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Common experience suggests that attracting invariant sets in nonlinear dynamical systems are
generally stable. Contrary to this intuition, we present a dynamical system, a network of
pulse-coupled oscillators, in whicluinstable attractorsarise naturally. From random initial
conditions, groups of synchronized oscillatdcdusters are formed that send pulses alternately,
resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this
synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors
that are unstable. Perpetual synchronization and desynchronization lead to a switching among
attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by
basins of attraction of other attractors, whereas the full measure of their own basin is located remote
from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the

dynamics for large networks and a wide range of parameter20@3 American Institute of

Physics. [DOI: 10.1063/1.1501274

As attractors determine the long-term behavior of dissi-
pative dynamical systems, the notion of attractors is cen-
tral to studies in many fields of science. According to the
mathematical definitions of an attractor, states that origi-
nate in a certain volume of state space, the basin of at-
traction, evolve towards the respective attractor. Since
states slightly perturbed from an attractor often stay con-
fined to its vicinity and finally return to it, attractors are
widely considered to bestable Attracting yet unstable
states are consistent with an attractor definition intro-
duced by Milnor. There is evidence that such Milnor at-
tractors might not be uncommon in certain systems that
exhibit strange invariant sets with a fractal geometry. In
general, however, unstable attractors seem to be special
cases that have to be constructed artificially by precisely
tuning parameters. Contrary to this intuition, we present
an example of a dynamical system, a network of pulse-
coupled oscillators, in whichunstableattractors with pe-
riodic dynamics arise naturally. Unstable attractors are
shown to prevalil for large networks and a wide range of
parameters. In the presence of arbitrarily weak noise, a
perpetual synchronization and desynchronization of
groups of oscillators occurs which leads to a switching
among different attractors.

I. INTRODUCTION

from which states evolve towards the respective attractors.
Since states that are slightly perturbed from an attractor often
stay confined to its vicinity and eventually return to the at-
tractor, attractors are commonly considered tetadble®18

In this paper we study the dynamics of networks of
pulse-coupled oscillatofs;® in which unstableattractors ex-
ist and arise naturally as eollective phenomenon. Such
models of pulse-coupled oscillators describe, e.g., synchro-
nization in spiking neural networks and the dynamics of
other natural systems as diverse as pacemaker cells in the
heart, populations of flashing fireflies, and earthqualcés
Refs. 4-15, 19-22 We identify an analytically tractable
network exhibiting unstable attractors. For this network we
demonstrate the existence of attractors that are unstable and
located remote from the volume of their own basins of at-
traction. Such attracting yet unstable states are consistent
with a definition of attractors introduced by Milnor, which
neither presumes nor implies stabifffyin certain other sys-
tems such Milnor attractors might not be uncommon if these
systems exhibit strange invariant sets with a fractal
geometry’*~28 More generally, however, attractors that are
not stable seem to be special cases that have to be con-
structed artificially by precisely tuning parameters. Contrary
to this intuition, in the system considered here, unstable at-
tractors with regularperiodic dynamics are typical in large
networks and persist even if the physical model parameters
are varied substantially. The first discovery of the occurrence

The concept of attractors is underlying the analysis ofand prevalence of unstable attractors in networks of pulse-
many natural systems as well as the design of artificial sysecoupled oscillators was reported in Ref. 15. Here we give a
tems. For instance, the computational capabilities of neurahore detailed analysis of such unstable attractors and explain
networks are controlled by the attractors of their collectivethe observation that they only occur for excitatdphase
dynamicst~ Consequently, the nature and design of attrac-advancing interactions but are absent if the interactions are
tors in such systems constitute a focus of current researdhhibitory (phase retarding

interest!1° In general, the state space of a nonlinear dy-

We argue that dynamical consequences of unstable at-

namical system is partitioned into various basins of attractioriractors may persist in a general class of systems of pulse-

1054-1500/2003/13(1)/377/11/$20.00

377

© 2003 American Institute of Physics



378 Chaos, Vol. 13, No. 1, 2003 Timme, Wolf, and Geisel

coupled units. Such consequences include an ongoing N
switching among unstable attractors in the presence of noise. Si(t)= E > &iiKij(t=1t; m), (2
In systems where the convergence towards an attractor has a J=1 m==e
functional role, such as the solution of a computational taskvheres;; is the strength of the coupling from oscillatpto
by a neural network;® switching induces a high degree of oscillatori and the response kernds;(t) have the property
flexibility that may provide the system with a unique advan-thatKij(t)zo, Kij(t)=0 fort<0, and[” .K;;(t)dt=1. The
tage compared to multistable systems. In general, it is hard teum includes all times; ., at which oscillatorj reaches a
leave a stable attractor after convergence, e.g., the compléhresholdwW,:=1 (from below for the mth time,
tion of a task. With an unstable attractor, however, a small
perturbation is sufficient to leave the attractor and to switch /(¢ )=W,=1 dw; (V) ~0. 3
towards another one. e Coodt |

This paper is organized as follows: In Sec. Il we intro- ) _ ) _
duce a class of network models of pulse-coupled oscillatordf this threshold is reachedy; is reset to a potential

j,m

We b_riefly review earlier r_es_ults on synchronizgtion phenom- Wj(trm) =W,ege= 0 (4
ena in such networks within the framework introduced by o _ . o
Mirollo and Strogatz that is described in detail in Sec. Ill. Inand a signal is generated that is sent to oscillatorSom-

