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a pair of Weyl points with opposite chirality 
will be linked in momentum space by an arc 
of surface states called a Fermi arc (Fig. 1c). 
So far, most studies of Weyl systems have 
focused on the measurement of the Fermi 
arc — a hallmark of Weyl fermions.

Huber and colleagues designed a 3D 
artificial magnetic field that is applied to an 
acoustic Weyl structure. When subjected to 
a magnetic field, Weyl fermions can exhibit 
chiral Landau levels (Fig. 1d): the zeroth-
order Landau level is no longer flat, but has a 
linear dispersion determined by the chirality 
of the Weyl point and the direction of the 
magnetic field. These chiral Landau levels 
are another hallmark of Weyl fermions, but 
are extremely difficult to observe directly in 
condensed-matter systems.

In Huber and colleagues’ experiment, 
the artificial magnetic field was constructed 
by engineering the unit cell of a previously 
designed acoustic Weyl structure such  
that the Weyl points were moved  
along a specific direction in momentum 
space4. Sound waves propagating parallel 
to the artificial magnetic field have a 
unidirectional behaviour, possessing 
either a positive or negative group velocity 
depending on the chirality of the Weyl 
points. Moreover, by applying a Fourier 

transform to the measured acoustic field,  
the dispersions of the chiral Landau levels 
were measured directly.

It is interesting that Landau levels are 
now audible, but limitations still exist. 
For example, loss is ubiquitous in acoustic 
systems. This issue is more severe in Huber 
and colleagues’ experiment as it involves 
acoustic bulk transport in a 3D structure. 
Also, both experiments only work for 
low-frequency sound and it is currently 
unclear how to push the frequency into the 
ultrasound and even hypersound regimes. 
Nevertheless, these experiments have 
opened avenues for future exploration. The 
acoustic Landau levels possessing a high 
density of states provide the possibility of 
enhancing sound emission and nonlinear 
wave mixing, which may further lead to 
novel acoustic lasers. It is also exciting that 
many theoretically predicted phenomena, 
such as the chiral magnetic effect and the 
chiral vortical effect, are now possible with 
acoustic waves.

By sharing the Landau levels for electrons, 
light and now sound, one can envision more 
complex functionalities being engineered 
on a single chip. Indeed, in modern 
optomechanical circuits, acoustic waves are 
used to bridge the gap between electronics 

(the acoustic frequency can match the 
working frequency of a central processing 
unit (CPU) and wireless communication) 
and photonics (the acoustic wavelength can 
be comparable to that of light). In the future, 
with the help of acoustic Landau levels, we 
may see a chip integrating the electronic 
states of the quantum Hall effect and the 
photonic states of topological lasers. ❐
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NETWORK SCIENCE

Propagation patterns unravelled
From disease proliferation to cell functioning, spreading dynamics on networks impact many collective phenomena. 
The joint contributions of the interaction structure and local dynamics have now been disentangled, revealing three 
distinct types of spreading pattern.

Marc Timme and Jan Nagler

In a cell, changes in the abundance of one 
protein generate transient alterations 
of activity patterns throughout its 

biochemical reaction network. Analogously, 
following a local outbreak, infectious 
diseases may spread to distant places as a 
result of human travel. In these distributed 
networked systems, a change that has 
occurred earlier at a given location affects 
other units — here, the abundance of 
one cellular component or a local human 
population — only after an induced signal 
has propagated across the network. The 
joint time evolution of the signals at all units 
yields a variety of complex spatiotemporal 
patterns. Yet, key collective properties of 

these modes of transient dynamics remain 
unknown. Now, writing in Nature Physics, 
Chittaranjan Hens and co-workers have 
revealed how the intrinsic dynamics of the 
units and of their interactions, as well as 
the topology of the interaction network, 
all participate in giving rise to qualitatively 
different types of spatiotemporal network 
pattern in response to localized changes1. 
In the future, such insights might help 
to predict, contain or enhance signals 
spreading in networked dynamical systems.

Transient collective dynamics induced 
by local changes play a key role in a broad 
range of complex systems. The timing and 
strength of a received spreading signal are 

of particular importance. For instance, 
spatiotemporal patterns of spreading signals 
may determine the mode of operation of 
subcellular dynamics, lead to congested 
or free-flowing vehicle traffic, govern 
how diseases spread and whether power 
grids exhibit cascades of infrastructure 
outages. Understanding transient dynamics 
of networks also constitutes a topical 
mathematical problem, mainly because of 
the absence of any systematic theory for 
network transients from the perspective of 
dynamical systems.

