
IOP PUBLISHING NONLINEARITY

Nonlinearity 21 (2008) 1579–1599 doi:10.1088/0951-7715/21/7/011

The simplest problem in the collective dynamics of
neural networks: is synchrony stable?

Marc Timme and Fred Wolf

Max Planck Institute for Dynamics and Self-Organization, Bernstein Center for
Computational Neuroscience, and University of Göttingen, Bunsenstrasse 10,
37073 Göttingen, Germany

Received 29 October 2007, in final form 28 April 2008
Published 10 June 2008
Online at stacks.iop.org/Non/21/1579

Recommended by J A Glazier

Abstract
For spiking neural networks we consider the stability problem of global
synchrony, arguably the simplest non-trivial collective dynamics in such
networks. We find that even this simplest dynamical problem—local stability of
synchrony—is non-trivial to solve and requires novel methods for its solution.
In particular, the discrete mode of pulsed communication together with the
complicated connectivity of neural interaction networks requires a non-standard
approach. The dynamics in the vicinity of the synchronous state is determined
by a multitude of linear operators, in contrast to a single stability matrix in
conventional linear stability theory. This unusual property qualitatively depends
on network topology and may be neglected for globally coupled homogeneous
networks. For generic networks, however, the number of operators increases
exponentially with the size of the network.

We present methods to treat this multi-operator problem exactly. First,
based on the Gershgorin and Perron–Frobenius theorems, we derive bounds on
the eigenvalues that provide important information about the synchronization
process but are not sufficient to establish the asymptotic stability or instability
of the synchronous state. We then present a complete analysis of asymptotic
stability for topologically strongly connected networks using simple graph-
theoretical considerations.

For inhibitory interactions between dissipative (leaky) oscillatory neurons
the synchronous state is stable, independent of the parameters and the network
connectivity. These results indicate that pulse-like interactions play a profound
role in network dynamical systems, and in particular in the dynamics of
biological synchronization, unless the coupling is homogeneous and all-to-all.
The concepts introduced here are expected to also facilitate the exact analysis of
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more complicated dynamical network states, for instance the irregular balanced
activity in cortical neural networks.
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1. Introduction

Understanding the collective dynamics of biological neural networks represents one of the
most challenging problems in current theoretical biology. For two distinct reasons, the
study of synchronization in large neuronal networks plays a paradigmatic role in theoretical
studies of neuronal dynamics. Firstly, synchrony is a ubiquitous collective feature of neural
activity. Large-scale synchronous activity has been observed by spatially coarse methods such
as electro- or magnetoencephalography. Complementing experiments of parallel recordings
of spiking activity of individual cells have shown that the synchronization of firing times of
individual units is often precise with a temporal scatter of the order of a few milliseconds [1,2].
This precise locking has been observed over significant distances in the cortex and even across
hemispheres [3]. Synchronous activity also plays an important role in pathological states
such as epileptic seizures [4]. Secondly, the synchronous state is arguably the simplest non-
trivial collectively coordinated state of a network dynamical system. Mathematically, it is
therefore one of the most thoroughly investigated states in the dynamics of biological neural
networks. Following the paradigm set by the seminal works of Winfree and Kuramoto on
the dynamics of biological oscillators, most studies of synchronization have utilized either
temporal or population averaging techniques to map the pulse-coupled dynamics of biological
neural networks to effective models of phase-coupled oscillators or density dynamics [5–22].

While this approach has proven to be very informative, it provides exact results only
under highly restrictive conditions. In fact, studies approaching the dynamics of biological
neural networks using exact methods [7, 23–34] have, over the past decade, revealed numerous
examples of collective behaviours that obviously are outside the standard repertoire of
behaviours expected from a smoothly coupled dynamical system. These include several new
and unexpected phenomena such as unstable attractors [23–35], stable chaos [23, 24, 36],
topological speed limits to coordinating spike times [31,32] and extreme sensitivity to network
topology [37]. The occurrence of these phenomena may signal that the proper theoretical
analysis of collective neuronal dynamics mathematically represents a much more challenging
task than is currently appreciated.

In this paper, we study the impact of pulse-coupling, delayed interactions and complicated
network connectivity on the exact microscopic dynamics of neural networks and expose the
mathematical complexity that emerges already when considering the seemingly simple problem
of neuronal synchronization. Utilizing the Mirollo–Strogatz phase representation of individual
units, we present an analytical treatment of finite networks of arbitrary connectivity. The
results obtained unearth an unanticipated subtlety of the nature of this stability problem: it
turns out that a single linear operator is not sufficient to represent the local dynamics in
these systems. Instead, a large number of linear operators, depending on rank order of the
perturbation vector, are needed to represent the dynamics of small perturbations. We present
methods to characterize the eigenvalues of all operators arising for a given network. Universal
properties of the stability operators lead to exact bounds on the eigenvalues of all operators
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and also provide a simple way to prove plain but not asymptotic stability for any network.
We then show for topologically strongly connected networks that asymptotic stability of the
synchronized state can be demonstrated by graph-theoretical considerations. We find that
for inhibitory interactions the synchronous state is stable, independent of the parameters
and the network connectivity. A part of this work that considers plain (non-asymptotic)
stability without network constraints has been briefly reported before for the case of inhibitory
coupling [38]. These results indicate that pulse-like interactions play a profound role in network
dynamical systems, and in particular in the dynamics of biological synchronization, unless the
coupling is homogeneous and all-to-all. They highlight the need for exact mathematical tools
that can handle the dynamic complexity of neuronal systems at the microscopic level.

