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Prevalene of unstable attrators in networks of pulse-oupled osillators
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We present and analyze the �rst example of a dynamial system that naturally exhibits attrating

periodi orbits that are unstable. These unstable attrators our in networks of pulse-oupled

osillators, and beome prevalent with inreasing network size for a wide range of parameters. They

are enlosed by basins of attration of other attrators but are remote from their own basin volume

suh that arbitrarily small noise leads to a swithing among attrators.

PACS numbers: 05.45.-a, 87.10.+e, 89.75.-k

As attrators determine the long-term behavior of dis-

sipative dynamial systems, the onept of attrators is

entral to the analysis of many natural systems as well as

to the design of arti�ial systems. For instane, the om-

putational apabilities of neural networks are ontrolled

by the attrators of their olletive dynamis. Conse-

quently, the nature and design of attrators in suh sys-

tems onstitute a fous of urrent researh [1, 2, 3℄. In

general, the state spae of a nonlinear dynamial system

is partitioned into various basins of attration from whih

states evolve towards the respetive attrators. Sine

states that are slightly perturbed from an attrator of-

ten stay on�ned to its viinity and eventually return to

the attrator, attrators are ommonly onsidered to be

stable [4℄.

In the present letter, we show that unstable attrators

exist and arise naturally as a olletive phenomenon in

networks of pulse-oupled osillators [1, 2℄, whih where

introdued to model e.g. synhronization in spiking neu-

ral networks and the dynamis of other natural systems

suh diverse as ardia paemaker ells, populations of

�ashing �re�ies, and earthquakes (f. [1, 2, 3, 5℄). We

identify an analytially tratable network exhibiting un-

stable attrators. For this network we demonstrate the

existene of attrators that are linearly unstable and are

thus separated from the volume of their own basins of

attration. Suh attrating yet unstable states are on-

sistent with a de�nition of attrators introdued by Mil-

nor, whih neither presumes nor implies stability [6℄. In

some other systems suh Milnor attrators might not be

unommon if they are strange attrators that display ir-

regular dynamis [7℄. More generally, however, attrators

that are not stable seem to be speial ases that have

to be onstruted arti�ially by preisely tuning param-

eters. Contrary to this intuition, we report here that

unstable attrators with regular, periodi dynamis are

typial in large networks and persist even if the physial

parameters are varied substantially.

We argue that dynamial onsequenes of unstable at-

trators may persist in a general lass of systems of pulse-

oupled units. Suh onsequenes inlude an ongoing

swithing among unstable attrators in the presene of

noise. In systems where the onvergene towards an at-

trator has a funtional role, suh as the solution of a

omputational task by a neural network [8℄, swithing

indues a high degree of �exibility that provides the sys-

tem with a unique advantage ompared to multistable

systems: It will be hard to leave a stable attrator af-

ter onvergene, e.g. the ompletion of a task. With an

unstable attrator, however, a small perturbation is su�-

ient to leave the attrator and to swith towards another

one.

We onsider a homogeneous network of N all-to-all

pulse-oupled osillators with delayed interations. A

phase variable φi(t) ∈ [0, 1] spei�es the state of eah

osillator i at time t. Its free dynamis is given by

dφi/dt = 1. (1)

Whenever osillator i reahes a threshold, φi(t) = 1, the
phase is reset to zero, φi(t

+) = 0, and a pulse is sent

to all other osillators j 6= i, whih reeive this signal

after a delay time τ . Depending on whether the input

ε̂ is subthreshold or suprathreshold this indues a phase

jump aording to

φj((t+ τ)+) = min{U−1(U(φj(t+ τ)) + ε̂), 1} (2)

whih depends on the phase φj(t + τ) of the reeiv-

ing osillator and the e�etive exitatory oupling ε̂ =
ε/(N − 1) > 0. The funtion U(φ) is twie ontinuously
di�erentiable, monotonously inreasing, U ′ > 0, onave
(down), U ′′ < 0, and normalized suh that U(0) = 0,
U(1) = 1. For many models of biologial systems U(φ)
represents a 'potential' of an osillator at phase φ. For

a more detailed disussion of the model see referenes

[1, 2℄.

For suh pulse-oupled systems, periodi orbits with

groups of synhronized units onstitute relevant attra-

tors [1, 2, 3, 5℄. For instane, the network desribed above

possesses a single global attrator in whih all osillators

are synhronized with zero phase lag if the interations

are instantaneous (τ = 0) [1℄. Here we onsider the ase
of delayed interations (τ > 0) where multiple di�erent

luster-state attrators with several synhronized groups

of osillators (lusters) oexist [2℄. Suh attrators are
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period-one orbits with all osillators in the lusters reah-

ing threshold and sending out pulses exatly one during

eah period. We �nd (f. Fig. 1a) that, although the

system onverges towards a periodi orbit from random

initial onditions, weak noise is often su�ient to drive

the system away from that attrator suh that sues-

sive swithing towards di�erent attrators ours. This

alternating synhronization and desynhronization might

be due to stable attrators loated lose to the bound-

aries of their basins of attration, suh that the noise

drives the state of the system into a neighboring basin.

