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Abstract
Chromatic polynomials and related graph invariants are central objects in both
graph theory and statistical physics. Computational difficulties, however, have
so far restricted studies of such polynomials to graphs that were either very
small, very sparse or highly structured. Recent algorithmic advances (Timme
et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic
polynomials for moderately sized graphs of arbitrary structure and number of
edges. Here we present chromatic polynomials of ensembles of random graphs
with up to 30 vertices, over the entire range of edge density. We specifically
focus on the locations of the zeros of the polynomial in the complex plane.
The results indicate that the chromatic zeros of random graphs have a very
consistent layout. In particular, the crossing point, the point at which the
chromatic zeros with non-zero imaginary part approach the real axis, scales
linearly with the average degree over most of the density range. While the
scaling laws obtained are purely empirical, if they continue to hold in general
there are significant implications: the crossing points of chromatic zeros in
the thermodynamic limit separate systems with zero ground state entropy from
systems with positive ground state entropy, the latter an exception to the third
law of thermodynamics.
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1. Background

The chromatic polynomial P(G, q) counts the number of ways one can colour the vertices
of a graph G with q colours such that every two adjacent vertices are coloured differently. It
was introduced by Birkhoff in 1912 [3] as a way to bring complex analysis to bear on what
was then still the 4-colour conjecture. The function P(G, q) is closely related to the Tutte
polynomial and valuations of these polynomials provide information about many important
graph invariants [18]. In recent decades chromatic polynomials, and in particular their zero
sets (an equivalent representation), have become the focus of attention from physicists due
to their connection to the Potts model in statistical physics [22]. For specific lattices, this
has given us very detailed information about chromatic zeros [5, 14, 15]; however, there
has been little progress towards understanding their location for general graphs. This is in
large part due to limited computational accessibility; for all but the smallest, sparsest or most
highly structured graphs, calculating the chromatic polynomial is extremely difficult because
generally the computation time increases exponentially in the number of edges [21]. Since we
lack instances of chromatic polynomials for ‘ordinary’ graphs from which to build intuition,
we currently have little idea what to expect for moderately sized graphs that are not extremely
sparse or highly structured. Hence, we possess no basic background for comparison of the
few non-minimal instances known so far, cf e.g. [13, 14].

Random graphs constitute a natural first candidate towards building such an intuition.
Since random graphs serve as initial approximations or null models of systems with unknown
structure, they are ubiquitous in scientific and mathematical research and commonly used as
testbeds for theories, algorithms and analytic tools. Random graph theory starts with the work
of Erdös and Rényi in the late 1950s, and the standard random graph (where each edge is present
independently with the same fixed probability) is therefore usually named an Erdös–Rényi
(ER) random graph. ER random graphs have been shown to have some remarkably robust
properties and precise invariants [9]. This applies to several problems related to chromatic
polynomials, such as the value of the chromatic number of a random graph,(
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where N � 1 is the number of vertices and p is the edge probability [4]. The chromatic number
is the lowest number q∗ of colours required to achieve a (proper) colouring, P(G, q∗) > 0.
However, to the best of our knowledge, the chromatic polynomial itself has not to date been
subject of such investigation. Given the overlapping interests of random graph theory and
statistical physics this might seem somewhat surprising, but computational accessibility has
so far been highly limited.

In this paper, we start to fill this gap using a promising vertex-based, symbolic pattern
matching method developed recently [17] to compute chromatic polynomials of moderately
sized graphs. Like other techniques developed for physics applications (cf [7]), it is capable
of fast computations on graphs consisting of periodically repeating subgraphs; however, one
of the new method’s important features is that it also works on arbitrary graphs, for example
on samples of various random-bond-diluted lattices [17]. It performs significantly better than
standard general purpose methods, allowing access to larger graphs with an arbitrary number
of edges than have previously been considered, such as three-dimensional cubic lattices.

Here we compute and analyse chromatic polynomials for moderately sized ER random
graphs across the entire range of edge densities for selected N. Our aim is to obtain general
estimates for chromatic zero locations with respect to both mean value and variability, which
can then be compared to what is known for specific lattices and other graphs. Since for
decent statistics chromatic polynomials of many graphs for each given set of parameters need
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to be computed, the maximum value we consider here is N = 30; chromatic polynomials
for individual graphs with higher N are possible to compute, but resource constraints make
computing a large number of realizations problematic.