Sec. IV we describe the numerical observation that, in thénonly, a unit that is reset and sends out a pulse when it
presence of noise, trajectories approach and retreat from p&eaches a threshold is said to “fire” at that instant of time.
riodic orbits by perpetual synchronization and desynchroniThis form of pulse-coupling idealizes the fact that in diverse
zation of groups of oscillators. Together with further numeri-biological systems such as populations of flashing fireflies or
cal investigations, this leads to the hypothesis, that théetworks of spiking neurons in the brain, units interact by
observed dynamics is induced by attractors that are unstablgtereotyped short-lasting signals that are generated as the
In Sec. V we perform an exact stability analysis of a particu-State of a unit reaches a threshold. Note that the normaliza-
larly selected set of attractors. It is followed by an analysis ofions Wy,=1 andW,e.=0 are made without loss of gener-
the dynamics during a switching transition between twoality. Whereas Eqg1)—(4) describe the interaction dynamics
states(Sec. V) that is further corroborated by a numerical Without delays between sending and reception of a pulse, a
investigation of the structure of basins of attractions in statglelay 7>0 can easily be included by a transformation
space. These results demonstrate that unstable attractors Ifi (t) —K;;(t—7) of the response kernels.

deed exist in the class of networks of pulse-coupled oscilla- It is often convenierit(and under weak conditions pos-
tors considered. Section VII completes our analysis showingible) to transform the variable®/; according to

that unstable attractors prevail in large networks for a wide 1 Wi

range of parameters. The paper concludes in Sec. VIII with Vi(t)::Ej B(w) ‘dw, (5)

(i) a discussion of the dynamical consequence of switching 0

among unstable attractors in comparison to smoothlyyhere

coupled systemgji) a brief presentation of preliminary re-

. . . . 1
sults for networks exh|_b_|t|ng different |nteract|0_ns or more sz B(w)~dw (6)
complex structures, an(i) an outlook for future investiga- 0
tions. such that(1) becomes

dav, . 1

- AV ESI() (7)
Il. MODELS OF PULSE-COUPLED OSCILLATORS t

In studies of synchronization phenomena in networks of©r i €{1,...N} where A(V)=C™*A(W(V))/B(W(V)) is
pulse-coupled oscillators, single elements are often modelegetermined solving Eq(5) for W. If the duration of the re-
as phase oscillators, assuming that the dynamics of the angPonse of a unit to an incoming pulse is sufficiently brief,
plitude of the oscillation is less important. Thus there is onlythe kemelsK;; in (2) may be idealized by the Dirac distri-
one relevant dynamical variabléy; , that describes the dy- bution,
namics of an individual oscillatar. In models of many natu- Kij(t)=8(t) )
ral systems, the oscillator variablé represents an analog of
a potential, like the membrane potential in the case of #uch that the coupling becomes discontinuous.
current-driven nerve cell. The dynamics of a network of  For the commonly used leaky integrate-and-fire models
pulse-coupled oscillators is commonly described by a systerfif 0scillators the free dynamics is given by the linear inho-

of coupled ordinary differential equations, mogeneous differential equation,

dw, dv

gt —AW)+B(W)S(t) (1) FTRARS ©
forie{1,...N} whereA andB are continuous functions and such that the network dynamics of such oscillators is given
S represents the interactions within the network. The pulseby substituting&(vi): | —yV; in (7), wherel is an external

coupling between oscillators is given by current andy>0 measures the dissipation in the system.
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Vypmr — — — — - — — — — for which every oscillator fires exactly once during one pe-
1 riod, and is the simplest dynamics such a system may ex-
hibit.
Within the framework introduced by Mirollo and Stro-
> gatz, it was, moreover, shown that the introduction of a delay

time 7>0, that occurs ubiquitously in natural systems,
changes this situation drasticaft§.with increasing network
size, an exponentially increasing number of attractors coex-
0 ist. In a large region of parameter space, these are periodic
orbits with period-one dynamics, that exhibit several groups
0 T bits with period-one d that exhibit |
t of synchronized oscillator&lusters, which reach threshold
FIG. 1. Dynamics of a noninteracting integrate-and-fire oscillator. WithoutaNd send pulses alternately. It was also shidhithat these
threshold, the potential would converge to its long-time limit'y (dashed  kinds of attractors arise not only in excitatorily coupled net-
line). Every time the threshold ,=1 is reached, the potenti®l is resetto  \yorks (e>0) but also if the oscillators are coupled inhibi-
zero and a pulse is sent. .
torily (e<<0).
In the following part of this paper, we show that for
excitatory coupling, many of these periodic orbits with
This linear differential equation has the advantages that thgeriod-one dynamics are unstable aftractors. As a conse-
solution is known explicitly and the response to an additionafuence, trajectories converge towards these unstable attrac-
current can be found by superposition arguments. For suffitors by synchronization of groups of oscillators into several

ciently large external current;> vy, the free G (t)=0) dy-  Clusters but, in the presence of arbitrarily weak noise, di-
namics verge subsequently via desynchronization of clusters.

V(t)=1/y(1—e ") for O<t<T,
Ill. MIROLLO-STROGATZ MODEL

V(t+T)=V(D) (10 We consider a homogeneous network Iéf all-to-all

pulse-coupled oscillators with delayed interactions. A phase-

is periodic(Fig. 1) with period T= (1/y) In(1— y/I)~% . . _ B i i
To study the synchronization of pacemaker cells in the“ke variable ¢;(t) e (—,1] specifies the state of each os

) ; : illator i at time t such that the difference between the
heart, Peskin studied a simple, globally coupled network o : e .
. , . phases of two oscillators quantifies their degree of syn-
such leaky integrate-and-fire oscillatdfswhere the cou- SR
L - P chrony, with identical phases for completely synchronous os-
pling is not delayed;=0, and the responses are infinitely

fast, K, (t) = &(t), excitatory, and homogeneous; = & 0. cillators. The free dynamics of oscillatoiis given by
In his 1975 book he conjectured that arbitrary initial condi- do; /dt=1. (11
tions converge towards the fully synchronous state in Whid‘Nhenever oscillator reaches a threshold

all oscillators fire simultaneously. He gave a proof fér

=2 oscillators assuming that both coupling strength and dis-  ¢i(t)=1, (12
sipation are smalls <1, y<1.

