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Common experience suggests that attracting invariant sets in nonlinear dynamical systems are
generally stable. Contrary to this intuition, we present a dynamical system, a network of
pulse-coupled oscillators, in whichunstable attractorsarise naturally. From random initial
conditions, groups of synchronized oscillators~clusters! are formed that send pulses alternately,
resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this
synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors
that are unstable. Perpetual synchronization and desynchronization lead to a switching among
attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by
basins of attraction of other attractors, whereas the full measure of their own basin is located remote
from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the
dynamics for large networks and a wide range of parameters. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1501274#

As attractors determine the long-term behavior of dissi-
pative dynamical systems, the notion of attractors is cen-
tral to studies in many fields of science. According to the
mathematical definitions of an attractor, states that origi-
nate in a certain volume of state space, the basin of at-
traction, evolve towards the respective attractor. Since
states slightly perturbed from an attractor often stay con-
fined to its vicinity and finally return to it, attractors are
widely considered to bestable. Attracting yet unstable
states are consistent with an attractor definition intro-
duced by Milnor. There is evidence that such Milnor at-
tractors might not be uncommon in certain systems that
exhibit strange invariant sets with a fractal geometry. In
general, however, unstable attractors seem to be special
cases that have to be constructed artificially by precisely
tuning parameters. Contrary to this intuition, we present
an example of a dynamical system, a network of pulse-
coupled oscillators, in whichunstableattractors with pe-
riodic dynamics arise naturally. Unstable attractors are
shown to prevail for large networks and a wide range of
parameters. In the presence of arbitrarily weak noise, a
perpetual synchronization and desynchronization of
groups of oscillators occurs which leads to a switching
among different attractors.

I. INTRODUCTION

The concept of attractors is underlying the analysis of
many natural systems as well as the design of artificial sys-
tems. For instance, the computational capabilities of neural
networks are controlled by the attractors of their collective
dynamics.1–3 Consequently, the nature and design of attrac-
tors in such systems constitute a focus of current research
interest.4–15 In general, the state space of a nonlinear dy-
namical system is partitioned into various basins of attraction

from which states evolve towards the respective attractors.
Since states that are slightly perturbed from an attractor often
stay confined to its vicinity and eventually return to the at-
tractor, attractors are commonly considered to bestable.16–18

In this paper we study the dynamics of networks of
pulse-coupled oscillators,4–6 in which unstableattractors ex-
ist and arise naturally as acollective phenomenon. Such
models of pulse-coupled oscillators describe, e.g., synchro-
nization in spiking neural networks and the dynamics of
other natural systems as diverse as pacemaker cells in the
heart, populations of flashing fireflies, and earthquakes~cf.
Refs. 4–15, 19–22!. We identify an analytically tractable
network exhibiting unstable attractors. For this network we
demonstrate the existence of attractors that are unstable and
located remote from the volume of their own basins of at-
traction. Such attracting yet unstable states are consistent
with a definition of attractors introduced by Milnor, which
neither presumes nor implies stability.23 In certain other sys-
tems such Milnor attractors might not be uncommon if these
systems exhibit strange invariant sets with a fractal
geometry.24–28 More generally, however, attractors that are
not stable seem to be special cases that have to be con-
structed artificially by precisely tuning parameters. Contrary
to this intuition, in the system considered here, unstable at-
tractors with regular,periodic dynamics are typical in large
networks and persist even if the physical model parameters
are varied substantially. The first discovery of the occurrence
and prevalence of unstable attractors in networks of pulse-
coupled oscillators was reported in Ref. 15. Here we give a
more detailed analysis of such unstable attractors and explain
the observation that they only occur for excitatory~phase
advancing! interactions but are absent if the interactions are
inhibitory ~phase retarding!.

We argue that dynamical consequences of unstable at-
tractors may persist in a general class of systems of pulse-
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coupled units. Such consequences include an ongoing
switching among unstable attractors in the presence of noise.
In systems where the convergence towards an attractor has a
functional role, such as the solution of a computational task
by a neural network,1–3 switching induces a high degree of
flexibility that may provide the system with a unique advan-
tage compared to multistable systems. In general, it is hard to
leave a stable attractor after convergence, e.g., the comple-
tion of a task. With an unstable attractor, however, a small
perturbation is sufficient to leave the attractor and to switch
towards another one.

This paper is organized as follows: In Sec. II we intro-
duce a class of network models of pulse-coupled oscillators.
We briefly review earlier results on synchronization phenom-
ena in such networks within the framework introduced by
Mirollo and Strogatz that is described in detail in Sec. III. In
Sec. IV we describe the numerical observation that, in the
presence of noise, trajectories approach and retreat from pe-
riodic orbits by perpetual synchronization and desynchroni-
zation of groups of oscillators. Together with further numeri-
cal investigations, this leads to the hypothesis, that the
observed dynamics is induced by attractors that are unstable.
In Sec. V we perform an exact stability analysis of a particu-
larly selected set of attractors. It is followed by an analysis of
the dynamics during a switching transition between two
states~Sec. VI! that is further corroborated by a numerical
investigation of the structure of basins of attractions in state
space. These results demonstrate that unstable attractors in-
deed exist in the class of networks of pulse-coupled oscilla-
tors considered. Section VII completes our analysis showing
that unstable attractors prevail in large networks for a wide
range of parameters. The paper concludes in Sec. VIII with
~i! a discussion of the dynamical consequence of switching
among unstable attractors in comparison to smoothly
coupled systems,~ii ! a brief presentation of preliminary re-
sults for networks exhibiting different interactions or more
complex structures, and~iii ! an outlook for future investiga-
tions.