As indicated in the following, the chromatic zeros of random graphs are laid out in a very
regular way and systematically depend on edge density. While unanticipated, this feature is
in fact entirely consistent with previous random graph results; until now, however, not enough
was known for informed speculation on the subject. Based on our data, we provide a scaling
law for the point at which the complex zeros approach the real line, as well as estimates for
various other quantities of interest.

2. Chromatic polynomials, partition functions and their zeros

We begin with some notation: given a graph G with the vertex set V = {v1, v2, . . . , vN } and
edge set E = {e1, e2, . . . , eM} and a set of colours C = {1, 2, . . . , q}, we say that a proper
q colouring of G is an assignment of values from C to the vi ∈ V such that no two vertices
connected by an edge share the same value. G is q-colourable if there is a proper colouring
of G using q or fewer colours; the chromatic number of G is then the minimum q such that
G is q-colourable. The chromatic polynomial P(G, q) is the associated counting function for
proper q-colourings of G; that is, it tells us how many ways we can colour G with at most q
colours.

The representation

P(G, q) =
q∑

σN =1

· · ·
q∑

σ1=1

∏
(i,j)∈E

(
1 − δσiσj

)
(2)

of the chromatic polynomial in terms of sums over polynomials in Kronecker deltas δσiσj

seems particularly suited for computations [17] and also directly shows a link to Potts partition
functions in statistical physics (see below). Here every σ = (σ1, . . . , σN) is an assignment of
values (colours) from {1, 2, . . . , q} to the N vertices of G and the product runs over all edges
e = (i, j) of G. For a given colouring σ, the product equals one if no two adjacent vertices
have the same colour, and zero otherwise; it functions as an indicator that the assignment is
a proper colouring of G. Equivalently, σ can be regarded as a global microscopic state of an
antiferromagnetic Potts model with the individual σi’s being local states or spin values. From
this viewpoint, (2) counts the number of energy minimizing global states.

The connection to statistical physics arises from the fact that the chromatic polynomial
equals the antiferromagnetic Potts partition function Z(G, q, T ) in the zero temperature limit
since Z(G, q, T ) counts the number of spin configurations where all neighbouring spins
disalign [22]. Let us be more specific. The standard q-state Potts model was introduced
in 1952 as a generalization of Ising’s 2-state model for interactions on a crystal lattice
[1, 11, 12, 22]. It describes systems in which site variables (magnetic moments, spins or
other kinds of local states) can take one of q different values, and interactions occur only
between neighbouring sites that are in the same state. The total energy in the global state σ is
given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E

δσiσj
(3)

where J is the interaction strength and E is the edge set of the underlying graph G. The partition
function for this system at positive temperature T = (kBβ)−1 is

Z(G, q, T ) =
∑
σ

e−βH(σ) =
∑
σ

∏
(i,j)∈E

(
1 + (eβJ − 1)δσiσj

)
(4)
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Figure 1. Chromatic roots for strip lattices. Small disks: roots for a 4 × 18 square lattice, free
boundary conditions. Solid lines: limiting curve for a 4 × ∞ lattice (again free b.c.).

where kB is the Boltzmann constant. If J < 0 (antiferromagnet), the T → 0 limit eβJ → 0
yields a partition function that equals (2).

Because of this equivalence statistical physicists have shown increasing interest in the
chromatic polynomial, and in particular its zeros in the complex plane. The original Lee–Yang
theorem [10] established the conditions on features of ferromagnetic systems that ensure that
all zeros of the partition function have non-zero imaginary part, thereby bounding certain
critical values [14]. This kind of reasoning has been extended to antiferromagnetic systems
by what some authors refer to as Lee–Yang theorems, plural [16]. If in the N → ∞ limit
the complex zeros of the partition function converge to pinch the real axis, this indicates the
existence of singularities in the system at these real values and so possible phase transitions
or critical points. For instance, the q-state Potts antiferromagnet may exhibit a critical real
qc > 0 above which the zero-temperature partition function is analytic in the thermodynamic
limit. Thus, for q < qc, the zero-temperature phase is ordered, whereas the high-temperature
phase (T → ∞) is generically disordered, indicating a phase transition in temperature T
between ordered and disordered states. For q > qc, the system exhibits ground state disorder
at T → 0, an exception to the third law of thermodynamics [8].