Hens et al. combined numerical and 
mathematical analyses of a range of model 
dynamics and network topologies to reveal 
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Fig. 1 | Different types of transient signal propagation. Two signals (represented by the red and blue 
runners) propagate on a network from a common source to their individual targets. If the network 
response dynamics is distance-driven (θ =​ 0), the signals will arrive simultaneously because they travel 
the same distance (top). For degree-driven dynamics (middle), due to the slowly responding hubs along 
the blue path, the blue signal will be delayed (θ >​ 0). For composite dynamics (bottom), the red signal 
may be delayed (θ <​ 0).

that many networked systems propagate 
transient signals in one of only few modes. 
These modes were found to emerge from a 
delicate interplay between the influences of 
the nonlinear dynamics of (and among) the 
units, and the topology of their interactions. 
For example, some combinations of dynamics 
and topologies yield what the authors call 
distance-driven propagation, others yield 
degree-driven propagation (Fig. 1).

For distance-driven propagation, 
the arrival time at one unit of a signal 
originating from another is largely 
determined by the length of the path 
covered by the signal. In particular, a unit’s 
degree — the number of its neighbours — 
as well as global properties of the topology 
hardly influence the pattern of signal arrival 
times in the network.

In contrast, for degree-driven 
propagation, the type of topology of 
the network dramatically influences the 
distribution of arrival times. They are all 
of the same order of magnitude in entirely 
random (Erdős–Rényi) networks, whereas 
for networks with broad degree distributions 
(that is, a large range in the number of 
neighbours of each unit), arrival times 
vary over several orders of magnitude. 
Intriguingly, signals may even arrive earlier 
at units that are more distant from the 
source — if distance is measured in terms of 
the number of intermediate units visited on 
the network.

The analysis by Hens et al. paves the way 
towards estimating an effective, temporal 
distance measure between any two units 
by linking the scaling behaviour across 
the fastest shortest path between them to 
properties of local dynamics for a given 
model. Compared with effective distance 
measures often considered in previous 
works, the authors’ measure for temporal 
distance more closely integrates both 
topological and dynamical properties of a 
networked system.

The work of Hens et al. naturally 
complements recent progress on the 
analysis of spreading patterns in networks. 
For instance, one study heuristically 
defined an effective distance indicator 
to reveal the origin of globally spreading 
contagion processes2. Recently, a systematic 
approximation scheme3 consolidated such 
heuristics for a class of stochastic spreading 
processes. Also, experimental data from 
electric grids were analysed to understand 
how frequency fluctuations caused by wind 
power feed-in propagate through a network4.

At the same time, the purely deterministic 
spreading governed by ordinary differential 
equations, the case studied by Hens et al., 
is not fully understood even in the simplest 
linear setting. Recent analytical work5 
proposed a complementary perspective, 
where normalized deterministic state 
trajectories are analysed as if they were 
probability distributions. Considering 

the effective expectation values of these 
distributions at individual units yields a 
signal’s travel time and intensity as an explicit 
function of the global interaction structure 
and local dynamics.

The work of Hens et al. advances our 
understanding by providing a framework 
for classifying signal propagation patterns 
into characteristic types based on the 
combinations of network topologies and 
local dynamics. It also provides mechanistic 
insights that may help to predict these 
patterns. Yet many questions remain 
unanswered. Hens et al. considered 
propagating patterns induced by ‘frozen’ 
local changes of the state variable of one 
unit. Other works2–5 equally have focused 
on one specific class of settings. However, 
the fundamental theoretical challenge of 
fully grasping transient spreading in real-
world systems requires consideration of the 
combinations of deterministic and stochastic 
dynamics, as well as systems where local 
changes are themselves time-dependent  
and distributed.

Additionally, even for a given single 
observable, it still remains unclear how to 
identify the features of real-world spreading 
data with the highest predictive power. 
Techniques from machine learning may be 
helpful, but keeping track of the choice of 
the observables is at least equally important. 
This requires mathematical predictions to 
be framed according to the conditions under 
which the natural and artificial networks 
around us reveal themselves.

There is much work ahead to fill  
these gaps. It will require the bridging of 
different disciplines through collaborations 
with researchers with complementary 
expertise. It’s time to spread the news to  
our colleagues. ❐
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