponent dG̃ + 1= dG + 2 3 4 5 6 7 . . .

Figure 3.Weaker localization in power grid models including voltage dynamics. (a) Closeup of localized response regime of the
second-order model for four selected nodes at graph distances dG ∈ {0,2,4,6}. Theoretical predictions (4.13) plotted in dashed
gray lines. (b) closeup of the localized response regime for third-order dynamics at the same nodes as in (a) with theoretical
curves plotted in dashed-gray. The amplitudes at dG = 2 does not match the theoretical expression as higher order terms are not
sufficiently small. (c) Comparing second-order and third-order amplitudes in the localized response regime, reveals the
theoretically predicted deviations at larger graph distances dG ∈ {4,5,6} (4.14). At dG = 1 both models agree because
2dG + 1= dG + 2 at dG = 1. For dG ∈ {2,3} scaling is not visible. Model parameters as in figure 1.

one-term leading-order approximation indicates a relative response strength whose exponent grows linearly
with dG and

|A(3rd)
ωn |

|A(2nd)
ωn |

∼
|Φ(3rd)[d]

nk |
|Φ(2nd)[d]

nk |

(
ω(p)

)dG−1
as ω(p) →∞. (4.14)

Figure 3 confirms the asymptotic scaling, showing that the response strengths and more distant machines is
several order of magnitude larger, when considering dynamic voltage variables in the third-order model.

We reiterate that more detailed dynamical grid models, such as the fourth-, the fifth- and the sixth-order
models do not further decrease the inter-variable distance, so the boosted responses do not automatically
grow further. Nevertheless, there are still options for the responses to grow (or shrink). First, the prefactors

|Φ(3rd)
nκ | in (4.13) do depend on the model details. Second, our approximate predictions take into account

shortest paths while longer paths may jointly contribute to substantially change the responses quantitatively.

5. Discussion

In summary, we have illustrated that the main dynamical regimes of collective phase velocity responses to
fluctuating input signals—bulk responses at low driving frequencies, heterogeneous resonant responses at
intermediate, and localized responses at high frequencies—constitute generic features of grids with and
without active voltage dynamics, see [10, 13, 14, 18, 22]. Further, we expanded existing theories to also cover
the fluctuations of voltage dynamics, which show the same characterstic three response regimes (see figure
A1). Intriguingly, however, active voltage dynamics boosts the high-frequency responses compared to grids
with fixed voltage amplitudes. As a consequence, grid responses to high-frequency inputs at a given node stay
less localized and have larger amplitudes at specific other nodes in the network. Subsecond, large-frequency
fluctuations have been found experimentally to be overexpressed due to the non-Gaussian nature of the
frequency distribution [3]. The propagation of such fluctuations throughout the grid have been investigated
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theoretically with focus on the frequency increment distribution and as a function of the effective inertia in
the system [5].

To explicate our theory and systematically test it against direct numerical simulations we focused on the
third-order network model of power grid dynamics, the lowest-order model with voltage (amplitudes) as
explicit dynamic variables, and compared it to the second-order model exhibiting constant voltage
amplitudes.

Active voltage amplitude dynamics (effective reactances of substantial positive value X> 0) creates
shorter effective paths between pairs of grid nodes.

The response dynamics of grid with active voltage degrees of freedom thus becomes less localized with
response strengths at certain response nodes in the grid, orders of magnitude larger than in systems with
fixed voltage amplitudes. We emphasize that additional variables such as appearing in the fourth, fifth or
sixth order model [12, 14] do not further shorten the distance between grid nodes, thus indicating the same
localization exponents as reported above (4.13).

Compared to the second-order model, coupling strengths in the third-order model are often more
heterogeneous, thereby increasing the importance of paths that are longer than the shortest. Analyzing the
impact of such longer paths should be part of future research.

Future work on fourth, fifth and sixth order model may reveal new forms of influences by the additional
variable dynamics on the localized regime, as well as on the bulk and resonance regimes. Further, the
integration of renewable energy sources over long distances, such as the case for offshore wind farms,
requires further DC-AC mixed grids, where the power is inserted to the AC grid with DC connectors [30].
Virtual synchronous machines where AC dynamics is artificially added to the power source’s DC dynamics
create new classes of nodes that should supplement the modeled synchronous generators, likely qualitatively
impacting the three response regimes.

Recent work has revealed that voltage responses to fluctuating input signals (with zero average) are
shifted non-linearly towards smaller voltage amplitudes in the third-order model, causing voltage collapses at
a specific driving amplitude, reported as a tipping point [26]. To date, like in this work, response dynamics of
power grids have been mostly studied in the linear response regime [10]. Hence, genuinely nonlinear
response phenomena, as the reported nonlinearly shifted voltage amplitudes, are likely to be uncovered. It
thus remains as a challenge for future theoretical research to fully reveal how active voltage variables impact
the consequences of short-term, sub-second fluctuations. Of at least equal importance is to uncover where
the resulting fluctuation responses may induce tipping points and thus a potential loss of reliable operation.
Such research seems particularly relevant on potentially existing but unknown response phenomena.