II. MODELS OF PULSE-COUPLED OSCILLATORS

In studies of synchronization phenomena in networks of
pulse-coupled oscillators, single elements are often modeled
as phase oscillators, assuming that the dynamics of the am-
plitude of the oscillation is less important. Thus there is only
one relevant dynamical variable,Wi , that describes the dy-
namics of an individual oscillatori . In models of many natu-
ral systems, the oscillator variableWi represents an analog of
a potential, like the membrane potential in the case of a
current-driven nerve cell. The dynamics of a network of
pulse-coupled oscillators is commonly described by a system
of coupled ordinary differential equations,

dWi

dt
5A~Wi !1B~Wi !Si~ t ! ~1!

for i P$1,...,N% whereA andB are continuous functions and
Si represents the interactions within the network. The pulse-
coupling between oscillators is given by

Si~ t !5(
j 51

N

(
m52`

`

« i j Ki j ~ t2t j ,m!, ~2!

where« i j is the strength of the coupling from oscillatorj to
oscillatori and the response kernelsKi j (t) have the property
thatKi j (t)>0, Ki j (t)50 for t,0, and*2`

` Ki j (t)dt51. The
sum includes all timest j ,m at which oscillatorj reaches a
thresholdWuª1 ~from below! for the mth time,

Wj~ t j ,m!>Wu51,
dWj~ t !

dt U
t5t j ,m

.0. ~3!

If this threshold is reached,Wj is reset to a potential

Wj~ t j ,m
1 !ªWreset50 ~4!

and a signal is generated that is sent to oscillatorsi . Com-
monly, a unit that is reset and sends out a pulse when it
reaches a threshold is said to ‘‘fire’’ at that instant of time.
This form of pulse-coupling idealizes the fact that in diverse
biological systems such as populations of flashing fireflies or
networks of spiking neurons in the brain, units interact by
stereotyped short-lasting signals that are generated as the
state of a unit reaches a threshold. Note that the normaliza-
tions Wu51 andWreset50 are made without loss of gener-
ality. Whereas Eqs.~1!–~4! describe the interaction dynamics
without delays between sending and reception of a pulse, a
delay t.0 can easily be included by a transformation
Ki j (t)→Ki j (t2t) of the response kernels.

It is often convenient8 ~and under weak conditions pos-
sible! to transform the variablesWi according to

Vi~ t !ª
1

C E
0

Wi (t)

B~w!21dw, ~5!

where

C5E
0

1

B~w!21dw ~6!

such that~1! becomes

dVi

dt
5Â~Vi !1

1

C
Si~ t ! ~7!

for i P$1,...,N% where Â(V)5C21A(W(V))/B(W(V)) is
determined solving Eq.~5! for W. If the duration of the re-
sponse of a uniti to an incoming pulse is sufficiently brief,
the kernelsKi j in ~2! may be idealized by the Dirac distri-
bution,

Ki j ~ t !5d~ t ! ~8!

such that the coupling becomes discontinuous.
For the commonly used leaky integrate-and-fire models

of oscillators the free dynamics is given by the linear inho-
mogeneous differential equation,

dV

dt
52gV1I ~9!

such that the network dynamics of such oscillators is given
by substitutingÂ(Vi)5I 2gVi in ~7!, whereI is an external
current andg.0 measures the dissipation in the system.
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This linear differential equation has the advantages that the
solution is known explicitly and the response to an additional
current can be found by superposition arguments. For suffi-
ciently large external current,I .g, the free (Si(t)[0) dy-
namics

V~ t !5I /g~12e2gt! for 0,t<T,

V~ t1T!5V~ t ! ~10!

is periodic~Fig. 1! with periodT5 (1/g) ln(12 g/I)21.
To study the synchronization of pacemaker cells in the

heart, Peskin studied a simple, globally coupled network of
such leaky integrate-and-fire oscillators,19 where the cou-
pling is not delayed,t50, and the responses are infinitely
fast, Ki j (t)5d(t), excitatory, and homogeneous,« i j 5«.0.
In his 1975 book he conjectured that arbitrary initial condi-
tions converge towards the fully synchronous state in which
all oscillators fire simultaneously. He gave a proof forN
52 oscillators assuming that both coupling strength and dis-
sipation are small,«!1, g!1.

In a seminal work of 1990, Mirollo and Strogatz gener-
alized the approach of Peskin.4 Contrary to Peskin, whose
analysis was based on the linearity of the differential equa-
tions, Mirollo and Strogatz’s only assumptions were that the
free (Si(t)[0) dynamics can be described by a phaselike
variable and that the interactions are mediated by some po-
tential functionU that is a monotonically increasing and con-
cave down function of this phase4 ~for model details see
below!. This framework includes many cases for which the
associated differential equation is nonlinear such that its so-
lution may not be known explicitly and superposition argu-
ments fail. Within this general framework, they proved that,
for all N, almost all initial conditions will ultimately end up
in the fully synchronous state. For systems without dissipa-
tion (g50), equivalent to linear functionsU, Senn and
Urbanczik14 proved that the dynamics becomes fully syn-
chronous even if the intrinsic frequencies and the thresholds
of the oscillators are not quite identical. Like the previous
investigators, they treated the case without delay,t50, for
which the fully synchronous state stays the only attractor.
This periodic orbit is an example of period-one dynamics,

for which every oscillator fires exactly once during one pe-
riod, and is the simplest dynamics such a system may ex-
hibit.

Within the framework introduced by Mirollo and Stro-
gatz, it was, moreover, shown that the introduction of a delay
time t.0, that occurs ubiquitously in natural systems,
changes this situation drastically.5,6 With increasing network
size, an exponentially increasing number of attractors coex-
ist. In a large region of parameter space, these are periodic
orbits with period-one dynamics, that exhibit several groups
of synchronized oscillators~clusters!, which reach threshold
and send pulses alternately. It was also shown5,6 that these
kinds of attractors arise not only in excitatorily coupled net-
works («.0) but also if the oscillators are coupled inhibi-
torily («,0).

In the following part of this paper, we show that for
excitatory coupling, many of these periodic orbits with
period-one dynamics are unstable attractors. As a conse-
quence, trajectories converge towards these unstable attrac-
tors by synchronization of groups of oscillators into several
clusters but, in the presence of arbitrarily weak noise, di-
verge subsequently via desynchronization of clusters.