2. The phase representation of pulse-coupled networks

We consider networks of N pulse-coupled oscillatory units, neurons, with delayed interactions.
A phase-like variable φj (t) ∈ (−∞, 1] specifies the state of each oscillator j at time t such
that the difference between the phases of two oscillators quantifies their degree of synchrony,
with identical phases for completely synchronous oscillators. The free dynamics of oscillator
j is given by

dφj

dt
= 1. (1)

Whenever oscillator j reaches a threshold

φj (t) = 1 (2)

the phase is reset to zero

φj (t
+) = 0 (3)

and a pulse is sent to all other post synaptic oscillators i ∈ Post(j). These oscillators i receive
this signal after a delay time τ . The interactions are mediated by a function U(φ) specifying
a ‘potential’ of an oscillator at phase φ. The function U is assumed twice continuously
differentiable, monotonically increasing,

U ′ > 0, (4)

concave (down),

U ′′ < 0, (5)

and normalized such that

U(0) = 0 and U(1) = 1. (6)

For a general U(φ) we define the transfer function

Hε(φ) = U−1(U(φ) + ε) (7)

that represents the response of an oscillator at phase φ to an incoming sub-threshold pulse of
strength ε. Depending on whether the input εij received by oscillator i from j is sub-threshold,

U(φ) + εij < 1, (8)

or supra-threshold,

U(φ) + εij � 1, (9)
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Figure 1. An incoming pulse of strength ε induces a phase jump φ+
1 := φ1(t

+) = U−1(U(φ1(t))+
ε) = Hε(φ1) that depends on the state φ1 := φ1(t) of the oscillator at time t of pulse reception.
Due to the curvature of U , an excitatory pulse (ε > 0) induces an advancing phase jump. If the
incoming pulse puts the potential above threshold (U(φ1) + ε > 1), the phase is reset to zero
(φ+

1 = 0). An inhibitory pulse (ε < 0) would induce a regressing phase jump such that the phase
may assume negative values (not shown).

the pulse sent at time t (equation (2)) induces a phase jump after a delay time τ at time t + τ

according to

φi((t + τ)+) =
{
Hεij

(φi(t + τ)) if U(φi(t + τ)) + εij < 1
0 if U(φi(t + τ)) + εij � 1.

(10)

In the second case also a pulse is emitted by oscillator i . The phase jump (figure 1) depends
on the phase φi(t + τ) of the receiving oscillator i at time t + τ after the signal by oscillator j

has been sent at time t , the effective coupling strength εij and the nonlinear potential function
U . The interaction from unit j to unit i is either excitatory (εij > 0) inducing advancing
phase jumps (cf figure 1) or inhibitory (εij < 0) inducing retarding phase jumps. If there is
no interaction from j to i, we have εij = 0. There are two immediate differences between
inhibitory and excitatory inputs. First, while inhibitory input εij < 0 is always sub-threshold,
excitatory input εij > 0 may also be supra-threshold and thus induce an instantaneous reset to
zero according to equation (10). Second, in response to the reception of an inhibitory pulse,
the phases of the oscillators may assume negative values whereas for excitatory coupling they
are confined to the interval [0, 1]. We remark here that we do not consider the dynamics
(and perturbations) of variables that encode the spikes in transit, i.e. spikes that have been
sent but not yet received at any instant of time. These additional variables make the system
formally higher dimensional. However, under the conditions considered below, in particular
for networks of identical neurons with inhibitory interactions, earlier rigorous work [35] shows
that these spike time variables lock to the phase variables once all spikes present in the system
initially have arrived and every neuron has emitted at least one spike thereafter (which takes
finite total time). Thus, for our purposes, we consider the dynamics and perturbations of the
phase variables only.

Choosing appropriate functions U the dynamics of a wide variety of pulse-coupled systems
can be represented. In particular, any differential equation for an individual neural oscillator
of the form

V̇i = f (Vi) + Si(t) (11)

together with the threshold firing condition

Vi(t) = 1 ⇒ Vi(t
+) = 0, (12)
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where

Si(t) =
∑
j,m

εij δ(t − tj.m) (13)

is the synaptic current from the network and tj,m is the time of the mth firing of neuron j . As
long as the free (Si(t) ≡ 0) dynamics has a periodic solution V (t) with period T and negative
curvature, the function U can be taken as the scaled solution,

U(φ) := V (φT ). (14)

Thus a general class of pulse-coupled oscillator networks, defined by equations (11–13), can
be mapped onto the normalized phase representation (equations (1)–(10)).

In this paper, we consider a system of N coupled Mirollo–Strogatz oscillators which
interact on directed graphs by sending and receiving pulses. The structure of this graph is
specified by the sets Pre(i) of presynaptic oscillators that send pulses to oscillator i. For
simplicity we assume no self-interactions, i /∈ Pre(i). The sets Pre(i) completely determine
the topology of the network, including the sets Post(i) of postsynaptic oscillators that receive
pulses from i. The coupling strength between oscillator j and oscillator i is given by εij

such that

εij �= 0 if j ∈ Pre(i)

εij = 0 otherwise.
(15)

Thus a connection is considered to be present if the connection strength is nonzero. All
analytical results presented are derived for the general class of interaction functions U

introduced above. The structure of the network is completely arbitrary except for the restriction
that every oscillator has at least one presynaptic oscillator.