In general, we believe that research on the collective dynamics of power grids needs to particularly
address (i) the more networked topology of grids upgraded with additional transmission lines, (ii) the more
and more prominent high-frequency fluctuations resulting from renewable sources and consumer dynamics,
(iii) the more frequently occurring high-load situations where additional short-term fluctuations can have a
larger impact on grid performance, and (iv) the generically nonlinear nonequilibrium response dynamics in
strongly networked systems.
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Appendix

Response theory inN-dimensional systems
Formally, linear response theory for high-dimensional systems works in analogy to that for one-dimensional
systems. The caveats of such an analysis emerge as the multiple sums and products arising in
high-dimensional systems are non-trivial to evaluate. We here cover the basic stpes of linear response theory
for completeness. Let us consider an Ñ-dimensional system given by

ẋ= f(x)+ εg(t) (A.1)

9



J. Phys. Complex. 4 (2023) 025019 M Thümler and M Timme

with x ∈ RÑ and f : RÑ → RÑ, perturbation components

gν(t) = δνκH(t)cos(ω
(p)t), (A.2)

and an asymptotically stable fixed point x∗ with initial conditions x(0) = x∗. In analogy to the
one-dimensional systems, we here expand the vector-valued response dynamics into a vector-valued
asymptotic power series

x(t)∼ x∗ +
∞∑
j=1

a( j)(t)εjas ε→∞. (A.3)

As demonstrated in the main part, the linear approximation (first order in ε) about a fixed point x∗ of (A.1)
takes the following form

ȧ(1)(t) = Ja(1)(t)+ g(t), (A.4)

with the systems’ Jacobian J. In the following, we drop the superscript ‘(1)’indicating the order of
approximation for simplicity of notation. Equation (A.4) constitute a system of coupled, linear differential
equations with a time-dependent inhomogeneity. If the Jacobian J is diagonalizable and one node is driven
by one a frequency signal, this system is reducible to Ñ instances of the one-dimensional first order response
differential equation (A.13) below. A similarity transformation V and its inverse V−1 yield

J= VJDV
−1, (A.5)

with the diagonal matrix JD, composed of the eigenvalues of J on its diagonal and zeroes otherwise.
Substituting into equation (A.4), we find

ȧ(t) = VJDV
−1a(t)+ g(t), (A.6)

which we multiply on both sides with V−1 from the left to obtain

ż= JDz+V−1g(t), (A.7)

for z := V−1a1(t). Each line ℓ of equation (A.7) reads

żℓ = λℓzℓ +(V−1)ℓκH(t)e
ıω(p)t, (A.8)

with the ℓth eigenvalue λℓ of J. Equation (A.8) is of the same form as equation (A.13) for which we know the
complex solution z(ℓ)(t) (see next section of the appendix), that is given in the form of equation (A.18). We
recover a(t) as

a(t) = Vz(t) (A.9)

such that the νth component of a(t) reads

aν(t) = Aνe
ıω(p)t −Bν(t), (A.10)

with

Aν =
N∑

ℓ=1

Vνℓ
V−1
ℓκ

ıω(p) −λℓ
(A.11)

and

Bν =
N∑

ℓ=1

Vνℓ
V−1
ℓκ

ıω(p) −λℓ
eλℓt. (A.12)

Each component Bν decays as t→∞ because all eigenvalues λℓ have a negative real part.
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Figure A1. Response regimes of voltage response variables. Response amplitudes |Aν |= |AEn | of voltage amplitudes En of seven
selected nodes n in the third-order model given that only node k= 1 is perturbed (such that κ= 1+N). The collective response
dynamics exhibits a bulk, a resonant and a localized regime, depending on the driving frequency ω(p). The bulk regime is
different for the voltage amplitude variables: they still only slightly vary with (sufficiently small) changes in ω(p) yet there
magnitude varies among the nodes. Vertical gray lines mark the support of eigenspectrum of the system.

Response theory in one dimensional systems
Here, we present a known derivation of the linear response function a(t), defined via the differential
equation

ȧ(t) = f ′(x∗)a(t)+H(t)eıω
(p)t, (A.13)

with the initial condition a1(0) = 0. The homogeneous solution a(h)1 (t) of the separable, linear differential
equation is given by

a(h)(t) = Ce f
′(x∗)t. (A.14)

A particular solution can be obtained by either guessing a solution of the form Cpeıω
(p)t or by the method of

variations of the constant, which we explicate in the following. We take the homogeneous solution and treat
the constant C as being time dependent itself C→ Cp(t) and inserting this function on both sides of the
differential equation

Ċp(t)e
f ′(x∗)t +Cp(t)f

′(x∗)e f
′(x∗)t

= Cp(t)f
′(x)e f

′(x∗)t + eıω
(p)t

⇒ Ċp(t)e
f ′(x∗)t = eıω

(p)t

⇒ Cp(t) =
1

ıω(p) − f ′(x∗)
eıω

(p)t−f ′(x∗)t. (A.15)

