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Prevalence of Unstable Attractors in Networks of Pulse-Coupled Oscillators
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We present and analyze the first example of a dynamical system that naturally exhibits attracting
periodic orbits that are unstable. These unstable attractors occur in networks of pulse-coupled
oscillators, and become prevalent with increasing network size for a wide range of parameters. They
are enclosed by basins of attraction of other attractors but are remote from their own basin volume such
that arbitrarily small noise leads to a switching among attractors.
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pulse-coupled units. Such consequences include an on-
going switching among unstable attractors in the presence

period-one orbits with all oscillators in the clusters
reaching threshold and sending out pulses exactly once
As attractors determine the long-term behavior of dis-
sipative dynamical systems, the concept of attractors is
central to the analysis of many natural systems as well as
to the design of artificial systems. For instance, the
computational capabilities of neural networks are con-
trolled by the attractors of their collective dynamics.
Consequently, the nature and design of attractors in such
systems constitute a focus of current research [1–3]. In
general, the state space of a nonlinear dynamical system
is partitioned into various basins of attraction from which
states evolve towards the respective attractors. Since
states that are slightly perturbed from an attractor often
stay confined to its vicinity and eventually return to
the attractor, attractors are commonly considered to be
stable [4].

In the present Letter, we show that unstable attractors
exist and arise naturally as a collective phenomenon in
networks of pulse-coupled oscillators [1,2], which were
introduced to model, e.g., synchronization in spiking
neural networks and the dynamics of other natural sys-
tems as diverse as cardiac pacemaker cells, populations of
flashing fireflies, and earthquakes (cf. [1–3,5]). We iden-
tify an analytically tractable network exhibiting unstable
attractors. For this network we demonstrate the existence
of attractors that are linearly unstable and are thus sepa-
rated from the volume of their own basins of attraction.
Such attracting yet unstable states are consistent with a
definition of attractors introduced by Milnor, which nei-
ther presumes nor implies stability [6]. In some other
systems such Milnor attractors might not be uncommon
if they are strange attractors that display irregular dy-
namics [7]. More generally, however, attractors that are
not stable seem to be special cases that have to be con-
structed artificially by precisely tuning parameters.
Contrary to this intuition, we report here that unstable
attractors with regular, periodic dynamics are typical in
large networks and persist even if the physical parameters
are varied substantially.

We argue that dynamical consequences of unstable
attractors may persist in a general class of systems of
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of noise. In systems where the convergence towards an
attractor has a functional role, such as the solution of a
computational task by a neural network [8], switching
induces a high degree of flexibility that provides the
system with a unique advantage compared to multistable
systems: It will be hard to leave a stable attractor after
convergence, e.g., the completion of a task. With an un-
stable attractor, however, a small perturbation is sufficient
to leave the attractor and to switch towards another one.

We consider a homogeneous network of N all-to-all
pulse-coupled oscillators with delayed interactions. A
phase variable �i�t� 2 �0; 1� specifies the state of each
oscillator i at time t. Its free dynamics is given by

d�i=dt � 1: (1)

Whenever oscillator i reaches a threshold, �i�t� � 1, the
phase is reset to zero, �i�t

�� � 0, and a pulse is sent to all
other oscillators j � i, which receive this signal after a
delay time 
. Depending on whether the input "̂" is sub-
threshold or suprathreshold, this induces a phase jump
according to

�j��t� 
��� � minfU	1�U��j�t� 
��� "̂"�; 1g (2)

which depends on the phase �j�t� 
� of the receiving
oscillator and the effective excitatory coupling "̂" �
"=�N 	 1� > 0. The function U��� is twice continuously
differentiable, monotonously increasing, U0 > 0, concave
(down), U00 < 0, and normalized such that U�0� � 0,
U�1� � 1. For many models of biological systems U���
represents a ‘‘potential’’ of an oscillator at phase �. For a
more detailed discussion of the model see Refs. [1,2].

For such pulse-coupled systems, periodic orbits with
groups of synchronized units constitute relevant attrac-
tors [1–3,5]. For instance, the network described above
possesses a single global attractor in which all oscillators
are synchronized with zero phase lag if the interactions
are instantaneous (
 � 0) [1]. Here we consider the case
of delayed interactions (
 > 0) where multiple different
cluster-state attractors with several synchronized groups
of oscillators (clusters) coexist [2]. Such attractors are
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FIG. 1 (color). Phase dynamics of a large network (N � 100, " � 0:2, 
 � 0:15). Phases of all oscillators are plotted whenever a
reference oscillator has been reset. (a) Dynamics with noise (� � 10	3�, (b) deterministic dynamics in response to a single phase
perturbation (arrow, � � 10	3)—note that the system switches from a six-cluster to a five-cluster state —and (c) phase differences
from the average phase of one cluster in response to the perturbation.