In an otherwise noiseless system we tested this possibil-

ity by applying instantaneous perturbations of gradually

dereasing strengths (down to σ = 10−8
, f. Fig. 1b,).

As we did not �nd a strength for whih any of the per-

turbed states returned to the attrator, we hypothesized

that the persistent swithing dynamis (Fig. 1a) is due

to attrators that are unstable.

In order to verify this hypothesis diretly, we analyze

a small network of N = 6 osillators for whih instan-

taneous perturbations lead to a similar swithing among

attrators. At given parameters [9℄ this network exhibits

a set of period-one orbits that are related by a permu-

tation of phases in suh a way, that the system may

swith among them (Fig. 2a, states on the periodi orbits

marked in red, yellow, blue). Due to their permutation-

equivalene these orbits have idential stability proper-

ties. The state of the network at time t is spei�ed by

φ(t) = (φ1(t), . . . , φ6(t))
T
, suh that the orbit marked in

yellow in Fig. 2a is de�ned by the initial ondition [10℄

φ(0) = (0, 0, A, A, B, C)T. (3)

Here the origin of time was hosen suh that osillators 1
and 2 have just sent a signal and have been reset. More-

over, at t = 0 only these two signals (and no others)

have been sent but not yet reeived. The numerial val-

ues for the partiular parameters onsidered, A ≈ 0.176,
B ≈ 0.499, C ≈ 0.747, an be identi�ed in Fig. 2a (or-

bit marked in yellow). This orbit indeed is periodi,

φ(T ) = φ(0), suh that after the period T eah osil-

lator has reahed threshold, has sent a signal and has

been reset exatly one (for details see [11℄).

To perform a stability analysis, we de�ne a return

map by hoosing osillator i = 1 as a referene: Let

φn,i := φi(tn) be the perturbed phases of the osilla-

tors i at times tn > 0, n ∈ N, just after the resets of

osillator 1, φ1(tn) ≡ 0. Thus the �ve-dimensional ve-

tor δn = φn − (0, A, A, B, C′)T (see [12℄) de�nes the

perturbations δn,i for i ∈ {2, . . . , 6} where we hoose

0 < δn,2 and δn,3 < δn,4 . Following the dynamis, the

�ve-dimensional return map is given by [13℄

δn+1 = F (δn). (4)

The linearized dynamis of a slightly perturbed state

with split-up lusters is desribed by the Jaobian matrix

M = ∂F (δ)/∂δ|
δ=0

. It has four zero eigenvalues

λi = 0 for i ∈ {1, 2, 3, 4} (5)

suh that a six-dimensional state-spae volume aessed

by the perturbation is ontrated onto a two-dimensional

manifold. This re�ets the fat that suprathreshold input

reeived simultaneously by two or more osillators leads

to a simultaneous reset and thus a synhronization of

these osillators independent of their preise phases. If a

single osillator is reset by a suprathreshold input signal,

it exhibits a preise lag in �ring time ∆t = τ ompared

to the osillator that has sent this signal. In ontradis-

tintion, the onavity of U implies that simultaneous

subthreshold input to two or more osillators leads to

an inrease of their phase di�erenes, i.e. a desynhro-

nization of osillators with similar phases. For the orbits

onsidered here, this is re�eted by the only non-zero

eigenvalue

λ5 =
(2U ′(c0)− U ′(a1))U

′(c1)U
′(c2)U

′(c3)

U ′(a1)U ′(a2)U ′(a3)U ′(a4)
> 1 (6)

where ci = τ + ai for all i (f. [10℄). Beause ci > ai >
ci−1 for all i and U ′ > 0, U ′′ < 0, this eigenvalue is

larger than one, i.e. the periodi orbit is linearly unsta-

ble. If there is no homolini onnetion, this implies

that suh an attrator is not surrounded by a positive

volume of its own basin of attration, but is loated at

a distane from it: Thus, every random perturbation to

suh an attrator state � no matter how small � leads to

a swithing towards a di�erent attrator. Furthermore,

this periodi orbit indeed is an attrator: Right after the

perturbation o� a periodi orbit (e.g. the one marked

in red in Fig. 2a, whih is permutation-equivalent to the

yellow one) the state of the system is mapped onto a two-

dimensional manifold, re-synhronizing one luster. The

state then evolves towards a neighborhood of another

attrator (here: the yellow one) in a lower dimensional

e�etive state spae without further dimensional redu-

tion. Here, forming the seond luster, suprathreshold

input leads to the last dimensional redution while the

state is mapped diretly onto the periodi orbit.

In general, a periodi orbit is unstable, if after a ran-

dom perturbation into its viinity, one or more lusters

are not re-synhronized by simultaneous suprathreshold

input but desynhronize due to simultaneous subthresh-

old input. An unstable attrator results if these lusters

are formed through synhronization in a region of state

spae that is separated from the periodi orbit towards

whih the state then onverges. Roughly, unstable at-

trators an be viewed as saddle periodi orbits together

with a funnel mehanism that puts trajetories onto its

stable manifold (for details see [11℄).