III. MIROLLO–STROGATZ MODEL

We consider a homogeneous network ofN all-to-all
pulse-coupled oscillators with delayed interactions. A phase-
like variablef i(t)P(2`,1# specifies the state of each os-
cillator i at time t such that the difference between the
phases of two oscillators quantifies their degree of syn-
chrony, with identical phases for completely synchronous os-
cillators. The free dynamics of oscillatori is given by

df i /dt51. ~11!

Whenever oscillatori reaches a threshold

f i~ t !51, ~12!

the phase is reset to zero

f i~ t1!50 ~13!

and a pulse is sent to all other oscillatorsj Þ i , which receive
this signal after a delay timet. The interactions are mediated
by a functionU(f) specifying a ‘‘potential’’ of an oscillator
at phasef. The functionU is twice continuously differen-
tiable, monotonically increasing,U8.0, concave~down!,
U9,0, and normalized such thatU(0)50 andU(1)51.

For a generalU(f) we define the transfer function,

H «̂~f!5U21~U~f!1 «̂ ! ~14!

that represents the response of an oscillator at phasef to an
incoming subthreshold pulse of strength«̂ that induces an
immediate phase jump tof15H «̂(f). Depending on
whether the input«̂ is subthreshold,U(f)1 «̂,1, or supra-
threshold,U(f)1 «̂>1, the pulse sent at timet @Eq. ~12!#
induces a phase jump after a delay timet at time t85t1t
according to

f j~ t81!5H H «̂~f j~ t8!! if U~f j~ t8!!1 «̂,1

0 if U~f j~ t8!!1 «̂>1
. ~15!

FIG. 1. Dynamics of a noninteracting integrate-and-fire oscillator. Without
threshold, the potentialV would converge to its long-time limitI /g ~dashed
line!. Every time the thresholdVu51 is reached, the potentialV is reset to
zero and a pulse is sent.
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This phase jump~Fig. 2! depends on the phasef j (t1t) of
the receiving oscillator at a timet after the signal by oscil-
lator i has been sent at timet, the effective coupling strength
« i j 5 «̂5«/(N21), and the nonlinear potentialU. The inter-
actions are either excitatory («.0) inducing advancing
phase jumps~Fig. 2! or inhibitory («,0) inducing retarding
phase jumps. Note that in response to the reception of an
inhibitory pulse, the phases of the oscillators may also as-
sume negative values.

The general class of functionsU captures the dynamics
of a variety of systems. In particular, given any differential
equation of the form~7! the free @Si(t)[0# dynamics of
which has a periodic solutionV(t) with period T that is
monotonic and has negative curvature on the interval (0;T#,
the functionU can be taken as the scaled solution,

U~f!ªV~fT!. ~16!

By this transformation, the general class of pulse-coupled
oscillators@Eqs. ~1!–~4!# with infinitely fast response~8! is
mapped onto a normalized phase description@Eqs. ~11!–
~15!#. For instance, the standard leaky integrate-and-fire os-
cillator ~9! with solution ~10! leads to

U IF~f!5
I

g
~12e2gfT!5

I

g S 12S 12
g

I D fD . ~17!

Another example is given by the conductance-based thresh-
old model of a neuron,29 in which A(W)5g(Weq2W) and
B(W)5g(Ws2W) with equilibrium potentialWeq.1, mem-
brane time constantg.0, synaptic reversal potentialWs,
and conductivityg.0. After a transformation of variables
V5V(W) according to~5! and a scaling~16! we obtain

UCB~f!5
ln~11Weq/Ws@~12Weq

21!f21# !

ln~12Ws
21!

. ~18!

The resulting potential functionU is always monotonically
increasing and, for a wide range of biologically reasonable
values ofWs andWeq, also concave down.

For all numerical studies and simulations presented in
this paper, we use the functional form

U~f!5Ub~f!5b21 ln~11~eb21!f! ~19!

that results in an affine transfer functionH «̂(f)5e«̂bf
1const, that was utilized also in the original work of Mirollo
and Strogatz4 as well as in the later investigation of the in-
fluence of delay.5,6

Compared to systems of nonlinear differential equations,
the Mirollo–Strogatz approach has the additional advantage,
that numerical calculations can be performed exactly on an
event-by-event basis. Given the state of the system at timet,
defined by a phase vectorf(t) and a list of signals sent
together with their sending times, the dynamics can be com-
puted numerically by iterating between two kinds of events
~in an appropriate order!:

~i! If the next event is the reception of a signal after a
time Dt1 , shift all phasesf i(t) by this amount and
apply the mapH «̂ according to Eq.~15!. If the re-
ceived signal is subthreshold for oscillatorj , its re-
sulting phase is given by

fj~t1Dt1!5H«̂~fj~t!1Dt1!, ~20!

if the signal is suprathreshold for oscillatorj 8,
f j 8(t)1Dt1>1, its phase is reset to zero,

fj8~t1Dt1!50, ~21!

and a signal is generated, i.e., its sending timet
1Dt1 and the set of sending oscillatorsj 8 is stored. If
k.1 signals have been simultaneously sent by syn-
chronized oscillators their simultaneous arrival can
simply be numerically realized by an enlarged cou-
pling strength (k21)«̂ or k«̂, depending on whether
or not the considered receiving oscillator has sent one
of the k signals.

~ii ! If the next event is that one or more oscillators reach
threshold after timeDt2512maxi fi(t) ~without re-
ceiving an additional input signal after a timeDt1

,Dt2!, those oscillatorsj are reset to zero,

fj~t1Dt2!50, ~22!

and a signal is generated@see event~i!#, whereas the
phases of all other oscillatorsj 8 are just translated in
time according to

fj8~t1Dt2!5fj8~t!1Dt2. ~23!