FIG. 2 (color). Small network (N � 6, " � 0:2, 
 � 0:15):
(a) Noise-free phase dynamics in response to single perturba-
tions (arrows). (b) Basin structure in a two-dimensional planar
section through six-dimensional state space. Small red, yellow,
and blue disks represent points on the attractors color-marked
in (a). Their basins of attraction are marked in the same colors.
Medium gray areas are basins of permutation-related attrac-
tors, and the lightest gray marks the union of the basins of all
other attractors.
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during each period. We find [cf. Fig. 1(a)] that, although
the system converges towards a periodic orbit from ran-
dom initial conditions, weak noise is often sufficient to
drive the system away from that attractor such that suc-
cessive switching towards different attractors occurs.
This alternating synchronization and desynchronization
might be due to stable attractors located close to the
boundaries of their basins of attraction, such that the
noise drives the state of the system into a neighboring
basin. In an otherwise noiseless system we tested this
possibility by applying instantaneous perturbations of
gradually decreasing strengths [down to � � 10	8; cf.
Figs. 1(b) and 1(c)]. As we did not find a strength for
which any of the perturbed states returned to the attrac-
tor, we hypothesized that the persistent switching dynam-
ics [Fig. 1(a)] is due to attractors that are unstable.

In order to verify this hypothesis directly, we analyze a
small network of N � 6 oscillators for which instanta-
neous perturbations lead to a similar switching among
attractors. At given parameters [9] this network exhibits a
set of period-one orbits that are related by a permutation
of phases in such a way that the system may switch
among them [Fig. 2(a), states on the periodic orbits
marked in red, yellow, blue]. Because of their permuta-
tion equivalence these orbits have identical stability prop-
erties. The state of the network at time t is specified by
��t� � ��1�t�; . . . ; �6�t��

T, such that the orbit marked in
yellow in Fig. 2(a) is defined by the initial condition [10]

��0� � �0; 0; A; A; B; C�T: (3)

Here the origin of time was chosen such that oscillators 1
and 2 have just sent a signal and have been reset.
Moreover, at t � 0 only these two signals (and no others)
have been sent but not yet received. The numerical values
for the particular parameters considered, A � 0:176, B �
0:499; C � 0:747, can be identified in Fig. 2(a) (orbit
marked in yellow). This orbit indeed is periodic, ��T� �
��0�, such that after the period T each oscillator has
reached threshold, has sent a signal, and has been reset
exactly once (for details see [11]).

To perform a stability analysis, we define a return map
by choosing oscillator i � 1 as a reference: Let �n;i :�
�i�tn� be the perturbed phases of the oscillators i at times
154105-2
tn > 0, n 2 N, just after the resets of oscillator 1,
�1�tn�  0. Thus the five-dimensional vector �n � �n 	
�0; A; A; B; C0�T (see [12]) defines the perturbations �n;i
for i 2 f2; . . . ; 6g where we choose 0< �n;2 and �n;3 <
�n;4. Following the dynamics, the five-
dimensional return map is given by [13]

�n�1 � F��n�: (4)

The linearized dynamics of a slightly perturbed state
154105-2
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FIG. 3. Unstable attractors prevail for large networks and
persist in a wide region of parameter space. Inset: pu�N� for
N � 128, " � 0:2, 
 � 0:15. Main figure: Parameters with
pu�100� > 0:5 are marked in black.
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with split-up clusters is described by the Jacobian matrix
M � @F���=@�j��0. It has four zero eigenvalues

�i � 0 for i 2 f1; 2; 3; 4g; (5)

such that a six-dimensional state-space volume accessed
by the perturbation is contracted onto a two-dimensional
manifold. This reflects the fact that suprathreshold input
received simultaneously by two or more oscillators leads
to a simultaneous reset and thus a synchronization of
these oscillators independent of their precise phases. If a
single oscillator is reset by a suprathreshold input signal,
it exhibits a precise lag in firing time �t � 
 compared to
the oscillator that has sent this signal. In contradistinc-
tion, the concavity of U implies that simultaneous sub-
threshold input to two or more oscillators leads to an
increase of their phase differences, i.e., a desynchroniza-
tion of oscillators with similar phases. For the orbits
considered here, this is reflected by the only nonzero
eigenvalue