For computational reasons, the bulk of statistical physics research on the chromatic
polynomial has been conducted on strip lattices (see, e.g. [5, 13–15]): these are both sparse
and have a repeating structure, and so are the most computationally tractable graphs also for
moderate sizes. This structure lends itself to the use of specialized techniques, so lattices
are to date the largest graphs chromatic polynomials have been computed for; in fact, for
such strip graphs it is sometimes possible to calculate N → ∞ limit sets of chromatic zeros
analytically [5, 14]. Such lattice data represent probably our most detailed knowledge of
how the entire zero sets of chromatic polynomials are laid out, and there are in fact certain
qualitative consistencies in these findings; figure 1 gives an example of how the chromatic
zero sets of strip lattices are laid out. Most noticeable is that, for many lattice strips, zero
sets invariably trace out a somewhat elongated backwards ‘C’ curling around the point 1 + 0i.
Gaps and small horns are common features, showing up in characteristic locations.

3. Exploring the chromatic zeros of random graphs

To gain first insights towards chromatic zeros of random graphs, we consider the two models
of the ER random graph [9]:
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Figure 2. Complex zeros of chromatic polynomials of random graphs. (a) Zeros for G(20, p) with
selection probability p ∈ {0.1, 0.2, . . . , 0.9}; (b) zeros for G(20,M) graphs with M determined
by fixed edge density P ∈ {0.1, 0.2, . . . , 0.9}; (c), (d) and (e) zeros with positive real part for
G(N, M) graphs for selected N, M = [KN/2] determined by the average degree K ∈ {3, 4.5, 6, . . .}.
In all figures, chromatic zeros for 20 sample graphs per parameter set are plotted together. Density
is indicated by colour, running from red (low density) to blue (high density).

• G(N,p): the graph has N vertices and between every pair of vertices an edge exists with
uniform probability p. The edge density P = |E|/(N

2

)
of any individual instance will

then vary normally around p.
• G(N,M): the graph is chosen uniformly from all graphs with N vertices and M edges. The

density P then has the fixed value M
/(

N

2

)
.

In the N → ∞ limit, the two models are largely equivalent; for finite N they can give
different results, but the main reasons to use one or the other are practical. From the outset,
we had no clear idea of what to expect, so we began with a preliminary investigation of
G(N,p) graphs restricted to N = 20. For each of the parameter values p ∈ {0.1, 0.2, . . . , 0.9},
we generated 20 sample graphs; we then calculated the chromatic polynomials with a FORM

[19] implementation of the new algorithm [17] and solved for the zeros of each polynomial
numerically using MPSOLVE [2]. Complex zeros of all graphs plotted together are shown in
figure 2(a). When first viewing these results, we were struck by the distinct banding in both
the horizontal and vertical directions, which implied that the complex zero sets could have
a very predictable layout depending on the basic graph parameters. After confirming that
similar patterns did not arise from zero sets of random polynomials with similar coefficients,
we proceeded to the second phase of our investigation, which was designed to measure the
simultaneous effect of both edge-density and the number of vertices on the zero locations in a
more systematic way.
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3.1. Parameters and constraints

In these more extensive investigations, we consider the G(N,M) instead of the G(N,p) model.
A cursory examination of the G(20, p) data showed that the positions of chromatic zeros with
non-zero imaginary part are very sensitive to the exact value of P. For example, within each
p group we found the correlation between the mean real value of these complex zeros, and
the exact P value (as measured from counting the edges in the generated graphs) was between
0.982 and 0.994. Since we were interested in the effect of density on zero location we then
decided to directly control for P. Figure 2(b) shows zero sets for fixed-density G(N,M) graphs.

Also, we parameterized density by average degree K = 2M/N rather than directly by P,
or by M. For a single value of N, it would not matter which of these was used since they can be
simply converted one to another, but over different N the choice of metric affects the amount
of data generated and the ways one can aggregate it. A deciding factor was that K arises
naturally in the study of physical systems which feature a bounded number of interactions.