These are the only two possible events that change the state
of the system, such that the simulation time is increased by
Dt1 or Dt2 , depending on the kind of event: To determine
the state at the next time step after timet numerically, one
first finds the minimum of the timeDt1 after which the next
signal would arrive and the timeDt2 after which the next
phase would cross threshold without an additional incoming
signal @cf. Eq. ~15!#. Thus, time steps smaller thanDtMS

5min$Dt1,Dt2% do not need to be considered. Note thatDtMS

depends on the state of the system such that it changes with
time t.

This event-based numerics can be exploited for every
choice ofU(f), and is not restricted toU IF(f) derived from
the linear differential equation~9!, for which one may as

FIG. 2. An incoming pulse of strength«̂ induces a phase jump
f1

1
ªf1(t1)5U21(U(f1(t))1 «̂)5H «̂(f1) that depends on the state

f1ªf1(t) of the oscillator at timet of pulse reception. Due to the mono-
tonicity of U, an excitatory pulse («̂.0) induces an advancing phase jump.
If the incoming pulse puts the potential above threshold,U(f1)1 «̂.1, the
phase is reset to zero,f1

150. An inhibitory pulse («̂,0) would induce a
regressing phase jump such that the phase may assume negative values~not
shown!.
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well exactly numerically integrate the original differential
equation due to linear superposition~cf. Refs. 30, 31!.

Hence, in contrast to standard numerical integration of
nonlinear differential equations, for which the time steps
DtDE have to be taken sufficiently small and the numerics is
only approximate, the above numerical algorithm for the
Mirollo–Strogatz model is exact. It is also fast, if oscillators
constitute synchronized groups, because then typical time
steps are long,DtMS@DtDE.

IV. PERPETUAL SYNCHRONIZATION AND
DESYNCHRONIZATION

For such pulse-coupled systems, periodic orbits with
groups of synchronized units constitute relevant
attractors.4–12,14,19–22As mentioned above, for the networks
of Mirollo–Strogatz oscillators with delayed interactions (t
.0) considered here, many different cluster-state attractors
with several synchronized groups of oscillators~clusters!
coexist.5,6 After an initial transient, these networks settle
down onto such a periodic orbit that displays period-one dy-
namics with clusters firing successively within each period.
Thus, in particular, phase-differences between oscillators are
constant at all times when a reference oscillator is reset.

Whereas the noise-free dynamics is seemingly similar
for both kinds of coupling, in the presence of noise the col-
lective behavior of excitatorily coupled oscillators strongly
differs from that of oscillators coupled inhibitorily. For in-
hibitory coupling all cluster-state attractors are stable against
small perturbations. Under the influence of sufficiently weak
noise the system stays near some periodic orbit that has been
reached after a transient from a random initial state@Fig.
3~a!#. The dynamics after a small perturbation in an other-
wise noiseless system confirms this stability property: Pertur-
bations to all clusters decay exponentially and the original
attractor is approached again@Figs. 3~b!, 3~c!#.

In contradistinction, for excitatory coupling, we find@cf.
Fig. 3~d!# that, although the system converges towards a pe-
riodic orbit from random initial states, small noise is often
sufficient to drive the system away from that attractor such
that successive switching towards different attractors occurs.
In principle, these dynamics might be due to stable attractors
located close to the boundaries of their basins of attraction,
such that noise drives the trajectory into a neighboring basin.
If this explanation were correct, ever smaller perturbations
off the attractor would lead to an ever lower probability of
leaving its basin. In an otherwise noiseless system we tested
this possibility by applying instantaneous, uniformly distrib-
uted, independent random perturbationsd iP@0,s# of gradu-
ally decreasing strengths~down tos510214! to the phases
f i of all oscillatorsi after the system had settled down to an
attractor@see Figs. 3~e!, 3~f!#. Even for the weakest pertur-
bations applied,noneof the perturbed states returned to the
attractor, but all trajectories separated from the original at-
tractor. We thus hypothesized that the persistent switching
dynamics@Fig. 3~d!# is due to attractors that are unstable.

V. STABILITY ANALYSIS

In order to verify this hypothesis directly, we analyze a
small network ofN56 excitatorily coupled oscillators for
which instantaneous perturbations lead to a similar switching
among attractors. We fix parameters to«50.2, t50.15 and
the potential functionU(f)5U3(f) according to Eq.~19!.
At these parameters the network exhibits a set of periodic
orbits with period-one dynamics that are related by a permu-
tation of phases in such a way, that the system may switch
among them@cf. Fig. 4~a!, points on the periodic orbits
marked in red, yellow, blue#. These orbits are structurally
stable in a neighborhood of these parameters and the func-
tion U. Each attractor can be characterized by a list of cluster
occupation numbers giving the number of oscillatorsnk in

FIG. 3. ~Color! Phase dynamics of a large network~N5100, t50.15!. Phases of all oscillators are plotted whenever a reference oscillator has been reset such
that the axis labeled ‘‘Time’’ is discrete and nonlinear.~a!, ~b!, ~c! Inhibitory coupling («520.2). ~d!, ~e!, ~f! Excitatory coupling («50.2). ~a!, ~d! Dynamics
with noise~noise levelh51023!. ~b!, ~e! Deterministic dynamics in response to a single phase perturbation~arrow, perturbation strengths51023!; ~b! for
inhibitory coupling the system returns to the attractor;~e! for excitatory coupling the system switches from a six-cluster to a five-cluster state.~c!, ~f! Phase
differences from the average phase of one cluster@shown in~b! and ~e!, respectively# in response to the perturbation.
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the kth cluster, counted in the order of increasing phases at
times after a reference oscillator (i 51) has been reset. For
instance, the attractor marked in yellow is characterized by
the occupation list@2,2,1,1# such that the transitions among
the attractors@Fig. 4~a!# are described by the sequence
~@1,2,2,1# (red)→@2,2,1,1# (yellow)→@2,1,1,2# (blue)
→@1,2,2,1# ~red!! for the particular set of perturbations ap-
plied. For each of these three attractors there exists another
permutation-related attractor with the same occupation list
but with the phase values of the two clusters containing only
one oscillator interchanged. It turns out that, depending on
the perturbation, transitions from one attractor occur to one
of only two other attractors that are related through the latter

permutation. Thus, once the system has settled down to one
of the attractors shown, it may switch within a set of six
periodic orbit attractors in response to sufficiently small per-
turbations.