In a seminal work of 1990, Mirollo and Strogatz gener-
alized the approach of PesKirContrary to Peskin, whose #i(t")=0 (13
analysis was based on the linearity of the differential equaang a pulse is sent to all other oscillatgrsi, which receive
tions, Mirollo and Strogatz's only assumptions were that thepjs signal after a delay time The interactions are mediated
free (S(1)=0) dynamics can be described by a phaselikeyy 4 functionU(¢) specifying a “potential” of an oscillator
variable and that the interactions are mediated by some pQy phaseg. The functionU is twice continuously differen-
tential functionU that is a monotonically increasing and con- tjgple, monotonically increasing,)’>0, concave(down),
cave down function of this phaéfor model details see U”<0, and normalized such that(0)=0 andU(1)=1.
below. This framework includes many cases for which the  gq, 5 general(¢) we define the transfer function,
associated differential equation is nonlinear such that its so-
lution may not be known explicitly and superposition argu- ~ Ha(#)=U"(U(¢)+8) (14
ments fail. Within this general framework, they proved that,that represents the response of an oscillator at pbawan
for all N, almost all initial conditions will Ultlmat6|y end up incoming subthreshold pu|se of Stren@h’[hat induces an
in the fully synchronous state. For systems without dissipaimmediate phase jump tap*=H;(¢). Depending on
tion (y=0), equivalent to linear functions), Senn and hether the input is subthresholdU(¢)+&<1, or supra-
Urbanczik* proved that the dynamics becomes fully syn- threshold,U(¢)+2=1, the pulse sent at time[Eq. (12)]
chronous even if the intrinsic frequencies and the thresholdgduces a phase jump after a delay timat timet' =t+ 7
of the oscillators are not quite identical. Like the previousaccording to
investigators, they treated the case without defayQ, for ) . ) .
which the fully synchronous state stays the only attractor. 4+ _ Ha(y(t")) if U(gy(t))+e<1
This periodic orbit is an example of period-one dynamics, ! 0 if U(¢j(t’))+§>1'

the phase is reset to zero

(15
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1 U(¢)=Up(¢)=b""In(1+(e"~1)¢) (19

that results in an affine transfer functidd;(¢)=e"¢
; + const, that was utilized also in the original work of Mirollo
D E and Strogatzas well as in the later investigation of the in-
' fluence of delay:®

Compared to systems of nonlinear differential equations,
_ . the Mirollo—Strogatz approach has the additional advantage,
0 ; : that numerical calculations can be performed exactly on an

0 b1 oY 1 eve_nt-by-event basis. Given the state o_f the syfstem atttime
defined by a phase vectap(t) and a list of signals sent

FIG. 2. An incoming pulse of strengtté induces a phase jump together with their sending times, the dynamics can be com-
b1 =¢1(t7) =U " H(U(¢y()) +£)=H;(¢y) that depends on the state puted numerically by iterating between two kinds of events
¢q:=¢p4(t) of the oscillator at time of pulse reception. Due to the mono-

tonicity of U, an excitatory pulseg>0) induces an advancing phase jump. (in an appropriate ordgr
If the incoming pulse puts the potential above threshdlfkp,) + &> 1, the @)
phase is reset to zergh; =0. An inhibitory pulse §<0) would induce a
regressing phase jump such that the phase may assume negative(ratues
shown).

y

If the next event is the reception of a signal after a
time At,, shift all phasesp;(t) by this amount and
apply the mapH; according to Eq(15). If the re-
ceived signal is subthreshold for oscillatpr its re-
sulting phase is given by

This phase jumgFig. 2) depends on the phasg(t+7) of ¢i(t+Aty) =Hz(¢() +Aty), (20
the receiving oscillator at a time after the signal by oscil-
latori has been sent at tinte the effective coupling strength
g;j=&=¢/(N—1), and the nonlinear potentigl. The inter-

actions are either excitatorye=0) inducing advancing

phase jumpsFig. 2) or inhibitory (e<0) inducing retarding

if the signal is suprathreshold for oscillatgr,
¢ (t)+At,=1, its phase is reset to zero,

¢p(t+Aty)=0, (21

phase jumps. Note that in response to the reception of an
inhibitory pulse, the phases of the oscillators may also as-
sume negative values.

The general class of functioni$ captures the dynamics
of a variety of systems. In particular, given any differential
equation of the form(7) the free[S(t)=0] dynamics of
which has a periodic solutiov(t) with period T that is
monotonic and has negative curvature on the interval (0;

and a signal is generated, i.e., its sending time
+ At; and the set of sending oscillatgrsis stored. If
k>1 signals have been simultaneously sent by syn-
chronized oscillators their simultaneous arrival can
simply be numerically realized by an enlarged cou-
pling strength k—1)& or k&, depending on whether
or not the considered receiving oscillator has sent one
of the k signals.

the functionU can be taken as the scaled solution,

(i) If the next event is that one or more oscillators reach

threshold after timeAt,=1—max ¢;(t) (without re-
ceiving an additional input signal after a timt;
<At,), those oscillator§ are reset to zero,

U(¢):=V(oT). (16)

By this transformation, the general class of pulse-coupled
oscillators[Egs. (1)—(4)] with infinitely fast respons¢8) is
mapped onto a normalized phase descripfiigs. (11)—
(15)]. For instance, the standard leaky integrate-and-fire os-
cillator (9) with solution(10) leads to