Finally, we added the constraint that graphs were to be 2-connected: that is, every pair
of vertices in the graph belong to at least one cycle. ER random graphs experience a sharp
connectivity transition as density is increased [9]. Though the theoretical result is in the large
N limit, the effect is manifest even for N in the range of the random graphs we used; none of
our G(20, 0.1) graphs were even 1-connected, while all of the G(20, p) graphs for p � 0.3
were at least 2-connected. Since the chromatic polynomial of an unconnected graph can be
factorized into the chromatic polynomials of its connected components, aggregating data from
graphs without controlling connectivity would have had the annoying effect of confounding
the low-density data for runs with different values of N, without otherwise telling us anything
we do not already know.

We used N ∈ {12, 15, 18, 21, 24, 27, 30} and K ∈ {3, 4.5, 6, 7.5, . . . , d}, where d is
highest value divisible by 1.5 that is less than N − 2. For each of the 77 (N,K) pairs, 20
instances of G(N,M) graphs were generated using the integer M that was closest to KN/2. As
above, chromatic polynomials were then calculated with the new algorithm and zeros extracted
using MPSOLVE. Figures 2(c)–(e) show all chromatic zeros in the upper half complex plane
for some N. Note that the upper value and spacing of the N values chosen were primarily
determined by computational concerns; for low N chromatic polynomials for all graphs could
be calculated in a matter of seconds, but in the high range, a single graph could require two or
more days. In total 1540 random graphs were generated, resulting in 35 700 individual data
points (chromatic zeros).

3.2. Analysis of specific features of chromatic zeros

From the combined data, we extracted various graph invariants directly, such as the chromatic
number, number of real and integer zeros, zero multiplicities, the maximum modulus,
maximum real zero and maximum real and imaginary parts of zeros. Of particular interest
to us were the shapes traced out by the complex chromatic zero set (i.e. zeros with non-zero
imaginary part) in the complex plane and the point at which this set approaches closest to the
real axis. The second of these we will denote as the crossing point XN,r for the parameter r
(which can be average degree K or density P as required).

The crossing point is a finite system analogue to the critical value qc discussed by previous
authors [5, 13, 15], which properly speaking can arise only in the N → ∞ limit when critical
phenomena arise, and the zero-set becomes continuous such that its intersection with the real
axis can be solved explicitly. Since our graphs (and hence their chromatic zero sets) are finite,
the crossing points XN,r were instead estimated in the following way.
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• For each parameter pair (N,K), we collected the chromatic zeros with positive imaginary
value for all 20 graphs into one set (zeros with negative imaginary value are their complex
conjugates, and can thus be neglected).

• We fit an arc segment to each collected zero set in the complex plane; moreover, we did
a linear fit to determine orientation (left or right leaning). All fits used a least-squares
Euclidean distance from each zero to the nearest point on the arc (or line) as a metric. It
should be noted here that centres and radii of arcs were not constrained in any way (for
example, to lie on the real axis).

• The crossing point XN,K is then given by the positive intersection of the arc and the
real axis. Also, the curvatures of the zero sets are obtained from the arc radii, and their
orientations from the slopes of the linear fits.

4. Scaling of chromatic zeros

Preliminary visual inspection of the complex chromatic zeros as shown in figure 2 revealed
several consistent features. For all N tested, the zero sets at low densities are close to the
origin and laid out almost circularly around the point 1 + 0i; as the density is increased, they
gradually move away from the origin and uncurl until they are almost vertical, after which
the half-sets in the lower and upper complex plane remained relatively straight, but become
shorter and angled, now away from the origin.

Perhaps most surprising is the way that zero sets for graphs with the same average degree
K almost always fell into roughly the same location regardless of the N value. Figure 3(a)
shows complex zeros for K = 9. We note that the curvatures of these zero sets do vary, and
that those of the smallest (hence densest) graphs pull to the right somewhat. Thus, it would
seem that while location and therefore crossing point is largely determined by average degree,
features like the shape and height of the sets will depend on P and N in a more complex
way.

The zero locations (see figure 3(b)) suggest that for random graphs with edge-density
below a certain cutoff Pc the crossing point XN,K scales linearly with K but is otherwise
insensitive to changes of N. As we will show below, it also turns out that XN,K has a predictable
location for densities above Pc; in this range, however, it is no longer a linear function of K
but a still relatively simple function of N and P. We remark that for low K, there is somewhat
more variability in the data than elsewhere.