Due to their permutation-equivalence these orbits have
identical stability properties. The state of the network at time
t is specified byf(t)5(f1(t),...,f6(t))T, such that the or-
bit marked in yellow in Fig. 4~a! is defined by the initial
condition,

f~0!5~0, 0, A, A, B, C!T, ~24!

where

A5H «̂~t !, ~25!

B5H2«̂~112t2a4!, ~26!

C5H2«̂~H «̂~2t!111t2a4!, ~27!

and recursively defined

ai5U21~ki «̂1U~t1ai 21!! ~28!

for i P$1,...,4%, a050, andk15k35k451, k252. Here the
origin of time, t50, was chosen such that oscillators 1 and 2
have just sent a signal and have been reset. Moreover, att
50 only these two signals~and no others! have been sent but
not yet received. The numerical values for the particular pa-
rameters considered,A'0.176,B'0.499,C'0.747, can be
identified in Fig. 4~a! ~orbit marked in yellow!. This orbit
indeed is periodic,

f~T!5f~0!, ~29!

and, in particular, period-one, such that each oscillator fires
exactly once during one periodT.

To perform a stability analysis, we define a Poincare
map by choosing oscillatori 51 as a reference. Let

fn,iªf i~ tn
1! ~30!

be the perturbed phases of the oscillatorsi at timestn.0,
nPN, just after the resets of oscillator 1,

f1~ tn
1![0. ~31!

Thus the five-dimensional vector,

dn5fn2~0, A, A, B, C8!T ~32!

defines the perturbationsdn,i for i P$2,...,6% where we
choose 0,dn,2 anddn,3,dn,4 . Here

C85H2«̂~H «̂~2t1H «̂~0!!111t2a4! ~33!

that numerically yieldsC8'0.756. Because after a general
perturbation clusters are split up such that in particularf1

,f2 , oscillator 6 receives the~later! signal from oscillator 1
only after it is reset by the~earlier! signal from oscillator 2
resulting inC8ÞC. Thus, the original orbit is superunstable,
i.e., has infinite expansion rate and the stability analysis is
performed for the orbit obtained in the limitdn→0. It is
important to note that unstable attractors also exist that do
not posses such a ‘‘partner orbit’’ but have a finite expansion
rate themselves. For convenience, we here continue consid-
ering the above set of orbits that allow a straightforward

FIG. 4. ~Color! Small network~N56, «50.2, t50.15! exhibiting unstable
attractors.~a! Noise-free phase dynamics in response to instantaneous per-
turbations of magnitudes51023 ~arrows!. When an attractor is reached, the
phase configuration specifying the current cluster state attractor is marked in
color. The perturbations induce a split-up of clusters and a divergence from
the attractor such that the network reaches different attractors successively.
For the realization of perturbations shown, the attractors marked in red
~cluster occupation list@1,2,2,1#!, yellow ~@2,2,1,1#!, and blue~@2,1,1,2#! are
visited cyclically. For each of the three attractors there exists another attrac-
tor with the same cluster occupation list but with phase values of the two
clusters with only one oscillator interchanged.~b! Basin structure of the
three attractors color-marked in~a! in two-dimensional planar section
through six-dimensional state space. The planar section is defined by one
point on each of the three periodic orbit attractors, represented by small red,
yellow, and blue disks, respectively. Basins of the three attractors are
marked in the same colors. The part of state space within this section is of
hexagonal shape. Darker gray areas are basins of the three other
permutation-related attractors@cf. ~a!# that are located outside the section
shown. Lightest gray marks the union of the basins of all other attractors.
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explanation of the phenomenon of unstable attraction. Fol-
lowing the dynamics, the five-dimensional Poincare map is
given by

dn115F~dn!, ~34!

whereF is defined by

F2~d!50,

F3~d!5L42L31H «̂~t2L41L3!2A,

F4~d!5H «̂~t1L42L3!2A, ~35!

F5~d!5H «̂~H «̂~112t2L4!1L42L3!2B,

F6~d!5H «̂~L42L31H «̂~t112L31H «̂~2t2d2

1H «̂~d2!!!!2C8,

with the abbreviations

LiªLi~d!5H «̂~t1H «̂~t2d21H «̂~d2

1H «̂~t1d i2d21H «̂~t !!!!! ~36!

for i P$3,4%. Here the differenceL42L3 in Eq. ~35! is of
orderL42L35O(idi).

The linearized dynamics

dn118Mdn ~37!

of a slightly perturbed state with split-up clusters is described
by the Jacobian matrix,

M5
]F~d!

]d U
dÄ0

5S 0 0 0 0 0

0 a 2a 0 0

0 2b b 0 0

* * * 0 0

* * * 0 0

D , ~38!

where a,b.0 and * denote nonzero real numbers. It has
four zero eigenvalues,

l i50 for i P$1,2,3,4% , ~39!

which imply that a six-dimensional state-space accessed by
the random perturbation is contracted onto a two-
dimensional manifold. This reflects the fact that suprathresh-
old input received simultaneously by two or more oscillators
~Fig. 5! leads to a simultaneous reset and thus a synchroni-
zation of these oscillators independent of their precise
phases. If a single oscillator is reset by a suprathreshold sig-
nal, it instantaneously exhibits a precise lag in firing time
Dt5t compared to the oscillator that has sent this signal.