¢;(t+At;)=0, (22)

and a signal is generatédee eventi)], whereas the
phases of all other oscillatojs are just translated in

¥\ ® time according to

I I
Uir(o)= ;(1_9_7&): P

Another example is given by the conductance-based threshpese are the only two possible events that change the state
old model of a neur_oﬁ, in which A(W) = y(Weq—W) and  f the system, such that the simulation time is increased by
B(W) = g(Ws—W) with equilibrium potentiaWe,>1, mem- At or At,, depending on the kind of event: To determine
brane time (?o'nstanfg/> 0, synaptic reversal potentleSv the state at the next time step after titnaumerically, one
and conductivityg>0. After a transformation of variables iyt finds the minimum of the timat, after which the next
V=V(W) according to(5) and a scaling16) we obtain signal would arrive and the timAt, after which the next
In(l"_Weq/Wi(l_W(;ql)(b_ 1) p_hase would cross threshold_ without an additional incoming
= In(1—W.T) (18 S|gngl [cf. Eq. (15)]. Thus, time step_s smaller thaltyg
s =min{At;,At,} do not need to be considered. Note thays
The resulting potential functiok) is always monotonically depends on the state of the system such that it changes with
increasing and, for a wide range of biologically reasonablgimet.
values ofWs andW,,, also concave down. This event-based numerics can be exploited for every
For all numerical studies and simulations presented irchoice ofU(¢), and is not restricted to=(¢) derived from
this paper, we use the functional form the linear differential equatio©), for which one may as

Ucs
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FIG. 3. (Color) Phase dynamics of a large netwdh= 100, 7=0.15. Phases of all oscillators are plotted whenever a reference oscillator has been reset such
that the axis labeled “Time” is discrete and nonline@, (b), (c) Inhibitory coupling €= —0.2). (d), (e), (f) Excitatory coupling £ =0.2). (a), (d) Dynamics

with noise(noise levely=10"%). (b), (e) Deterministic dynamics in response to a single phase perturb@tcmw, perturbation strengttn=10"2%); (b) for
inhibitory coupling the system returns to the attractey;for excitatory coupling the system switches from a six-cluster to a five-cluster &tpté) Phase
differences from the average phase of one clysteown in(b) and(e), respectively in response to the perturbation.

well exactly numerically integrate the original differential In contradistinction, for excitatory coupling, we fificf.
equation due to linear superpositi¢ef. Refs. 30, 31 Fig. 3(d)] that, although the system converges towards a pe-
Hence, in contrast to standard numerical integration ofiodic orbit from random initial states, small noise is often

nonlinear differential equations, for which the time stepssufficient to drive the system away from that attractor such
Atpe have to be taken sufficiently small and the numerics ighat successive switching towards different attractors occurs.
only approximate, the above numerical algorithm for theln principle, these dynamics might be due to stable attractors
Mirollo—Strogatz model is exact. It is also fast, if oscillators located close to the boundaries of their basins of attraction,
constitute synchronized groups, because then typical timsuch that noise drives the trajectory into a neighboring basin.

steps are longAtys>Atpe. If this explanation were correct, ever smaller perturbations
off the attractor would lead to an ever lower probability of

IV. PERPETUAL SYNCHRONIZATION AND leaving its basin. In an otherwise noiseless system we tested

DESYNCHRONIZATION this possibility by applying instantaneous, uniformly distrib-

uted, independent random perturbati@hs [0,0] of gradu-

For such pulse-cou'pled systems, periqdic orbits Witha”y decreasing strengttgown to o-=10"%) to the phases
groups ~ of ~synchronized units ~constitute relevant ot 4| oscillatorsi after the system had settled down to an
attractors'~'21*19-2’As mentioned above, for the networks attractor[see Figs. &), 3(f)]. Even for the weakest pertur-
of Mirollo—_Strogatz oscillators _with delayed interactions ( pations appliednoneof the perturbed states returned to the
>0) considered here, many different cluster-state attractorgyractor, but all trajectories separated from the original at-
with several synchronized groups of oscillatdi8usters  acior. We thus hypothesized that the persistent switching

coexist>® After an initial transient, these networks settle dynamics[Fig. 3d)] is due to attractors that are unstable.
down onto such a periodic orbit that displays period-one dy-

namics with plusters firing §uccesswely within eac'h perlodv- STABILITY ANALYSIS
Thus, in particular, phase-differences between oscillators are
constant at all times when a reference oscillator is reset. In order to verify this hypothesis directly, we analyze a
Whereas the noise-free dynamics is seemingly similasmall network ofN=6 excitatorily coupled oscillators for
for both kinds of coupling, in the presence of noise the col-which instantaneous perturbations lead to a similar switching
lective behavior of excitatorily coupled oscillators strongly among attractors. We fix parametersete 0.2, 7=0.15 and
differs from that of oscillators coupled inhibitorily. For in- the potential functiorJ(¢)=Uj3(¢) according to Eq(19).
hibitory coupling all cluster-state attractors are stable againsit these parameters the network exhibits a set of periodic
small perturbations. Under the influence of sufficiently weakorbits with period-one dynamics that are related by a permu-
noise the system stays near some periodic orbit that has betation of phases in such a way, that the system may switch
reached after a transient from a random initial sf#&. among them[cf. Fig. 4(a), points on the periodic orbits
3(a)]. The dynamics after a small perturbation in an other-marked in red, yellow, blue These orbits are structurally
wise noiseless system confirms this stability property: Perturstable in a neighborhood of these parameters and the func-
bations to all clusters decay exponentially and the origination U. Each attractor can be characterized by a list of cluster
attractor is approached agdiRigs. 3b), 3(c)]. occupation numbers giving the number of oscillatogsin
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permutation. Thus, once the system has settled down to one