4.1. Determining cutoff density

By most measures the cutoff density Pc is somewhere between 0.6 and 0.7. Though by no
means conclusive, the best empirical metrics we have point to a value of Pc ≈ 0.65. The most
dispositive evidence involves the shape and orientation of the zero set. As we have noted, for
a given N, as K (or P) increases the shape of the zero set consistently goes from an arc curving
around the origin to a pair of roughly straight lines leaning away from the origin. Our working
assumption is thus that the cutoff should occur at the value of K (or P) where the zero set is
most vertical, simultaneously consistent with either a very large arc curling left or a straight
line leaning imperceptibly right. This can be made more precise by considering the slopes
of linear fits to the complex chromatic zero sets. For our data the slopes are negative for all
zero sets with P � 0.648, and positive for all zero sets with P � 0.652 (no zero sets were
associated with a density between these values).
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Figure 3. Crossing points for chromatic zero sets. (a) Complex chromatic zeros in upper half
plane plus arc fits for average degree K = 9, various N. (b) Crossing point XN,K versus K for each
N, K . (c) (Inset) Crossing points versus average degree restricted to graphs with density P < 0.65
with fit line XN,K = 0.58K + 0.41.

4.2. Crossing point for P < Pc

Crossing points for P < Pc exhibit a close to linear scaling with the average degree, cf
figure 3(c). Fitting XN,K against K below the cutoff gives the relation as

XN,K = 0.582K + 0.406. (5)

Goodness of fit tests confirm that regardless of possible higher order terms the data points are
aligned very closely to the fit line. The reduced chi-squared χ2

r for the fit is a quite low 0.295
(χ2

r is the standard χ2 normalized by the degrees of freedom; a value of one or less indicates
that the model accounts for the data adequately or better, while values significantly greater
than one mean the fit is of poor quality).

We note that the variability in measured data is greater for low K values than for high.
This is in part due to the fact that we have more low K data points than high ones, and that
the variability of zero location is definitely greater at low densities (noticeable from simple
visual inspection of zero plots). But there seems to be another factor at work as well. For
individual N values, the differences between the calculated XN,K values and the fit are not
scattered about the line, but instead are larger (and consistently positive) towards both ends
of the applicable density range. Also, the crossing point for K = 2 (a cycle) should be at
Re(q) = 2, while the fit line predicts a too-low value of 1.57. This may imply that actual
curves are either very gently rounded, or that there is a separate low density regime where
a different slope applies. We do not currently have any good criterion for distinguishing a
second cutoff, however. Moreover, the magnitude of these differences is small, and does not
seem to increase with larger N.

4.3. Crossing point for P > Pc

The crossing points above the cutoff density do not scale directly with K; in fact, it is not
clear from visual inspection that they conform to any simple function of K or P. Hence, it
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is something of a surprise to find out that for P > Pc, the crossing points are rather well
described by

XN,P = N
(
a − b

√
1 − P 2

)
, (6)

where a ≈ 0.9 and b ≈ 0.65 ≈ Pc, as shown in figure 4. This relation was obtained by
considering a rescaling of the crossing point values to correct for the fact that the distance
from the cutoff crossing point XN,Pc

to N increases as roughly 0.4N with N. It turned out that
when rescaled this way, the XN,P values for different N fell close to the same arc segment
when plotted against P and hence the

√
1 − P 2 term in the relation above. The exact linear fit

has a χ2
r of 0.2868.

4.4. Further quantities of interest

As mentioned above, we have considered a large number of other quantities of interest. Each
of these quantities requires a thorough scaling analysis on its own, such that we here give only
a brief summary of the most important results and refer the reader to an extensive presentation
in a future publication. Both the maximum zero modulus |zmax| and the maximum imaginary
value max(Im(z)) also turn out to have simpler scalings than were anticipated. The maximum
modulus is well approximated across all densities by the linear relation

|zmax| = 0.91K − 0.79, (7)

though the exact relation again is probably nonlinear at least in the high and low density range;
while all points are close to the fit line, the errors are not scattered normally but definitely pull
up at both ends (cf figure 5). The maximum imaginary value does not grow linearly with K,
but a linear relation can be obtained by rescaling:

max(Im(z)) = 1.15K
√

1 − P − 1.67. (8)