In particular, the zero eigenvalues@Eq. ~39!# reflect the
following contracting dynamics:~i! Perturbations of phases
dn,5Þ0 or dn,6Þ0 are restored immediately by suprathresh-
old input pulses received from oscillatorsj 56 or j 51, re-
spectively. This gives rise to the eigenvaluesl15l250 cor-
responding to the eigenvectorsv1}(0,0,0,1,0)T and v2

}(0,0,0,0,1)T. ~ii ! A splitting of the first cluster,dn,2.0
[dn,1 , corresponding to the vectorv3}(1,0,0,0,0)T, is re-
stored after one period due to one suprathreshold input pulse
from oscillator j 54. At the same time, however, this split-
ting induces a perturbation of oscillatorsi 55 andi 56 such

that dn11,5Þ0 anddn11,6Þ0 which is restored according to
~i! in the subsequent period. Taken together, this accounts for
the eigenvaluel350. ~iii ! As long asdn,35dn,4 , a perturba-
tion vector is mapped onto the subspace spanned byv1 and
v2 @see~i!# within one period and is then mapped onto zero
during the next period. As a result, the eigenvaluel450
corresponds to the directionv4}(0,1,1,0,0)T. In addition to
this analysis, a stability analysis for the subset of states with
the clusterf3(t)[f4(t) kept synchronized, results in super-
stable directions only, as expected.

In contradistinction to this contracting dynamics, the
concavity ofU implies that simultaneous subthreshold input
to two or more oscillators leads to an increase of their phase
differences, i.e., a desynchronization of oscillators with simi-
lar phases~Fig. 6!. For the orbits considered here, this is
reflected by the only nonzero eigenvalue,

l55
~2U8~c0!2U8~a1!!U8~c1!U8~c2!U8~c3!

U8~a1!U8~a2!U8~a3!U8~a4!
.1,

~40!

where

ci5t1ai ~41!

for i P$0,1,2,3% and theai are defined in Eq.~28!. Because
ci.ai.ci 21 for all i andU8.0, U9,0, this eigenvalue is

FIG. 5. Simultaneous suprathreshold excitatory input synchronizes immedi-
ately due to the reset at threshold. Sufficiently small but positive phase
differences uf2(t)2f1(t)u.0 are reduced to zero such thatf2(t1)
5f1(t1)50. This is the mechanism of dimensional reduction of effective
state space, by which attractors can be built.

FIG. 6. Simultaneous subthreshold excitatory input desynchronizes due to
the concavity ofU. Small phase differencesuf2(t)2f1(t)u.0 are in-
creased,uf2(t1)2f1(t1)u.uf2(t)2f1(t)u, providing the mechanism that
creates an instability.
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larger than one, i.e., the periodic orbit is linearlyunstable.
This eigenvalue corresponds to a split-up of the cluster com-
posed of the oscillatorsi 53 andi 54. Because the Jacobian
~38! is not symmetric, the eigenvectors are not orthogonal
such that the corresponding eigenvector is notv}(0,1,
21,0,0)T but has a component in this direction. If there is no
homoclinic connection, this instability implies that such an
attractor is not surrounded by a positive volume of its own
basin of attraction, but is located at a distance from it: Thus,
every random perturbation to such an attractor state—no
matter how small—leads to a switching towards a different
attractor.

VI. UNSTABLE ATTRACTORS

Furthermore, this periodic orbit indeed is anattractor:
According to the stability analysis, after two firings of the
reference oscillator, a trajectory perturbed off a periodic orbit
@e.g., the one marked in red in Fig. 4~a!, which is
permutation-equivalent to the yellow one# is mapped onto a
two-dimensional manifold, resynchronizing one cluster. The
trajectory then evolves towards a neighborhood of another
attractor~here, the yellow one! in a lower dimensional effec-
tive state space without further dimensional reduction. Here,
forming the second cluster, suprathreshold input leads to the
last dimensional reduction while the state is mapped directly
onto the periodic orbit.

In general, a periodic orbit isunstableif, after a random
perturbation into its vicinity, one or more clusters are not
resynchronized by simultaneous suprathreshold input but de-
synchronize due to simultaneous subthreshold input. An un-
stableattractor results if these clusters are formed through
synchronization in a region of state space that is locatedre-
mote from the periodic orbit towards which the state then
converges.

Although this is a discontinuous system with delayed
interactions such that there is no simple basin structure in the
state space of phases and signals, a three-dimensional car-
toon of the basin structure in a state space of phases may
help to gain further insight about how trajectories approach
and retreat from an unstable attractor in the presence of
noise. Figure 7 shows that the basin volume is contracted by
creating~at least! one cluster in a region of state space that is
remote from the attractor itself. In contrast, near the attractor,
the same cluster is unstable against a split-up of the phases of
the oscillators it contains. Basically, such an unstable attrac-
tor might be viewed as an unstable periodic orbit with a
remote basin attached to its stable manifold that ensures the
attractivity property.

It is important to note that for inhibitory coupling we
observe that all attractors are stable: An intuitive explanation
is that there is only a mechanism of synchronization~Fig. 8!
due to the concavity ofU that contracts state space volume
such that all attractors with period-one dynamics are stable.
It is instructive to compare Fig. 8 for inhibition to Fig. 6 for
excitation that display how simultaneously incoming sub-
threshold pulses effect phase differences. Since for inhibition
all attractors are period-one states,5,6 we expect that the pos-

sibility of unstable attractors is excluded for this kind of
coupling.

In order to further clarify the structure of state space of
networks of excitatorily coupled oscillators, we numerically
determined the basins of attraction of the three attractors dis-
played in Fig. 4~a! in two-dimensional sections of state
space. The example shown in Fig. 4~b! reveals that attractors
are surrounded by basins of attraction of other attractors as
predicted by the above analysis. Because of this basin struc-
ture, noise induces repeated attractor switching among un-
stable attractors. Starting from the orbit defined by~24! the
system may switch within sets of only six periodic orbit
attractors as is apparent from the basins shown in Fig. 4~b!.
However, in larger networks@cf., e.g., Fig. 3~d!# a cluster
may split up in a combinatorial number of ways and expo-
nentially many periodic orbit attractors are present among
which the system may switch. The larger such networks are,
the higher the flexibility they exhibit in visiting different at-
tractors and exploring state space.