In order to further larify the struture of state spae,

we numerially determined the basins of attration of the

three attrators displayed in Fig. 2a in two-dimensional
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Figure 1: Phase dynamis of a large network (N = 100, ε = 0.2, τ = 0.15). Phases of all osillators are plotted whenever a

referene osillator has been reset. (a) Dynamis with noise (η = 10−3), (b) deterministi dynamis in response to a single phase

perturbation (arrow, σ = 10−3
), note that the system swithes from a six-luster to a �ve-luster state, () phase di�erenes

from the average phase of one luster in response to the perturbation.

Figure 2: Small network (N = 6, ε = 0.2, τ = 0.15): (a)

Noise-free phase dynamis in response to single perturbations

(arrows), (b) Basin struture in a two-dimensional planar se-

tion through six-dimensional state spae. Small red, yellow,

and blue disks represent points on the attrators olor-marked

in (a). Their basins of attration are marked in the same ol-

ors. Medium gray areas are basins of permutation-related

attrators, lightest gray marks the union of the basins of all

other attrators.

setions of state spae. The example shown in Fig. 2b

reveals that attrators are surrounded by basins of at-

tration of other attrators as predited by the above

analysis. Beause of this basin struture, noise indues

repeated attrator swithing among unstable attrators.

Figure 3: Unstable attrators prevail for large networks and

persist in a wide region of parameter spae. Inset: pu(N) for
N ≤ 128, ε = 0.2, τ = 0.15. Main �gure: Parameters with

pu(100) > 0.5 are marked in blak.

Starting from the orbit de�ned by (3) the system may

swith within sets of only six periodi orbit attrators as

is apparent from the basins shown in Fig. 2b. However,

in larger networks (f. e.g. Fig. 1a) a luster an split

up in a ombinatorial number of ways and exponentially

many periodi orbit attrators are present among whih

the system may swith. The larger suh networks are,

the higher the �exibility they exhibit in visiting di�erent

attrators and exploring state spae.

The preeeding analysis demonstrates the existene of

unstable attrators. To answer the question, how om-

mon unstable attrators atually are, we numerially es-

timated the fration pu(N) of state spae oupied by

basins of unstable attrators. As an example, Fig. 3 (in-

set) displays pu(N) for ε = 0.2 and τ = 0.15. While

unstable attrators are absent if networks are too small

(here N ≤ 4) and oexist with stable attrators in larger

networks, the fration pu(N) approahes one for N ≫ 1.
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More generally, we observed that pu(N) approahes ei-

ther zero or one in large networks, depending on the pa-

rameters. For networks of N = 100 osillators Fig. 3

shows the region of parameter spae in whih unstable

attrators prevail (pu(100) > 0.5). As this region overs

a substantial part of parameter spae, preise parameter

tuning is not needed to obtain unstable attrators. Fur-

thermore we �nd the same qualitative behavior indepen-

dent of the detailed form of U . Hene, the ourrene of
unstable attrators is a robust olletive phenomenon in

this model lass of networks of exitatorily pulse-oupled

osillators.

Unstable attrators persist under various lasses of

strutural perturbations. For instane, preliminary stud-

ies on networks with randomly diluted onnetivity sug-

gest, that a symmetri, all-to-all oupling is not required.

Moreover, it is expeted that every system obtained by

a su�iently small strutural perturbation from the one

onsidered here will exhibit a similar set of saddle peri-

odi orbits, beause linearly unstable states an generally

not be stabilized by suh a perturbation. Although, in

general, these orbits may no longer be attrating, their

dynamial onsequenes are expeted to persist. In par-

tiular, a swithing along heterolini onnetions may

our in the presene of noisy or deterministi, time-

varying signals. As in the original system, the sequene

of states reahed may be determined by the diretions

into whih suh a signal guides the trajetory. By in-

reasing and dereasing the strength of this signal, the

time-sale of swithing may be dereased and inreased,

respetively, due to the linear instability. Interestingly,

it has reently been shown that ertain models of neural

networks are apable of dynamially enoding informa-

tion as trajetories near heterolini onnetions [14℄.

Furthermore, swithing among unstable states does

also our in systems of ontinuously, phase-oupled os-

illators [15, 16℄ that an be obtained from pulse-oupled

osillators in a ertain limit of weak oupling [17℄. In par-

tiular, Hansel, Mato, and Meunier show that a system

of phase-oupled osillators may swith bak and forth

among pairs of two-luster states [15℄. Working in the

limit of in�nitely fast response, i.e. disontinuous phase

jumps, we have demonstrated that far more ompliated

swithing transitions an our in large networks if the

osillators are pulse-oupled.

In this Letter, we have presented the �rst example of

a dynamial system, a network of pulse-oupled osil-

lators, that naturally exhibits attrating periodi orbits

that are unstable. Intriguingly, these unstable attrators

are loated remote from the volume of their own basin

of attration. We have shown that they prevail in large

networks and for a wide range of parameters. Whereas

unstable periodi orbits are essential for the dynamis

of many nonlinear systems, unstable attrating periodi

orbits previously seemed to be exeptional ases. Our re-

sults indiate that in a lass of systems of pulse-oupled

units unstable attrators are the rule rather than the ex-

eption.
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