A χ2
r value of 0.296 again confirms a high quality fit. Since K = P(N − 1), for fixed P

this relation does give a linear scaling, this time in N. We note that P
√

1 − P achieves its
maximum at P = 2

3 ; hence, this result dovetails with our finding of the density cutoff for the
crossing point scaling at Pc ≈ 0.65, based on the most vertical layout of the chromatic zero
set.
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5. Conclusions

Applying the recently suggested vertex-based computational method [17] yielded some corner-
stone insights into the features of chromatic polynomials of random graphs: the complex zeros
of chromatic polynomials of moderately sized random graphs systematically change with the
number of vertices N, the density P and the average degree K. For fixed N, the shapes of the
complex zero sets evolve as P increases, from tracing an arc around the point 1 + 0i at low
P, to being almost vertically aligned at the cutoff density Pc ≈ 0.65, to sitting along pairs
of straight lines leaning away from the origin at higher P. The crossing point XN,K of the
complex zeros scales linearly with the average degree K for P < Pc; above this cutoff the
crossing point appears to be a simple function of N and

√
1 − P 2. If these results continue to

hold for larger N, the implications are straightforward. Fixing the average degree K, we have
P → 0 as N → ∞; this suggests that for an infinite random graph with bounded degree,
the chromatic zero set converges to an arc around 1 + 0i that crosses the real axis at a finite
position. On the other hand, if P is fixed or converges to a positive value, then K → ∞,

and the crossing point and in fact all chromatic zeros with non-zero imaginary value diverge
to (complex) infinity. The former is most relevant for statistical physics: if G is an infinite
disordered system with bounded connectivity, then in the zero-temperature limit the zeros of
the antiferromagnetic Potts partition function meet the real axis at a finite, predictable location
that depends on the system’s coordination number.

Besides extending our studies to related polynomials such as Tutte or reliability
polynomials [6, 18], the chromatic polynomial itself requires several future studies. In
particular, there is of course much that still needs to be done with respect to Erdös–Rényi
random graphs. Ideally we would like to obtain results for larger N for additional verification.
However, while the new method [17] does achieve a significant speedup, the problem of
computing the chromatic polynomial remains difficult and so there is a limit to feasible N,P

values.
Nevertheless, even for accessible classes of graphs, several features of their chromatic

polynomials are not yet settled. While our results indicate that for Erdös–Rényi (ER) random
graphs, the location of chromatic zeros may be quite predictable, there are many related graphs
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of interest with as yet unknown features. Preliminary studies on two other classes of graphs,
regular random graphs and random bipartite graphs, suggest how far and in what direction our
current results might extend. As one might expect, with respect to regular random graphs,
the main effect is to reduce the variation in zero location across instances. The layout of
the chromatic zero sets for random bipartite graphs, on the other hand, is markedly different
than what we see for general ER random graphs, particularly at higher densities. Since many
lattices are also bipartite, this bears a closer study.

Two further ‘standard’ classes of networks and graphs include the following.

• Small-world graphs. There is a possibility that our scalings may depend on properties
that will almost always hold for small enough random graphs yet almost never hold for
large enough ones. One such property relates to the presence of triangles and other small
cycles. None of our graphs with average degree more than three were triangle free, though
for densities P < 1, large enough random graphs will usually be triangle free, and infinite
random graphs are locally indistinguishable from trees. Small-world graphs [20], which
maintain their neighbourhood properties as they grow larger, are hence natural candidates
for study.

• Scale-free networks. Some previous work on chromatic polynomials has brought up the
possibility that the presence of high degree vertices may have a large influence on the
location of some of the graph’s chromatic zeros [16]. We have not detected a pronounced
effect coming from the maximum degree itself but this might be due to the strongly central,
unimodal distribution of the degrees for the random graphs we considered. Hence, it is
entirely possible that the non-effect we noticed is due to our maximum degrees not being
large enough compared to the average degrees to exert an independent influence. To test
this supposition, a natural option would be to compute chromatic zeros of graphs with
scale-free degree distributions. The vertex-based symbolic method we used [17] would
need to be adapted to compute reasonable size instances.
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