3. Regular and irregular dynamics in pulse-coupled networks

The synchronous state in which

φi(t) = φ0(t) for all i (16)

is arguably one of the simplest ordered states a network of pulse-coupled oscillators may
assume. This synchronous state exists if and only if the coupling strengths are normalized
such that ∑

j∈Pre(i)

εij = ε. (17)

One should keep in mind that this state whether stable or not is typically not a global attractor in
complex networks. To illustrate this point let us briefly consider a specific example. Figures 2
and 3 show numerical results in a randomly connected network of integrate and fire oscillators
where U(φ) = UIF(φ) = I (1−e−φTIF) and TIF = ln(I/(I −1)) with strong interactions. This
network exhibits a balanced state (cf [16,39,40]) characterized by irregular dynamics. In this
balanced state, found originally in binary neural networks [39, 40], inhibitory and excitatory
inputs cancel each other on average but fluctuations lead to a variability of the membrane
potential and a high irregularity in firing times (see also [16]). Figures 2(a) and (b) display
sample trajectories of the potentials U(φi) of three oscillators for the same random network,
making obvious the two distinct kinds of coexisting dynamics. Whereas in the synchronous
state all oscillators display identical periodic dynamics, in the balanced state oscillators fire
irregularly, asynchronous and in addition differ in their firing rates.
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Figure 2. Coexistence of (a) synchronous and (b) irregular dynamics in a random network
(N = 400, p = 0.2, I = 4.0, ε = −16.0, τ = 0.035), cf [38]. (a) and (b): trajectories of
the potential U(φi) of three oscillators (angular bars: time scale (horizontal) �t = 8; potential
scales (vertical) (a) �U = 8, (b) �U = 2; spikes of height �U = 1 added at firing times).
Distributions (c) pν of rates and (d) pCV of the coefficient of variation, displayed for the irregular
(dark grey) and synchronous (light grey) dynamics. Figure modified from [38].

The latter dynamical difference is quantified by a histogram pν of oscillator rates
(figure 2(c))

νi = (〈
ti,n+1 − ti,n

〉
n

)−1
, (18)

the reciprocal values of the time averaged inter-spike intervals. Here the ti,n are the times
when oscillator i fires the nth time. The temporal irregularity of the firing sequence of single
oscillators i is measured by the coefficient of variation

CVi = (
ν2

i

〈
(ti,n+1 − ti,n)

2
〉
n
− 1

) 1
2 , (19)

defined as the ratio of the standard deviation of the inter-spike intervals and their average.
A histogram pCV of the CVi shows that the irregular state exhibits coefficients of variation
near one, the coefficient of variation of a Poisson process. Such irregular states occur robustly
when changing parameters and network topology.

Figure 3 illustrates the bistability of these qualitatively different states by switching the
network dynamics form one state to the other by external perturbations. A simple mechanism
to synchronize oscillators that are in a state of irregular firing is the delivery of two sufficiently
strong external excitatory (phase-advancing) pulses that are separated by a time �t ∈ (τ, 1),
cf figure 3. The first pulse then leads to a synchronization of phases due to simultaneous
supra-threshold input, cf (7). If there are travelling signals that have been sent but not received
at the time of the first pulse, a second pulse after a time �t > τ is needed that synchronizes
the phases after all internal signals have been received. In this network the synchronous state
is not affected by small random perturbations, whereas large random perturbations lead back
to irregular dynamics (figure 3). These features clearly suggest that the synchronized state
is an asymptotically stable local attractor. However, with the exception of special cases no
exact treatment of this proposition exists. Below we will expose that a general treatment of the
stability of apparently simple synchronous state reveals an unexpectedly complex mathematical
setting.
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Figure 3. Switching between irregular and synchronous dynamics (N = 400, p = 0.2, I = 4.0,
ε = −16.0, τ = 0.14). Firing times of five oscillators are shown in a time window �t = 240.
Vertical dashed lines mark external perturbations: (i) large excitatory pulses lead to synchronous
state, (ii) a small random perturbation (|�φi | � 0.18) is restored, (iii) a sufficiently large random
perturbation (|�φi | � 0.36) leads to an irregular state. (Bottom) Time evolution of the spread of
the spike times after perturbation (ii), total length �t = 0.25 each. Figure modified from [38].

4. Constructing stroboscopic maps

We perform a stability analysis of the synchronous state

φi(t) = φ0(t) for all i (20)

in which all oscillators display identical phase-dynamics φ0(t) on a periodic orbit such that
φ0(t + T ) = φ0(t). The period of the synchronous state is given by

T = τ + 1 − α, (21)

where

α = U−1(U(τ) + ε). (22)

For simplicity, we consider the cases where the total input ε is sub-threshold, U(τ) + ε < 1
such that α < 1. A perturbation

δ(0) =: δ = (δ1, . . . , δN) (23)

to the phases is defined by

δi = φi(0) − φ0(0) . (24)

If we assume that the perturbation is small in the sense that

max
i

δi − min
i

δi < τ (25)

this perturbation can be considered to affect the phases of the oscillators at some time just after
all signals have been received, i.e. after a time t > t0 + τ if all oscillators have fired at t = t0.
This implies that in every cycle, first each neuron sends a spike before any neuron receives
any spike. Such a perturbation will affect the time of the next firing events because the larger
the perturbed phase of an oscillator is, the earlier this oscillator reaches threshold and sends a
pulse. In principle, there one may consider other perturbations, in which, for instance, a pulse
is added or removed at a certain time. As such perturbations are not relevant for questions of
asymptotic stability, we do not consider them here.