Py E ) = of the attractors shown, it may switch within a set of six
L g L 3 periodic orbit attractors in response to sufficiently small per-
& : — ¥ turbations.
2 ™ 5 ' % | Due to their permutation-equivalence these orbits have
s £ - ] identical stability properties. The state of the network at time
o 1'-__ £ £ t is specified byp(t) = (p4(t),...,ds(1))7, such that the or-
~ st bit marked in yellow in Fig. &) is defined by the initial
0 condition,
50 100 150 200 #(0)=(0, 0, A, A, B, O)T, (24)
Time where
A=H;(7), (25

x 7" B=H,;(1+27—a,), (26)

x C=Ha;(H;(27)+ 1+ 7-ay), (27)
' m / and recursively defined
A

a=U"Y(kig+U(7+a_;)) (29

o forie{l,...,4, ap=0, andk;=kz=k,=1, k,=2. Here the
origin of time,t=0, was chosen such that oscillators 1 and 2
have just sent a signal and have been reset. Moreovér, at
=0 only these two signal@nd no othershave been sent but
not yet received. The numerical values for the particular pa-
rameters considereéd~0.176,B~0.499,C~0.747, can be

, identified in Fig. 4a) (orbit marked in yellow. This orbit

’ indeed is periodic,
FIG. 4. (Color) Small network(N=6, e =0.2, 7=0.15 exhibiting unstable _
attractoﬁs.(a) rzloise-free phas(e dynamics in respo?se to instgntaneous per- ¢(T) - ¢(0)’ (29)

0 H — —3 H . . . . .
turbations qf magmtude—_l(_) (arrows. When an attractor is reaghed,the and, in partlcular, perlod-one, such that each oscillator fires
phase configuration specifying the current cluster state attractor is marked in . .

xactly once during one pericd

color. The perturbations induce a split-up of clusters and a divergence frorf¥ =z ) ) )
the attractor such that the network reaches different attractors successively. TO perform a stability analysis, we define a Poincare

For the realization of perturbations shown, the attractors marked in reqgnap by choosing oscillatar=1 as a reference. Let
(cluster occupation lidt1,2,2,1), yellow ([2,2,1,1), and blue(2,1,1,2) are

visited cyclically. For each of the three attractors there exists another attrac- ¢ ;:= d,i(t;) (30
tor with the same cluster occupation list but with phase values of the two '

clusters with only one oscillator interchanggth) Basin structure of the pe the perturbed phases of the oscillatomst timest,>0,
three attr_actqrs co_lor—marked ite) in two—dlmensmne_ll p!anar _sectlon nel, jUSt after the resets of oscillator 1,

through six-dimensional state space. The planar section is defined by one
point on each of the three periodic orbit attractors, represented by small red, P (t+)EO (31)
yellow, and blue disks, respectively. Basins of the three attractors are 1 ’

marked in the same colors. The part of state space within this section is Of'hus the five-dimensional vector

hexagonal shape. Darker gray areas are basins of the three other !

permutation-related attractofsf. (a)] that are located outside the section o "nT

shown. Lightest gray marks the union of the basins of all other attractors. %=¢n—(0, A A B, CY) (32

defines the perturbations,; for ie{2,...,.6 where we
choose & 8, , and 5, 3< 3y, 4. Here
the kth cluster, counted in the order of increasing phases at ;L
times after a reference oscillator=1) has been rgespet. For =Ha(Hi(27+H;(0) +1+7-a,) (33
instance, the attractor marked in yellow is characterized byhat numerically yieldsC'~0.756. Because after a general
the occupation lisf2,2,1,1 such that the transitions among perturbation clusters are split up such that in particylar
the attractors[Fig. 4(a)] are described by the sequence < ¢,, oscillator 6 receives th@gater signal from oscillator 1
(1,2,2,3 (red)—[2,2,1,] (yellow)—[2,1,1,4 (blue) only after it is reset by thé¢earliep signal from oscillator 2
—[1,2,2,] (red) for the particular set of perturbations ap- resulting inC’# C. Thus, the original orbit is superunstable,
plied. For each of these three attractors there exists anothee., has infinite expansion rate and the stability analysis is
permutation-related attractor with the same occupation lisperformed for the orbit obtained in the lim&,—0. It is
but with the phase values of the two clusters containing onlymportant to note that unstable attractors also exist that do
one oscillator interchanged. It turns out that, depending omot posses such a “partner orbit” but have a finite expansion
the perturbation, transitions from one attractor occur to oneate themselves. For convenience, we here continue consid-
of only two other attractors that are related through the latteering the above set of orbits that allow a straightforward

1\
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explanation of the phenomenon of unstable attraction. Fol- 1 [ |
lowing the dynamics, the five-dimensional Poincare map is
given by
dhs1=F(8), (34 S
whereF is defined by
F2(0)=0,
Fa(@)=Ls—Ls+H;(7—Ls+tL3)—A, 0
¢1 @2 il
Fa(0)=Hy(7+Ls—L3)—A, (35) ¢
Fs(6)=H;(H;(1+27—L,)+Ls—L3)—B, FIG. 5. Simultaneous suprathreshold excitatory input synchronizes immedi-
ately due to the reset at threshold. Sufficiently small but positive phase
Fe(6)=H (L,—Ls+H;(r+1-Ls+H (27— 6, differences | ¢,(t) — ¢4(t)|>0 are reduced to zero such thaf,(t")
=¢,(t")=0. This is the mechanism of dimensional reduction of effective
+H;(8,))))—C’, state space, by which attractors can be built.
with the abbreviations
Lis=Li(&)=H(r+Hz(7— 8,+H3(5, that 5,1 570 andé, 1 6#0 which is restored according to
(i) in the subsequent period. Taken together, this accounts for
+Hi(7+ 86— 5,+H;i(7)))) (36)  the eigenvalua ;=0. (i) As long asé,, 3= 5,4, a perturba-
for i e{3,4. Here the differencé ,— L in Eq. (35) is of tion vector is mapped onto the subspace spanneg; and
orderL,—Ls=0(||d). v, [see(i)] within one period and is then mapped onto zero

during the next period. As a result, the eigenvalug=0
corresponds to the directian,(0,1,1,0,07. In addition to
Oh+1=Mé, (37)  this analysis, a stability analysis for the subset of states with
dhe clustergs(t) = ¢4(t) kept synchronized, results in super-
stable directions only, as expected.