The particular solution a(p)(t) follows as

a(p)(t) = Cp(t)e
f ′(x∗)t =

1

ıω(p) − f ′(x∗)
eıω

(p)t. (A.16)

The comprehensive set of solutions of the linear differential equation is then given by the superposition of
homogenous and particular solution

a(t) = a(h)(t)+ a(p)(t) = Ce f
′(x∗)t +

1

ıω(p) − f ′(x∗)
eıω

(p)t, (A.17)

where the constant of integration C can be determined from the initial condition a(0) = 0, yielding

a(t) =
1

ıω(p) − f ′(x∗)

(
eıω

(p)t − e f
′(x∗)t

)
=: A1

(
eıω

(p)t − e f
′(x∗)t

)
. (A.18)
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Asymptotic behaviour in the localized response regime
In this section we analyze the asymptotic behavior of the response factors Aν in the limit of large
perturbation frequencies ω(p) ≫max(Im(λℓ)). We aim to find the term with the largest power of the
perturbation frequency ω(p), which is the leading term in the localized response regime. First, we bring all
eigenmodes in equation (A.11) to a common denominator∆, which yields

Aν =
1

∆

Ñ∑
ℓ=1

VνℓV
−1
ℓκ

Ñ∏
l ′=1(l ′ ̸=ℓ)

(
ıω(p) −λl ′

)
. (A.19)

The common denominator∆ is a polynomial of ω(p) of degree Ñ. Expanding the product and rewriting it as
a polynomial of ω(p) yields

Ñ∏
l ′=1(l ′ ̸=ℓ)

(
ıω(p) −λl ′

)
=

Ñ∑
l=0

C[ℓ]
l

(
ω(p)

)Ñ−1−l
. (A.20)

The largest powers of λℓ occurring in C[ℓ]
l relate to powers of the Jacobian and therefore to all walks between

responding and perturbed variable of the same length as the power. To retrieve a leading term approximation

we therefore need to express the largest power of λℓ in C[ℓ]
l . For this we prove

Proposition 1. The coefficient C[ℓ]
l is a polynomial of λℓ of degree l.

C[ℓ]
l =

l∑
m=0

β[l]
m (λℓ)

m, (A.21)

with ℓ-independent coefficients β[l]
m .

Since β[l]
m is independent of ℓ, it acts as a scalar factor in any matrix product. We define the index sets

S := {1, . . . , Ñ− 1} and Sℓ := {1, . . . , Ñ− 1} \ {ℓ} and all subsets sl ⊆ Sℓ of exactly l elements of Sℓ and s̃l ⊆ S

of l elements of S. In the following we show, that the coefficients C[ℓ]
l are expressable in the following form

C[ℓ]
l = ıÑ−1−l

∑
sl

∏
p∈sl

λp, (A.22)

where the sum is over all l-element subsets sl of Sℓ. There are a total of
(|Sℓ|

l

)
such sets. The proof of

proposition 1 follows by induction. For l= 1 we have

C[ℓ]
1 = iÑ−2

∑
s1

∏
p∈s1

λp = i3N−1−1

∑
p∈S

λp −λℓ

 . (A.23)

The first term is a sum over all eigenvalues and therefore identical for all possible C[ℓ]
l . The prefactor is indeed

a polynomial of λℓ with degree l= 1. Under the assumption the assertion hold for l we will show that the
assertion follows for l+ 1.

C[ℓ]
l+1 = ıÑ−2−l

∑
sl+1

∏
p∈sl+1

λp

= ıÑ−2−l

∑
s̃l+1

∏
p∈̃sl+1

λp −λℓ

∑
sl

∏
p∈sl

λp

 , (A.24)

where the last term is a polynomial of λℓ of degree l+ 1 following from the assumption that the proposition
holds for l. The first term is again independent of ℓ. With these findings the response factor takes up the
form:

Aν =
1

∆

Ñ∑
ℓ=1

VνℓV
−1
ℓκ

Ñ−1∑
l=0

l∑
m=0

β[l]
m (λℓ)

m(ω(p))Ñ−1−l. (A.25)
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We conclude that l is the largest power of λℓ occurring in a term (ω(p))3N−1−l. Each summand

l∑
m=0

β[l]
m (λℓ)

m(ω(p))Ñ−1−l (A.26)

is a polynomial of λℓ of degree l. The largest power of the perturbation frequency ω(p) corresponds to the
lowest power of λℓ that under similarity transformation yields a nonzero contribution

Φ
[l]
νk = β

[l]
l

Ñ∑
ℓ=0

Vνℓ(λℓ)
lV−1

ℓκ . (A.27)

where the sum is the (ν,κ)-component of J l of degree l, identifies the scaling of Aν and with that of |Aν | of a
response variable that is at distance d in the network of interacting variables from the perturbed variable κ
(which is ωk in our setting). It scales as

|Aν | ∼
|Φ[d]

νκ|
(ω(p))d+1

as ω(p) →∞, (A.28)

where |Φ[d]
νκ| is determined numerically from equation (A.25).
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