To construct the stroboscopic period-T map, it is convenient to rank order the elements δi

of δ in the following manner: for each oscillator i we label the perturbations δj of its presynaptic
oscillators j ∈ Pre(i) (for which εij �= 0) according to their sizes

�i,1 � �i,2 � . . . � �i,ki
, (26)
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Figure 4. Two signals arriving almost simultaneously induce different phase changes, depending
on their rank order. The figure illustrates a simple case where Pre(i) = {j, j ′} and δi = 0, (a)–(c)
for δj ′ > δj and (d)–(f ) for δj > δj ′ . (a) and (d) Local patch of the network displaying the
reception times of signals that are received by oscillator i. Whereas in (a) the signal from j ′ arrives
before the signal of j , the situation in (d) is reversed. (b) and (e) Identical coupling strengths induce
identical jumps of the potential U but (c) and (f ) the phase jumps these signals induce are different
and depend on the order of the incoming signals. For small |δi | � 1, individual phase jumps are
encoded by the pi,n.

where

ki := |Pre(i)| (27)

is the number of its presynaptic oscillators, called in-degree in graph theory. The index
n ∈ {1, . . . , ki} counts the received pulses in the order of their successive arrival. Thus,
if jn ≡ jn(i) ∈ Pre(i) labels the presynaptic oscillator from which i receives its nth signal
during the period considered, we have

�i,n = δjn(i). (28)

For later convenience, we also define

�i,0 = δi . (29)

For illustration, let us consider an oscillator i that has exactly two presynaptic oscillators
j and j ′ such that Pre(i) = {j, j ′} and ki = 2 (figures 4(a) and (d)). For certain perturbations,
oscillator i first receives a pulse from oscillator j ′ and later from oscillator j . This determines
the rank order, δj ′ > δj , and hence �i,1 = δj ′ and �i,2 = δj (figure 4(a)). Perturbations with
the opposite rank order, δj > δj ′ , lead to the opposite labelling, �i,1 = δj and �i,2 = δj ′

(figure 4(d)).
We now consider a fixed, arbitrary, perturbation, the rank order of which determines the

�i,n according to inequalities (26). Using the phase shift function Hε(φ) (see (7)) and denoting

Di,n := �i,n−1 − �i,n (30)
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Table 1. Time evolution of oscillator i in response to ki successively incoming signals from its
presynaptic oscillators jn, n ∈ {1, . . . , ki}, from which i receives the nth signal during this period.
The right column gives the phases φi(t) at times t given in the left column. The time evolution is
shown for a part of one period ranging from φi ≈ τ/2 to reset, 1 → 0, such that φi = 0 in the last
row. The first row gives the initial condition φi(0) = τ/2 + δi . The following rows describe the
reception of the ki signals during this period whereby the phases are mapped to βi,n after the nth
signal has been received. The last row describes the reset at threshold such that the respective time
T

(0)
i = τ/2 − �i,ki

+ 1 − βi,ki
gives the time to threshold of oscillator i.

t φi (t)

0
τ

2
+ δi =:

τ

2
+ �i,0

τ

2
− �i,1 U−1(U(τ + Di,1) + εij1 ) =: βi,1

τ

2
− �i,2 U−1(U(βi,1 + Di,2) + εij2 ) =: βi,2

.

.

.
.
.
.

τ

2
− �i,ki

U−1(U(βi,ki−1 + Di,ki
) + εijki

) =: βi,ki

τ

2
− �i,ki

+ 1 − βi,ki
Reset : 1 
→ 0

for n ∈ {1, . . . , ki} we calculate the time evolution of phase-perturbations δi satisfying (25).
Without loss of generality, we choose an initial condition near φ0(0) = τ/2. The stroboscopic
time-T map of the perturbations, δi 
→ δi(T ), is obtained from the scheme given in table 1.
The time to threshold of oscillator i, which is given in the lower left of the scheme,

T
(0)
i := τ

2
− �i,ki

+ 1 − βi,ki
(31)

is about φ0(0) = τ/2 smaller than the period T . Hence the period-T map of the perturbation
can be expressed as

δi(T ) = T − T
(0)
i − τ

2
= βi,ki

− α + �i,ki
, (32)

where α is given by equation (22).
Equation (32) defines a map valid for one particular rank order of perturbations. In general,

the perturbations of all ki presynaptic oscillators of oscillator i lead to ki! different possibilities
of ordering. Thus the number of possible maps, µ, is bounded by(

max
i

ki

)
! � µ � (N − 1)!. (33)

Here the minimum is assumed, µ = (maxi ki)!, if only one oscillator has exactly µ presynaptic
oscillators and all other oscillators have exactly one presynaptic oscillator. The maximum,
µ = (N − 1)! , is assumed if the oscillators are coupled all-to-all such that all connections are
present, εij �= 0 for all i and j �= i. If the coupling is all-to-all and in addition homogeneous,
εij = ε/(N − 1) for all i and j �= i, all maps are equivalent in the sense that for any pair
of maps there is a permutation of oscillator indices that transforms one map onto the other.
For general network connectivities, however, there is no such permutation equivalence. For
instance, in random networks with N vertices and edges that are independently chosen with
identical probability p, the number of maps increases strongly with N .
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5. Multi-operator dynamics of small perturbations

In order to perform a local stability analysis, we consider the first order approximations of the
maps derived in the previous section. Expanding βi,ki

for small Di,n � 1 one can prove by
induction (see appendix) that to first order

βi,ki

.= α +
ki∑

n=1

pi,n−1Di,n, (34)

where

pi,n := U ′(U−1(U(τ) +
∑n

m=1 εijm
))

U ′(U−1(U(τ) + ε))
(35)

for n ∈ {0, 1, . . . , ki} encodes the effect of an individual incoming signal of strength εijn
. The

statement x
.= y means that x = y +

∑
i,n O(D2

i,n) as all Di,n → 0. Substituting the first order
approximation (34) into (32) using (30) leads to

δi(T )
.=

ki∑
n=1

pi,n−1(�i,n−1 − �i,n) + �i,ki
(36)

such that after rewriting

δi(T )
.= pi,0�i,0 +

ki∑
n=1

(pi,n − pi,n−1)�i,n (37)

to first order in all �i,n. Since �i,n = δjn(i) for n ∈ {1, . . . , ki} and �i,0 = δi according to
equations (28) and (29), this represents a linear map