In contradistinction to this contracting dynamics, the

The linearized dynamics

of a slightly perturbed state with split-up clusters is describe
by the Jacobian matrix,

6 0 0 00 concavity ofU implies that simultaneous subthreshold input
0 a —-a 0 0 to two or more oscillators leads to an increase of their phase
IF( ) differences, i.e., a desynchronization of oscillators with simi-
M= ) 5_02 0 L (38) lar phases(Fig. 6). For the orbits considered here, this is
- * x 0 0 reflected by the only nonzero eigenvalue,
* * * 0O 0

\ :(2U’(Co)—U’(al))U’(Cl)U’(Cz)U’(Cs)>1
where «,8>0 and* denote nonzero real numbers. It has ° U’(a;)U'(ay)U’ (ag)U'(a,) '

four zero eigenvalues, (40)
\=0 for ie{1,2,3,4, (39  Where

which imply that a six-dimensional state-space accessed by Ci=7+ai (41)
the random perturbation is contracted onto a two-for j €{0,1,2,3 and thea; are defined in Eq(28). Because
dimensional manifold. This reflects the fact that suprathreshe, >a,>c¢, _, for all i andU’>0, U”<0, this eigenvalue is
old input received simultaneously by two or more oscillators
(Fig. 5 leads to a simultaneous reset and thus a synchroni-
zation of these oscillators independent of their precise 1
phases. If a single oscillator is reset by a suprathreshold sig-
nal, it instantaneously exhibits a precise lag in firing time
At= 7 compared to the oscillator that has sent this signal.

In particular, the zero eigenvaluggq. (39)] reflect the ]
following contracting dynamics(i) Perturbations of phases
6h57#0 or 6, 6#0 are restored immediately by suprathresh-
old input pulses received from oscillatojs6 or j=1, re-
spectively. This gives rise to the eigenvalugs=A,=0 cor- 0
responding to the eigenvectons;=(0,0,0,1,0y and v, ¢1 P2 M % 1
«(0,0,0,0,1). (i) A splitting of the first cluster,5,,>0 1)
=4, ., corresponding to the vectar;=(1,0,0,0,0, is re- , _ _ _

! G. 6. Simultaneous subthreshold excitatory input desynchronizes due to

stored afFer one period due to one_suprathreshold mput pul{e concavity ofU. Small phase differencelsby(t)— b (t)|>0 are in-
f_rom_ oscillatorj =4. At t_he same time, howeve_r, this split- creased|g,(t")— by (t)|>| ba(t) — by(1)], providing the mechanism that
ting induces a perturbation of oscillatdrs 5 andi =6 such creates an instability.
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larger than one, i.e., the periodic orbit is lineatystable basimyetume

cluster desynchronization

This eigenvalue corresponds to a split-up of the cluster com- \

posed of the oscillatoris=3 andi =4. Because the Jacobian /Sy nehronizing
(38) is not symmetric, the eigenvectors are not orthogonal diacion
such that the corresponding eigenvector is mot(0,1, \?\ //

—1,0,0)" but has a component in this direction. If there is no - Tz J/
homoclinic connection, this instability implies that such an ?\ ,/' %i(A
attractor is not surrounded by a positive volume of its own . -’

basin of attraction, but is located at a distance from it: Thus, - \\ \i/

every random perturbation to such an attractor state—nc / lower—dimensional

matter how small—leads to a switching towards a different effective state space

attractor.

cluster formation (synchronization) by suprathreshold input: discontiuous jump

FIG. 7. Cartoon of the basin structure of an unstable attra&toFirst, a
positive basin volumdé(A) of states is mapped onto a lower-dimensional
VI. UNSTABLE ATTRACTORS effective state space. This is achieved by simultaneous suprathreshold input
to a group of oscillators, that synchronizes them to form one cluster. Be-
Furthermore, this periodic orbit indeed is attractor: cause the attractor is located remote from its own basin volume the same

According to the stability analysis, after two firings of the cluster may de_synch_ronize in response to small perturbations near the at-
. f . . fractor, where incoming pulses are no longer supra- but subthreshold and

reference oscillator, a trajectory perturbed off a periodic orbit, <" \cad to a desynchronization.

[e.g., the one marked in red in Fig.(a% which is

permutation-equivalent to the yellow onis mapped onto a

two-dimensional manifold, resynchronizing one cluster. Thegjyjjiry of unstable attractors is excluded for this kind of

trajectory then evolves towards a neighborhood of anothe&oup”ng

attractor(here, the yellow onen a lower dimensional effec-

! - ) ) X In order to further clarify the structure of state space of
tive state space without further dimensional reduction. Here,otworks of excitatorily coupled oscillators, we numerically

forming the second cluster, suprathreshold input leads t0 thgetermined the basins of attraction of the three attractors dis-
last dimensional reduction while the state is mapped d're‘Ct')bIayed in Fig. 48 in two-dimensional sections of state

onto the periodic orbit. » _ space. The example shown in Figb¥reveals that attractors