�5 �
�2U0�c0� 	U0�a1��U

0�c1�U
0�c2�U

0�c3�
U0�a1�U

0�a2�U
0�a3�U

0�a4�
> 1 (6)

where ci � 
� ai for all i (cf. [10]). Because ci > ai >
ci	1 for all i and U0 > 0, U00 < 0, this eigenvalue is larger
than one; i.e., the periodic orbit is linearly unstable. If
there is no homoclinic connection, this implies that such
an attractor is not surrounded by a positive volume of its
own basin of attraction, but is located at a distance from
it: Thus, every random perturbation to such an attractor
state —no matter how small—leads to a switching to-
wards a different attractor. Furthermore, this periodic
orbit indeed is an attractor: Right after the perturbation
off a periodic orbit [e.g., the one marked in red in
Fig. 2(a), which is permutation equivalent to the yellow
one] the state of the system is mapped onto a two-
dimensional manifold, resynchronizing one cluster. The
state then evolves towards a neighborhood of another
attractor (here, the yellow one) in a lower dimensional
effective state space without further dimensional reduc-
tion. Here, forming the second cluster, suprathreshold
input leads to the last dimensional reduction while the
state is mapped directly onto the periodic orbit.

In general, a periodic orbit is unstable, if after a
random perturbation into its vicinity, one or more clusters
are not resynchronized by simultaneous suprathreshold
input but desynchronize due to simultaneous subthres-
hold input. An unstable attractor results if these clusters
are formed through synchronization in a region of state
space that is separated from the periodic orbit towards
which the state then converges. Roughly, unstable attrac-
tors can be viewed as saddle periodic orbits together with
a funnel mechanism that puts trajectories onto its stable
manifold (for details see [11]).

In order to further clarify the structure of state space,
we numerically determined the basins of attraction of the
three attractors displayed in Fig. 2(a) in two-dimensional
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sections of state space. The example shown in Fig. 2(b)
reveals that attractors are surrounded by basins of attrac-
tion of other attractors as predicted by the above analysis.
Because of this basin structure, noise induces repeated
attractor switching among unstable attractors. Starting
from the orbit defined by (3) the system may switch
within sets of only six periodic orbit attractors as is
apparent from the basins shown in Fig. 2(b). However,
in larger networks [cf., e.g., Fig. 1(a)] a cluster can split up
in a combinatorial number of ways, and exponentially
many periodic orbit attractors are present among which
the system may switch. The larger such networks are, the
higher the flexibility they exhibit in visiting different
attractors and exploring state space.

The preceding analysis demonstrates the existence of
unstable attractors. To answer the question of how com-
mon unstable attractors actually are, we numerically es-
timated the fraction pu�N� of state space occupied by
basins of unstable attractors. As an example, Fig. 3 (inset)
displays pu�N� for " � 0:2 and 
 � 0:15. While unstable
attractors are absent if networks are too small (here N �
4) and coexist with stable attractors in larger networks,
the fraction pu�N� approaches one for N � 1. More gen-
erally, we observed that pu�N� approaches either zero or
one in large networks, depending on the parameters. For
networks of N � 100 oscillators Fig. 3 shows the region of
parameter space in which unstable attractors prevail
[pu�100� > 0:5]. As this region covers a substantial part
of parameter space, precise parameter tuning is not
needed to obtain unstable attractors. Furthermore, we
find the same qualitative behavior independent of the de-
tailed form of U. Hence, the occurrence of unstable
attractors is a robust collective phenomenon in this
model class of networks of excitatorily pulse-coupled
oscillators.
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Unstable attractors persist under various classes of
structural perturbations. For instance, preliminary stud-
ies on networks with randomly diluted connectivity sug-
gest that a symmetric, all-to-all coupling is not required.
Moreover, it is expected that every system obtained by a
sufficiently small structural perturbation from the one
considered here will exhibit a similar set of saddle peri-
odic orbits, because linearly unstable states can generally
not be stabilized by such a perturbation. Although, in
general, these orbits may no longer be attracting, their
dynamical consequences are expected to persist. In par-
ticular, a switching along heteroclinic connections may
occur in the presence of noisy or deterministic, time-
varying signals. As in the original system, the sequence
of states reached may be determined by the directions
into which such a signal guides the trajectory. By increas-
ing and decreasing the strength of this signal, the time
scale of switching may be decreased and increased, re-
spectively, due to the linear instability. Interestingly, it
has recently been shown that certain models of neural
networks are capable of dynamically encoding informa-
tion as trajectories near heteroclinic connections [14].