FIG. 7. Cartoon of the basin structure of an unstable attractorA. First, a
positive basin volumeB(A) of states is mapped onto a lower-dimensional
effective state space. This is achieved by simultaneous suprathreshold input
to a group of oscillators, that synchronizes them to form one cluster. Be-
cause the attractor is located remote from its own basin volume the same
cluster may desynchronize in response to small perturbations near the at-
tractor, where incoming pulses are no longer supra- but subthreshold and
thus lead to a desynchronization.

FIG. 8. Simultaneous inhibitory input synchronizes due to the concavity of
U. Contrary to networks of oscillators coupled excitatorily, here the inhibi-
tory interactions allow subthreshold input only and lead to a decrease of
phase differences,uf2(t1)2f1(t1)u.uf2(t)2f1(t)u. Hence, these net-
works possess a mechanism for synchronization, but there is no simple
possibility of desynchronizing a cluster state.
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Until now, the analysis has focussed on a small network
of N56 oscillators, for which certain periodic orbits have
been demonstrated to be unstable attractors. To study the
desynchronization of clusters also observed in larger network
in greater detail, we numerically determined the divergence
of small random perturbations to an attractor in a network of
N5100 oscillators. As an example we chose two perturba-
tions d15s1d* andd25s2d* into the same random direc-
tion d* P@0,1#N, where s1510212 and s25s1110214.
Figure 9 shows that the separationDªmaxiud1,i2d2,i u be-
tween the two perturbed trajectories exponentially increases
with time. This indicates that also for large networks, desyn-
chronization is due to a linear instability. Let us remark that,
due to the splitting-up of clusters by a general perturbation
@cf. Eqs.~32! and ~33!#, two perturbations into independent
directions might first lead to an additional discontinuous
separation, followed by an exponential expansion.

As a second quantity, that characterizes the dynamics of
switching, we consider the time needed by the system to
switch from an unstable attractor towards a different attractor
after a random perturbation of magnitudes. The perturba-
tions applied to the attractor are random phase vectors,
drawn from a uniform distribution on@0, s#N, with s
P@10212,1022#. As displayed in Fig. 10, for sufficiently
small s, this switching time clearly increases exponentially
with decreasings. In particular, this indicates that the attrac-

tors found are indeed unstable and do not possess small con-
tracting open neighborhoods. Furthermore, it confirms our
observations that the time of switching is mainly determined
by the time of divergence from the original unstable attractor.
Thus, in the presence of external noise, we expect a similar
monotonic increase of an approximate switching time with
the amplitude of the noise.

Taken together, this indicates that there exist also un-
stable attractors in larger networks that are enclosed by ba-
sins of other attractors. Thus, these results strongly support
the hypothesis, that the switching found in large networks in
the presence of noise~cf. Fig. 3!, is also due to unstable
attractors. It is important to note that, without a perturbation,
numerical noise does not induce a divergence of trajectories
from attractors which are unstable: Synchronization occurs
by simultaneously resetting the phases of two or more oscil-
lators to zero~cf. Fig. 5!. Due to the global homogenous
coupling, all signals simultaneously received by these oscil-
lators are of the same size and are exactly synchronous nu-
merically ~see Sec. III!. Thus, although the phase-advance
computed for such signals is influenced by numerical round-
off errors, such errors will be identical for phases of synchro-
nized oscillators and hence not induce a numerical desyn-
chronization.

VII. PREVALENCE AND PERSISTENCE

The preceeding analysis demonstrates the existence of
unstable attractors. For excitatory coupling, these unstable
attractors coexist with stable attractors. For a cluster-state
attractor to be stable, all clusters necessarily receive supra-
threshold input once per period that resynchronizes possibly
split-up oscillators. In general, a stable attractor has a con-
tracting neighborhood in state space from which perturbed
trajectories return to the attractor. If an attractor is unstable
there are trajectories arbitrarily close to the attractor, which
diverge from it, such that unstable attractors do not exhibit a
contracting neighborhood. In other words, an unstable attrac-
tor has to be located at the boundary of its own basin. There-
fore, the intuitive expectation is that parameters of the sys-
tem have to be precisely specified in order to keep a periodic
orbit simultaneously attracting and unstable. This leads to the
question whether the physical parameters of the system, in
particular«, t, andN, need to be precisely tuned to obtain
unstable attractors.

To answer the question, how common unstable attractors
actually are, we numerically estimated the fractionpu(N) of
state space occupied by basins of unstable attractors. To ob-
tain this estimate, we initialized the system with 1000 ran-
dom initial phase vectors, drawn from the uniform distribu-
tion on@0,1#N. Whenever a period-one orbit was reached, we
applied one random phase perturbationd drawn from the
uniform distribution on@0,s#N, where we choses51026, a
value well below all scales that are determined by the model
parameters, in particulars!«/N for network sizes up toN
'102. If perturbed trajectories did not return to the original
attractor, it was counted unstable. If no period-one orbit was
reached from a random initial state but, e.g., orbits of higher
period, these were not tested for stability. Thus, the numeri-

FIG. 9. Separation of two perturbations off an unstable attractor into the
same random direction for a large network~N5100, «50.2, t50.15!. The
separationD grows exponentially with the time after the perturbation, mea-
sured in number of firing events of a reference oscillator.

FIG. 10. Time of switching between two attractors depending on the per-
turbation strengths for a large network~N5100, «50.2, t50.15!. The
switching time increases exponentially with decreasing perturbation
strength. The discrete time axis~number of firing events of a reference
oscillator! leads to a regular stepping that slightly disrupts the exponential
trend.
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cal method used estimates a lower bound onpu(N). As an
example, Fig. 11~a! displays such an estimate ofpu(N) for
«50.2 andt50.15.