In general, a periodic orbit isnstableif, after a random 516 girrounded by basins of attraction of other attractors as
perturbatlon into Its V|C|n|ty, one or more clusters are notpredicted by the above anaIySiS. Because of this basin struc-
resynchronized by simultaneous suprathreshold input but d‘?Dre, noise induces repeated attractor switching among un-

synchronize due to simultaneous subthreshold input. An Ungiapie attractors. Starting from the orbit defined(B¢) the
stableattractor results if these clusters are formed throughsystem may switch within sets of only six periodic orbit

synchronization in a region of state space that is loceged attractors as is apparent from the basins shown in Rly. 4
mote from the periodic orbit towards which the state then However, in larger networkécf., e.g., Fig. &)] a cluster
converges. o . . . may split up in a combinatorial number of ways and expo-
~ Although this is a discontinuous system with delayedyeniially many periodic orbit attractors are present among
interactions such that there is no simple basin structure in thg: 1 the system may switch. The larger such networks are

state space of phases and signals, a three-dimensional Cgfg higher the flexibility they exhibit in visiting different at-
toon of the basin structure in a state space of phases Mgy, iors and exploring state space
A .

help to gain further insight about how trajectories approac
and retreat from an unstable attractor in the presence of
noise. Figure 7 shows that the basin volume is contracted by

creating(at least one cluster in a region of state space that is 1
remote from the attractor itself. In contrast, near the attractor,
the same cluster is unstable against a split-up of the phases of

the oscillators it contains. Basically, such an unstable attrac- S |
tor might be viewed as an unstable periodic orbit with a
remote basin attached to its stable manifold that ensures the
attractivity property.

It is important to note that for inhibitory coupling we
observe that all attractors are stable: An intuitive explanation 0 ot o3 ¢ ¢ 1
is that there is only a mechanism of synchronizatibiy. 8) 17 P ! 2
due to the concavity o) that contracts state space volume
such that all attractors with period-one dynamics are stableiG. 8. Simultaneous inhibitory input synchronizes due to the concavity of
It is instructive to compare Fig. 8 for inhibition to Fig. 6 for U. Contrary to networks of oscillators_ coupled excitatorily, here the inhibi-
excitation that display how simultaneously incoming _syp-toggsgtzzzgtrf::e:";’:&f')uEtzrjfT;)"i";S(”tt)fnx(g?fj :j::cg? ;s::rﬁzf_e of
threshold pulses effect phase differences. Since for inhibitioforks possess a mechanism for synchronization, but there is no simple
all attractors are period-one statdsye expect that the pos- possibility of desynchronizing a cluster state.
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10-8 . tors found are indeed unstable and do not possess small con-
< R tracting open neighborhoods. Furthermore, it confirms our
_5 107° ...-"° observations that the time of switching is mainly determined
© 9 ...-"° by the time of divergence from the original unstable attractor.
3 10 ...-"° Thus, in the presence of external noise, we expect a similar
3 10712 ...-"° monotonic increase of an approximate switching time with

R the amplitude of the noise.

Taken together, this indicates that there exist also un-
stable attractors in larger networks that are enclosed by ba-
sins of other attractors. Thus, these results strongly support
FIG. 9. Separation of two perturbations off an unstable attractor into theéhe hypothesis, that the switching found in large networks in
same random direction for a large netw@hk= 100, £=0.2, 7=0.15. The the presence of nois&f. Fig. 3), is also due to unstable
separationt grows exponentially with the time after the perturbation, mea- ayractors. It is important to note that, without a perturbation,
sured in number of firing events of a reference oscillator. . . . . . .

numerical noise does not induce a divergence of trajectories
from attractors which are unstable: Synchronization occurs

Until now, the analysis has focussed on a small networ y simultaneously r_esetting the phases of two or more oscil-
of N=6 oscillators, for which certain periodic orbits have ators to zero(cf. Fig. 9. Due to the global homogenous

been demonstrated to be unstable attractors. To study “_E)upling, all signals siml_JItaneoust received by these oscil-
desynchronization of clusters also observed in larger networ fors are of the same size and are exacily synchronous nu-

in greater detail, we numerically determined the divergenc@qer'cailyd(‘;‘ee Seﬁ' !DI' Tlhl{s'.afllthOUthth phasg-atljvancz
of small random perturbations to an attractor in a network o omputed for such signa's 1S influénced by numerical round-

N=100 oscillators. As an example we chose two perturbapﬁ errors, such errors will be identical for phases of synchro-
tions 6. = o &* andﬁz—o 5 into the same random direc nized oscillators and hence not induce a numerical desyn-
1— V1 — U2 -

tion 6 <[0,1]N, where 0;=10"1? and o,=0,+10 4 chronization.
Figure 9 shows that the separatidn=max|s;;— &,;| be-
tvyeer? the twp 'per.turbed trajectories exponentially increasey;; preVALENCE AND PERSISTENCE
with time. This indicates that also for large networks, desyn-
chronization is due to a linear instability. Let us remark that, ~ The preceeding analysis demonstrates the existence of
due to the splitting-up of clusters by a general perturbatiorunstable attractors. For excitatory coupling, these unstable
[cf. Egs.(32) and(33)], two perturbations into independent attractors coexist with stable attractors. For a cluster-state
directions might first lead to an additional discontinuousattractor to be stable, all clusters necessarily receive supra-
separation, followed by an exponential expansion. threshold input once per period that resynchronizes possibly
As a second quantity, that characterizes the dynamics a#plit-up oscillators. In general, a stable attractor has a con-
switching, we consider the time needed by the system t&racting neighborhood in state space from which perturbed
switch from an unstable attractor towards a different attractotrajectories return to the attractor. If an attractor is unstable
after a random perturbation of magnitude The perturba- there are trajectories arbitrarily close to the attractor, which
tions applied to the attractor are random phase vectorsliverge from it, such that unstable attractors do not exhibit a
drawn from a uniform distribution orf0, o]V, with o contracting neighborhood. In other words, an unstable attrac-
€[107 %2107 2]. As displayed in Fig. 10, for sufficiently tor has to be located at the boundary of its own basin. There-
small o, this switching time clearly increases exponentially fore, the intuitive expectation is that parameters of the sys-
with decreasingy. In particular, this indicates that the attrac- tem have to be precisely specified in order to keep a periodic
orbit simultaneously attracting and unstable. This leads to the
question whether the physical parameters of the system, in