δ(T )
.= Aδ, (38)

where the elements of the matrix A are given by

Aij =



pi,n − pi,n−1 if j = jn ∈ Pre(i)
pi,0 if j = i

0 if j /∈ Pre(i) ∪ {i}.
(39)

Because jn in (39) identifies the nth pulse received during this period by oscillator i, the first
order operator depends on the rank order of the perturbations, A = A(rank(δ)). The map Aδ

consists of a number of linear operators, the domains of which depend on the rank order of
the specific perturbation. Thus Aδ is piecewise linear in δ. This map is continuous but not
in general differentiable at the domain boundaries where δi = δj for at least one pair i and
j of oscillators. In general, signals received at similar times by the same oscillator induce
different phase changes: for the above example of an oscillator i with exactly two presynaptic
oscillators j and j ′ and equal coupling strengths, εi,j = εi,j ′ , the first of the two received
signals has a larger effect than the second, by virtue of the concavity of U(φ). For small
|δi | � 1, this effect is encoded by the pi,n (see equation (35) and the appendix for details).
Since the matrix elements equation (39) are differences of these pi,n the respective matrix
elements Ai,j and Ai,j ′ have in general different values depending on which signal is received
first. This is induced by the structure of the network in conjunction with the pulse coupling.
For networks with homogeneous, global coupling different matrices A can be identified by an
appropriate permutation of the oscillator indices. In general, however, this is impossible.
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6. Bounds on the eigenvalues

The above consideration establish that for many network structures when considering the
stability of the synchronous state one is faced with the task of characterizing a large number of
operators instead of a single stability matrix. Fortunately, it is possible to characterize spectral
properties common to all operators by studying bounds on their eigenvalues.

6.1. General properties of matrix elements

It is important to observe that the matrix elements defined by equations (38) and (39) are
normalized row-wise,

N∑
j=1

Aij = Aii +
N∑

j = 1
j �= i

Aij (40)

= Aii +
ki∑

n=1

Aijn
(41)

= pi,0 +
ki∑

n=1

(pi,n − pi,n−1) (42)

= pi,ki
(43)

= 1 (44)

for all i. Here the second last equality holds because the telescope sum equals pi,ki
− pi,0 .

Therefore, every matrix A has the trivial eigenvalue

λ1 = 1 (45)

corresponding to the eigenvector

v1 = (1, 1, . . . , 1)T (46)

reflecting the time-translation invariance of the system. In addition, the diagonal elements

Aii = pi,0 = U ′(τ )

U ′(U−1(U(τ) + ε))
=: A0 (47)

are identical for all i. Since U is monotonically increasing, U ′(φ) > 0 for all φ, the diagonal
elements are positive,

A0 > 0. (48)

One should note that the matrices A have the properties (40)–(48) independent of single neuron
parameters, the network connectivity and the specific perturbation considered. Due to the above
properties of the stability matrices, bounds on the eigenvalues of a specific matrix A can be
obtained from the Gershgorin theorem [41] (see also [42]).

Theorem 6.1 (Gershgorin). Given an N × N matrix A = (Aij ) and discs

Ki := {z ∈ C| |z − Aii | �
N∑

j = 1
j �= i

|Aij |} (49)



1590 M Timme and F Wolf

for i ∈ {1, . . . , N}. Then the union

K :=
N⋃

i=1

Ki (50)

contains all eigenvalues of A.

Let us remark that for real matrices A the discs Ki in the complex plane are centred on
the real axis at Aii = A0.

6.2. Eigenvalues for inhibitory coupling

As an application of this theorem to the above eigenvalue problem, we consider the class of
networks of inhibitorily coupled oscillators, where all εij � 0 and ε < 0. In these cases, all
nonzero matrix elements Aij are positive: since U(φ) is monotonically increasing, U ′ > 0,
and concave (down), U ′′ < 0, its derivative U ′ is positive and monotonically decreasing. Thus
all pi,n (equation (35)) are positive, bounded above by one,

0 < pi,n � 1, (51)

and increase with n,

pi,n−1 < pi,n. (52)

Hence the nonzero off-diagonal elements are positive, Aijn
= pi,n − pi,n−1 > 0 such that

Aij � 0 (53)

for all i, j ∈ {1, . . . , N} and

0 < A0 < 1. (54)

As a consequence, for inhibitorily coupled oscillators,
N∑

j = 1
j �= i

|Aij | =
N∑

j=1

Aij − Aii = 1 − A0 (55)

such that all Gershgorin discs Ki are identical and the disc

Ki = K = {z ∈ C| |z − A0| � 1 − A0} (56)

contains all eigenvalues of A. This disc K contacts the unit disc from the inside at the trivial
eigenvalue z = λ1 = 1 (figure 5).

Since the unit circle separates stable from unstable eigenvalues and structural perturbations
may move any but the trivial unit eigenvalue, it is interesting to examine whether the unit
eigenvalues may be degenerate. For strongly connected networks the Perron–Frobenius
theorem implies that this eigenvalue is unique demonstrating the structural stability of the
confinement of eigenvalues to the unit circle.

If the network is strongly connected, the resulting stability matrix A is irreducible such
that the Perron–Frobenius theorem [43–46] (see also [47,48]) is applicable (we only state the
theorem partially).

Theorem 6.2 (Perron–Frobenius). Let A be an N×N irreducible matrix with all its elements
real and non-negative. Then

A has a real positive eigenvalue λmax, the maximal eigenvalue, which is simple and such
that all eigenvalues λi of A satisfy |λi | � λmax.
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Figure 5. Eigenvalues in the complex plane for inhibitory coupling. The Gershgorin disc, that
contacts the unit disc from the inside, contains all eigenvalues of the stability matrices A. The
black dots show eigenvalues of a specific stability matrix for a network of N = 16 oscillators (in
which every connection is present with probability p = 0.25) with coupling strengths εij = ε/ki ,
ε = −0.2, τ = 0.15 and a particular rank order of the perturbation.