Furthermore, switching among unstable states also
occurs in systems of continuously, phase-coupled oscil-
lators [15,16] that can be obtained from pulse-coupled
oscillators in a certain limit of weak coupling [17]. In
particular, Hansel, Mato, and Meunier show that a sys-
tem of phase-coupled oscillators may switch back and
forth among pairs of two-cluster states [15]. Working in
the limit of infinitely fast response, i.e., discontinuous
phase jumps, we have demonstrated that far more com-
plicated switching transitions can occur in large net-
works if the oscillators are pulse-coupled.

In this Letter, we have presented the first example of a
dynamical system, a network of pulse-coupled oscilla-
tors, that naturally exhibits attracting periodic orbits that
are unstable. Intriguingly, these unstable attractors are
located remote from the volume of their own basin of
attraction. We have shown that they prevail in large net-
works and for a wide range of parameters. Whereas un-
stable periodic orbits are essential for the dynamics of
many nonlinear systems, unstable attracting periodic
orbits previously seemed to be exceptional cases. Our
results indicate that in a class of systems of pulse-coupled
units unstable attractors are the rule rather than the
exception.

We thank A. Aertsen, M. Diesmann, U. Ernst,
D. Hansel, K. Kaneko, K. Pawelzik, and C. v. Vreeswijk
for useful discussions.
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[7] J. C. Sommerer and E. Ott, Nature (London) 365, 138
(1993); K. Kaneko, Phys. Rev. Lett. 78, 2736 (1997);
P. Ashwin and J. R. Terry, Physica (Amsterdam) 142D, 87
(2000); H. L. Yang, Phys. Rev. E 63, 036208 (2001).

[8] J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554
(1982); Pulsed Neural Networks, edited by W. Maass
and C. M. Bishop (MIT Press, Cambridge, 1999).

[9] We fix " � 0:2, 
 � 0:15, and U��� � ln�1� �eb 	
1���=b with b � 3:0. The orbits considered are structur-
ally stable in a neighborhood of these parameters and the
function U.

[10] Here A � U	1�U�
� � "̂"�, B � U	1�U�1� 2
	 a4� �
2"̂"�, C � C0, C� � U	1�U�U	1�U�2
� �U	1�"̂"���
"̂"� � 1� 
	 a4�� 2"̂"� for � 2 f0; 1g with recursively
defined ai � U	1�ki"̂" �U�
� ai	1�� for i 2 f1; . . . ; 4g,
a0 � 0, and k1 � k3 � k4 � 1, k2 � 2. For details
see [11].

[11] M. Timme, F. Wolf, and T. Geisel, e-print cond-mat/
0209432.

[12] Here C0 � C1 � 0:756 � C � C0 because after a general
perturbation � clusters are split up such that, in particu-
lar, �1 <�2. Hence, oscillator 6 receives the later signal
(from oscillator 1) only after it is reset by the earlier
signal (from oscillator 2). Thus, the system jumps away
from the original orbit and the orbit approached in the
limit � ! 0 is different from the original one. There
exist, however, other unstable attracting periodic orbits
that do not show this effect. For details see [11].

[13] F is defined by F2��� � 0, F3��� � �L�H�
	�L� 	
A, F4��� � H�
��L� 	 A, F5��� � H�H�1� 2
	
L4� ��L�	 B, F6��� � H��L�H�
� 1	 L3 �
H�2
	 �2 �H��2����	 C0 where we abbreviate
H��� � U	1�U��� � "̂"�, Li  Li��� � H�
�H�
	
�2 �H��2 �H�
� �i 	 �2 �H�
����� for i 2 f3; 4g
and �L � L4 	 L3.

[14] M. Rabinovich et al., Phys. Rev. Lett. 87, 068102 (2001).
[15] D. Hansel, G. Mato, and C. Meunier, Phys. Rev. E 48,

3470 (1993).
[16] H. Kori and Y. Kuramoto, Phys. Rev. E 63, 046214 (2001).
[17] Y. Kuramoto, Physica (Amsterdam) 50D, 15 (1991).
154105-4