10 20 30 40
Time after perturbation

e particulare, 7, andN, need to be precisely tuned to obtain
® 5q °".. unstable attractors.
_g '-.,. To answer the question, how common unstable attractors
D 40 '.... actually are, we numerically estimated the fractmyN) of
< e, state space occupied by basins of unstable attractors. To ob-
ﬁ% 30 ... tain this estimate, we initialized the system with 1000 ran-
1) *eq dom initial phase vectors, drawn from the uniform distribu-
20 ‘e tion on[0,1]N. Whenever a period-one orbit was reached, we
T o ”) applied one random phase perturbati@rdrawn from the
1.x10 1'X1OU 1.x10 uniform distribution or{ 0,01V, where we chose=10"6, a

value well below all scales that are determined by the model

FIG. 10. Time of switching between two attractors depending on the perparameters, in particular<e/N for network sizes up tiN
turbation strengthy for a large networkN=100, £=0.2, 7=0.19. The  ~1(?. If perturbed trajectories did not return to the original
switching time increases exponentially with decreasing perturbationattractc‘r it was counted unstable. If no period-one orbit was
strength. The discrete time axigsumber of firing events of a reference ! . ’ . .
oscillatop leads to a regular stepping that slightly disrupts the exponentiaf©ached from a random initial state but, e.g., orbits of higher

trend. period, these were not tested for stability. Thus, the numeri-
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40 80 120 FIG. 12. Unstable attractors persist in a wide region of parameter space in
Network size N large networks l=100). Parameters witlp,(100)>0.5 are marked in

black; herep,(100) was estimated from 100 random initial phase vectors,
FIG. 11. Prevalence of unstable attractors in large netwdgisUnstable drawn from the uniform distribution op0,1]", for every set of parameters
attractors prevail for large networks for certain parameters 0.2, 7 (resolutionA 7= A& =0.009.
=0.15, but (b) are not important in large networks for other parameters
(¢=0.2, 7=0.25. The fractionp,(N) was estimated for everiN<128
from 1000 random initial phase vectors, drawn from the uniform distribution
on[0,1N. not satisfied for all clusters of a period-one orbit, this orbit is

unstable. In particular, it is unstable against a split-uabf
leas) one cluster. The same orbit may also be attracting if

cal method used estimates a lower boundpg@N). As an such a cluster is formed in a region of state space that is
example, Fig. 1(a) displays such an estimate pf,(N) for located remote from the attractor as exemplified by the
£=0.2 andr=0.15. analysis in Sec. VI.

While for these parameters unstable attractors are absent Whereas the analysis presented above gives some in-
if networks are too smalhereN<4) and coexist with stable sights into why unstable attractors exist and demonstrates

attractors in larger networks, the fraction approaches one fdfat they prevail under variation of parameters, the precise
N>1. Other parameter@ =0.2, 7=0.25 vield a different €asons for their prevalence await discovery in future studies.

dependence on the network siké Once again, unstable
attractors arise only if the network size is not too small (
=3). Yet, the fractiomp,(N) is only substantial for moderate
network sizes neal~10 and approaches zero for larje
More generally, we observed that unstable attractors are ab- The occurrence of unstable attractpes seis an intrigu-
sent in small networkécf. Refs. 5, 6 for the casd=2) and  ing phenomenon because it contradicts the common intuition
p.(N) approaches either zero or one in large networks, deabout the stable nature of attracting invariant sets in dynami-
pending on the parameters. For networkdNef 100 oscilla-  cal systems. Our results suggest, that there are systems of
tors, Fig. 12 shows the region of parameter space in whiclpulse-coupled units in which unstable attractors may be the
unstable attractors prevaljlp,(100)>0.5, estimated from rule rather than the exception.
100 random initial phase vectdrsAs this region covers a Unstable attractors persist under various classes of struc-
substantial part of parameter space, precise parameter tunitigral modifications. For instance, preliminary studies on net-
is not needed to obtain unstable attractors. Furthermore we&orks with randomly diluted connectivity suggest that a
find the same qualitative behavior independent of the desymmetric, all-to-all connectivity is not requirééin addi-
tailed form of U(¢). This indicates that the occurrence of tion, unstable attractors also arise naturally in networks of
unstable attractors is a robust collective phenomenon in thimhibitorily coupled oscillators® if a lower threshold is in-
model class of networks of excitatorily pulse-coupled oscil-troduced and the functiob is taken to be convex down,
lators. U”(4)>0, in a certain range of phase values, a model vari-
It is instructive to note that, on theoretical grounds, aant motivated by experiments in certain biological neural
period-one orbit is stable only if the clusters have a differ-systems?
ence in firing times ofAt= 7, such that its period is an inte- Moreover, it is expected that every system obtained by a
ger multiple of . The pulse sent by every single cluster thensufficiently small structural perturbation from the one con-
leads to a suprathreshold input to the following cluster, thasidered here will exhibit a similar set of saddle periodic or-
in response to this input sends a pulse. If these conditions al@ts, because linearly unstable states can generally not be

VIIl. CONCLUSIONS AND DISCUSSION
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