The Perron–Frobenius theorem implies that the eigenvalue that is largest in absolute value,
here λ1 = 1, is unique for strongly connected networks. The Gershgorin theorem guarantees
that eigenvalues λ of modulus one are degenerate, λ = λ1 = 1. Taken together, for strongly
connected networks, the non-trivial eigenvalues λi satisfy

|λi | < 1 (57)

for i ∈ {2, . . . , N}. This suggests that the synchronous state is stable for inhibitory couplings.
As pointed out below (section 7 a proof of stability, however, requires further analysis).

6.3. Eigenvalues for excitatory coupling

Let us briefly discuss the case of excitatorily coupled oscillators, where all εij � 0 and ε > 0.
Here the analysis proceeds similarly to the case of inhibitory coupling. Due to the monotonicity
and concavity of U(φ), we obtain

pi,n � 1 (58)

as well as a decrease with n,

pi,n−1 > pi,n, (59)

such that Ai,jn
= pi,n − pi,n−1 < 0 and thus

Aij � 0 (60)

for i ∈ {1, . . . , N} and j �= i and

Aii = A0 > 1. (61)

Consequently, for excitatorily coupled oscillators,

N∑
j = 1
j �= i

|Aij | = −
N∑

j = 1
j �= i

Aij = A0 − 1 (62)
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Figure 6. Eigenvalues in the complex plane for excitatory coupling. The Gershgorin disc, that
contacts the unit disc from the outside, contains all eigenvalues of the stability matrices A. The
black dots show eigenvalues of a specific stability matrix for a network of N = 16 oscillators (in
which every connection is present with probability p = 0.25) with coupling strengths εij = ε/ki ,
ε = 0.2, τ = 0.15 and a particular rank order of the perturbation.

such that again all Gershgorin discs Ki are identical and

Ki = K = {z ∈ C| |z − A0| � A0 − 1}. (63)

Since A0 > 1, the disc K contacts the unit disc from the outside at z = λ1 = 1 (figure 6). If
the network is strongly connected, λ1 = 1 is again unique by the Perron–Frobenius theorem
for irreducible matrices because it is the largest eigenvalue (in absolute value) of the inverse
A−1 of A, if the inverse exists. This result indicates that the fully synchronous state is unstable
for excitatory couplings.

7. Stability

In section 6, we found analytical bounds on the eigenvalues of the stability matrices. However,
even if only eigenvalues λ with |λ| � 1 are present, a growth of perturbations might seem to
be possible because (i) the eigenspaces of the (asymmetric) matrices A cannot be guaranteed
to be orthogonal, and (ii) in general, different matrices A are successively applied to a given
perturbation. Due to the non-orthogonality (i) the length ‖δ‖ of a given perturbation vector
δ might increase during one period. Since the stability matrix and the set of eigenvectors
may change due to (ii), the length of the perturbation vector might increase in the subsequent
period as well. Since this procedure may be iterated, the eigenvalues λi of the stability matrices,
although satisfying |λi | < 1 for i ∈ {2, . . . , N} and λ1 = 1, are not sufficient to ensure the
stability of the synchronous state.

Thus, the eigenvalues of the dynamically changing stability matrices guide the intuition
about the stability of the synchronous state as well as about the speed of convergence (in case
of stability) or divergence (in case of instability). Nevertheless, stability cannot be directly
inferred from the set of eigenvalues. In the following, we illustrate the final proof of stability
in the simple case of inhibitory coupling where all Aij � 0 (53).

7.1. Plain stability for inhibitory coupling

For inhibitory networks, the proof of plain (non-asymptotic) stability is simple. Given the fact
that for inhibition

∑N
j=1 Aij = 1 and Aij � 0, the synchronous state is stable because a given
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perturbation δ = δ(0) satisfies

‖δ(T )‖ := max
i

|δi(T )| (64)

= max
i

∣∣∣∣∣∣
N∑

j=1

Aij δj

∣∣∣∣∣∣ (65)

� max
i

∑
j

|Aij ||δj | (66)

� max
i

∑
j

|Aij | max
k

|δk| (67)

= max
i

∑
j

Aij max
k

|δk| (68)

= max
k

|δk| (69)

= ‖δ‖. (70)

In this section, we use the vector norm

‖δ‖ := max
i

δi . (71)

Thus, the length of a perturbation vector cannot increase during one period implying that it
does not increase asymptotically. This result is independent of the connectivity structure of
the network, the special choice of parameters, εij � 0, τ > 0, the potential function U(φ) and
the rank order of the perturbation.

7.2. Asymptotic stability in strongly connected networks

Asymptotic stability can be established for networks of inhibitorily coupled oscillators
assuming that the network satisfies the condition of strong connectivity. A directed graph
is called strongly connected if every vertex can be reached from every other vertex by
following the directed connections. Thus a network is strongly connected if every oscillator
can communicate with each oscillator in the network at least indirectly. It is clear that in
a disconnected network only the connected components may synchronize completely in the
long term, but these components can not be synchronized by mutual interactions. In the proof
given below, we do not consider networks that are disconnected. We also do not consider
networks that are weakly connected (but not strongly connected) such as two globally coupled
sub-networks which are linked by unidirectional connections from one sub-network to the
other.