While for these parameters unstable attractors are absent
if networks are too small~hereN<4! and coexist with stable
attractors in larger networks, the fraction approaches one for
N@1. Other parameters~«50.2, t50.25! yield a different
dependence on the network sizeN. Once again, unstable
attractors arise only if the network size is not too small (N
>3). Yet, the fractionpu(N) is only substantial for moderate
network sizes nearN'10 and approaches zero for largeN.
More generally, we observed that unstable attractors are ab-
sent in small networks~cf. Refs. 5, 6 for the caseN52! and
pu(N) approaches either zero or one in large networks, de-
pending on the parameters. For networks ofN5100 oscilla-
tors, Fig. 12 shows the region of parameter space in which
unstable attractors prevail@pu(100).0.5, estimated from
100 random initial phase vectors#. As this region covers a
substantial part of parameter space, precise parameter tuning
is not needed to obtain unstable attractors. Furthermore we
find the same qualitative behavior independent of the de-
tailed form of U(f). This indicates that the occurrence of
unstable attractors is a robust collective phenomenon in this
model class of networks of excitatorily pulse-coupled oscil-
lators.

It is instructive to note that, on theoretical grounds, a
period-one orbit is stable only if the clusters have a differ-
ence in firing times ofDt5t, such that its period is an inte-
ger multiple oft. The pulse sent by every single cluster then
leads to a suprathreshold input to the following cluster, that
in response to this input sends a pulse. If these conditions are

not satisfied for all clusters of a period-one orbit, this orbit is
unstable. In particular, it is unstable against a split-up of~at
least! one cluster. The same orbit may also be attracting if
such a cluster is formed in a region of state space that is
located remote from the attractor as exemplified by the
analysis in Sec. VI.

Whereas the analysis presented above gives some in-
sights into why unstable attractors exist and demonstrates
that they prevail under variation of parameters, the precise
reasons for their prevalence await discovery in future studies.

VIII. CONCLUSIONS AND DISCUSSION

The occurrence of unstable attractorsper seis an intrigu-
ing phenomenon because it contradicts the common intuition
about the stable nature of attracting invariant sets in dynami-
cal systems. Our results suggest, that there are systems of
pulse-coupled units in which unstable attractors may be the
rule rather than the exception.

Unstable attractors persist under various classes of struc-
tural modifications. For instance, preliminary studies on net-
works with randomly diluted connectivity suggest that a
symmetric, all-to-all connectivity is not required.32 In addi-
tion, unstable attractors also arise naturally in networks of
inhibitorily coupled oscillators,33 if a lower threshold is in-
troduced and the functionU is taken to be convex down,
U9(f).0, in a certain range of phase values, a model vari-
ant motivated by experiments in certain biological neural
systems.29

Moreover, it is expected that every system obtained by a
sufficiently small structural perturbation from the one con-
sidered here will exhibit a similar set of saddle periodic or-
bits, because linearly unstable states can generally not be

FIG. 11. Prevalence of unstable attractors in large networks.~a! Unstable
attractors prevail for large networks for certain parameters~«50.2, t
50.15!, but ~b! are not important in large networks for other parameters
~«50.2, t50.25!. The fraction pu(N) was estimated for everyN<128
from 1000 random initial phase vectors, drawn from the uniform distribution
on @0,1#N.

FIG. 12. Unstable attractors persist in a wide region of parameter space in
large networks (N5100). Parameters withpu(100).0.5 are marked in
black; herepu(100) was estimated from 100 random initial phase vectors,
drawn from the uniform distribution on@0,1#N, for every set of parameters
~resolutionDt5D«50.005!.
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stabilized by such a perturbation. Although, in general, these
orbits may no longer be attracting, their dynamical conse-
quences are expected to persist. In particular, a switching
along heteroclinic connections may occur in the presence of
noisy or deterministic, time-varying signals. As in the origi-
nal system, the sequence of states reached may be deter-
mined by the directions into which such a signal guides the
trajectory. By increasing and decreasing the strength of this
signal, the time scale of switching may be decreased and
increased, respectively, due to the linear instability.

Furthermore, switching among unstable states also oc-
curs in systems of continuously phase-coupled oscillators34,35

that can be obtained from pulse-coupled oscillators in a cer-
tain limit of weak coupling.36 In particular, Hansel, Mato,
and Meunier34 show that a system of phase-coupled oscilla-
tors may switch back and forth among pairs of two-cluster
states. Working in the limit of infinitely fast response, i.e.,
discontinuous phase jumps, we have demonstrated that far
more complicated switching transitions may occur in large
networks if the oscillators are pulse-coupled.

Unstable attractors add a high degree of flexibility to a
system allowing, e.g., switching from one attractor towards a
set of other attractors. This may be utilized for specific func-
tions. If, for instance, the convergence of the state of the
system towards an attractor has a functional role, such as the
solution of a computational task,1–3 the flexibility induced by
unstable attractors can provide the system with a unique ad-
vantage: If the attractor is stable, it will be hard to leave it
after convergence, e.g., the completion of a task. With an
unstable attractor, however, a small perturbation is sufficient
to leave the attractor after convergence and proceed with the
next task. This dynamical flexibility might be used efficiently
for the design of artificial systems and be highly advanta-
geous to the computational capability of natural systems like
neuronal networks. Interestingly, it has recently been shown
that certain models of neural networks are capable of dy-
namically encoding information as trajectories near hetero-
clinic connections.37

In order to fully understand the capabilities of systems
exhibiting unstable attractors or unstable periodic orbits
linked by heteroclinic connections and to learn to design
such systems for specific functions it will be of major impor-
tance to further analyze the requirements for the occurrence
of unstable attractors in dynamical systems and the factors
which shape their basins. Our results indicate that networks
of pulse-coupled oscillators may be a promising starting
point for such investigations.
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