The synchronous state may be characterized by a perturbation δ ≡ δ(0) that represents a
uniform phase shift,

δ = c1v1 = c1(1, 1, . . . , 1)T, (72)

where c1 ∈ R, |c1| � 1, and v1 is the eigenvector of A corresponding to the eigenvalue λ1 = 1
(46). Such a perturbation satisfies

δ(T ) = Aδ = δ (73)

for all matrices A = A(rank(δ)) independent of the rank order rank(δ) and thus

‖δ(T )‖ = ‖δ‖ . (74)

Now consider a δ that does not represent the synchronous state,

δ �= c1v1 (75)
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for all c1 ∈ R. Then one might guess that

‖δ(T )‖ < ‖δ‖. (76)

We assume that (i) δ is not the synchronous state (75) and that (ii) all single-oscillator
perturbations are non-negative, δi � 0. The latter assumption is made without loss of
generality, because otherwise a vector proportional to v1 can be added such that δi � 0 is
satisfied. Assumption (ii) implies that the components of the perturbation stay non-negative
for all times, because δi(T ) = ∑N

j=1 Aij δj � 0 for all i such that δi(lT ) � 0 for all i and all
l ∈ N.

For convenience, we define the largest component of the perturbation

δM := max
i

δi (77)

and the second largest component

δm := max{δi | δi < δM} (78)

such that δm < δM . We also define the index set of maximal components

M := {j ∈ {1, . . . , N} | δj = δM}, (79)

which is always non-empty. We write j /∈ M if j ∈ {1, . . . , N} \ M. With these definitions
we find

δi(T ) =
N∑

j=1

Aij δj (80)

=
∑
j∈M

Aij δj +
∑
j /∈M

Aij δj (81)

�
∑
j∈M

Aij δM +
∑
j /∈M

Aij δm (82)

+
∑
j /∈M

Aij δM −
∑
j /∈M

Aij δM (83)

= δM

N∑
j=1

Aij − (δM − δm)
∑
j /∈M

Aij (84)

= δM − (δM − δm)
∑
j /∈M

Aij . (85)

Hence if
∑

j /∈M
Aij > 0 the norm of the perturbation vector decreases in one period,

‖δ(T )‖ = max
i

δi(T ) < δM = max
i

δi = ‖δ‖. (86)

There are, however, also perturbations that imply Aij = 0 for (at least) one specific i and
all j /∈ M such that

∑
j /∈M

Aij = 0. This is the case if and only if there is an oscillator i

that receives input only from oscillators j with maximal components, δj = δM , and itself has
maximal component, δi = δM . So suppose that

∃ i ∈ {1, . . . , N} ∀ j ∈ Pre(i) ∪ {i} : δj = δM , (87)

i.e. Pre(i) ∪ {i} ⊂ M. Then δi(T ) = δM for this oscillator i and hence

max
i

δi(T ) = δM (88)

such that the norm of the perturbation vector does not decrease within one period.
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Nevertheless, if the network is strongly connected, the norm of the perturbation vector is
reduced in at most N − 1 periods: we know that if and only if there is no oscillator i satisfying
(87), the norm will be reduced (86) because

∑
j /∈M

Aij > 0 for all i by (85). So to have
maxi δi(T ) = δM one needs one oscillator i that satisfies (87), i.e. i and Pre(i) have to have
maximal components. If the vector norm stays maximal another period,

max
i

δi(2T ) = δM, (89)

not only all j ∈ {i} ∪ Pre(i) but also all j ∈ Pre(Pre(i)) have to have maximal components,
δj = δM . Iterating this l times leads to the condition

max
i

δi(lT ) = δM ⇔
∃ i ∀ j ∈ {i} ∪ Pre(i) ∪ Pre(2)(i) ∪ . . . ∪ Pre(l)(i) : δj = δM, (90)

where

Pre(l)(i) := Pre ◦ Pre ◦ . . . ◦ Pre︸ ︷︷ ︸
ltimes

(i) (91)

is the set of oscillators, that is connected to oscillator i via a sequence of exactly l directed
connections.

Since for a strongly connected network the union of all presynaptic oscillators and their
respective presynaptic oscillators is the set of all oscillators

{i} ∪ Pre(i) ∪ Pre(2)(i) ∪ . . . ∪ Pre(l)(i) = {1, . . . , N} (92)

for l � N − 1, this leads to the conclusion that

max
i

δi((N − 1)T ) = δM ⇒ ∀j : δj = δM (93)

such that

δ = δMv1 (94)

contrary to assumption (75). Note that for a given network connectivity, condition (92) is
satisfied for any l � lc where lc is the diameter of the underlying network, the longest
directed connection path between any two oscillators in the network. The diameter is maximal,
lc = N − 1, assumed for a ring of N oscillators.

Hence, after at most lc periods, the norm of the perturbation vector decreases,

‖δ(lT )‖ < ‖δ‖ (95)

for l � lc. Since ‖δ(mlcT )‖ is strictly monotonically decreasing with m ∈ N and bounded
below by zero, the limit

δ∞ := lim
m→∞ δ(mlcT ) (96)
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exists. If δ∞ �= c1v1 the vector norm would be reduced as implied by the above considerations.
Thus we find that

δ∞ = c1v1 (97)

because the uniform components c1v1 of the original perturbation δ does not change under the
dynamics (see equation (73)). This completes the demonstration that the synchronous state is
asymptotically stable for any strongly connected network of inhibitorily coupled oscillatory
units.

8. Summary and discussion

We analysed the stability of synchronous states in arbitrarily connected networks of pulse-
coupled oscillators. For generally structured networks, the intricate problem of multiple
stability operators arises. We analysed this multi-operator problem exactly. For both inhibitory
and excitatory couplings, we determined analytical bounds on the eigenvalues of all operators.
Given the multi-operator property, stability cannot be deduced by considering the eigenvalues
only. We therefore completed the stability analysis on two levels. For networks with inhibitory
couplings (εij � 0) we found plain (Lyapunov) stability of the synchronous state; under mild
constraints (strong connectivity of the network), graph-theoretical arguments show that it is
also asymptotically stable, independent of the parameters and the details of the connectivity
structure.

Let us point out that the stability results obtained here are valid for arbitrarily large finite
networks of general connectivity. In contrast to ordinary stability problems, the eigenvalues
of the first order operators do not directly determine the stability here, because different linear
operators may act subsequently on a given perturbation vector. Thus, the eigenvalues and
eigenvectors of an individual matrix alone do not define the local dynamics of the system.
For network dynamical systems of pulse-coupled units that exhibit more complex cluster
states, with two or more groups of synchronized units, an analogous multi-operator problem
arises [23,24,35]. Methods to bound their spectra and the graph-theoretical approach presented
above to prove asymptotic stability are applicable to these cluster states in a similar way,
provided that the stability problem is originally formulated in an event-based manner. Further
studies show that the stable synchrony in complex networks is not restricted to the class
of models considered here. Together with other works, e.g. [31, 32, 34], this also indicates
robustness of the synchronous state against structural perturbations, i.e. conditions necessary
to ensure that the local dynamics stays qualitatively similar if the time evolution of the model
is weakly modified.

It has been hypothesized (see e.g. [49, 50]) that the experimentally observed precisely
timed firing patterns in otherwise irregular neural activity might be generated dynamically by
the cerebral cortex. As a by-product, our results clearly demonstrate that states in which
units fire in a temporally highly regular fashion and states with irregular asynchronous
activity may be coexisting attractors of the same recurrent network, cf [38]. This already
applies to random networks. More specifically structured networks may possess a large
variety of dynamical states in which firing times are precisely coordinated. A promising
direction for future research is thus to adopt the methods developed here for investigating
the stability of such states. In particular, methods adapted from the ones developed here
may reveal dynamical features of networks in which the coupling strengths are not only
structured but highly heterogeneous and precise temporal firing patterns occur in place
of a simple synchronous state [29, 30, 34, 36]. More generally, our methods may help
to understand the properties of stability and robustness in various network dynamical
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systems with pulsed interactions. They may thus be relevant not only for networks of
nerve cells in the brain coupled via chemical synapses but also for cells in heart tissue
coupled electrically as well as for very different systems such as populations of fireflies
and chirping crickets that interact by sending and receiving light pulses and sound signals,
respectively.
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Appendix. Exact derivation of expansion (34)

We prove a generalization of the first order expansion (34) used above,

βi,m
.= αi,m +

m∑
n=1

pi,n−1,m Di,n for m ∈ {1, . . . , ki}, (98)

by induction over m for arbitrary fixed i ∈ {1, . . . , N}. As in the main text, here the statement
x

.= y means that x = y +
∑

i,n O(D2
i,n) as all Di,n → 0. The quantities βi,m are defined

in table 1. The quantities (98) appear in the derivation of the map (32) for m = ki . As an
extension of the notation in section 4, we denote here

αi,m = U−1

(
U(τ) +

m∑
n=1

εijn

)
for m ∈ {0, . . . , ki}, (99)

Di,n = �i,n−1 − �i,n for n ∈ {1, . . . , ki}, (100)

and

pi,n,m = U ′(αi,n)

U ′(αi,m)
for 0 � n � m � ki. (101)

Here the prime denotes the derivative of the potential function U with respect to its argument.
The latter definition implies the identity

pi,n,l pi,l,m = pi,n,m. (102)

For the case m = 1, the induction basis, expression (98) holds because

βi,1 = U−1(U(τ + Di,1) + εij1) (103)

.= U−1(U(τ) + εij1) +

[
∂

∂D
U−1(U(τ + D) + εij1)

]
D=0

Di,1 (104)

= αi,1 +
U ′(τ )

U ′(U−1(U(τ) + εij1))
Di,1 (105)

= αi,1 +
U ′(αi,0)

U ′(αi,1)
Di,1 (106)

= αi,1 + pi,0,1 Di,1, (107)
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where the third last equality holds because the derivatives of inverse functions are given by
∂/∂x U−1(x) = 1/U ′(U−1(x)). The induction step, m 
→ m + 1, is proven by

βi,m+1 = U−1(U(βi,m + Di,m+1) + εijm+1) (108)

.= U−1

(
U

(
αi,m +

m∑
n=1

pi,n−1,mDi,n + Di,m+1

)
+ εijm+1

)
(109)

.= U−1
(
U

(
αi,m

)
+ εijm+1

)
(110)

+

[
∂

∂D
U−1(U(αi,m + D) + εijm+1)

]
D=0

(
m∑

n=1

pi,n−1,m Di,n + Di,m+1

)

= U−1
(
U

(
αi,m

)
+ εijm+1

)
+

U ′(αi,m)

U ′(αi,m+1)

(
m∑

n=1

pi,n−1,m Di,n + Di,m+1

)
(111)

= αi,m+1 + pi,m,m+1

(
m∑

n=1

pi,n−1,m Di,n + Di,m+1

)
(112)

= αi,m+1 +
m+1∑
n=1

pi,n−1,m+1 Di,n (113)

where we used U(αi,m) + εijm+1 = U(αi,m+1) in the second last step and the identity (102) in
the last step. This completes the proof of the first order expansion (98).

Note that because of the normalization
∑ki

n=1 εijn
= ∑N

j=1 εij = ε for all i, the quantity
αi,ki

= U−1(U(τ) + ε) = α is independent of i. In addition, pi,n,ki
= pi,n for all i and all n.

Hence, theorem (98) in the case m = ki yields expression (34).
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