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all model parameters, a second network of the same units is set up 
as a model, and its interaction topology is varied via continual error 
minimization until it synchronizes with the original system. Via a 
thresholding process, the resulting topology is identified as that of 
the original network. This approach has been shown to perform 
well for networks of up to N = 16 nodes. Yu and Parlitz (2008) 
combine the basic idea of error minimization with an intricate 
mechanism for driving the network to a steady state, at which 
point the connectivity can be recovered from the individual node 
dynamics. Since this technique dispenses with the need to explicitly 
model the connectivity of the network they are able to achieve 
reconstructions of significantly larger networks (N = 50).

An alternative approach for smoothly coupled systems close to 
steady states (Timme, 2007) uses measurements of the collective 
response–dynamics under different external driving conditions. 
As the collective dynamics depends on both the (known) driv-
ing signals and the (unknown) interaction topology, an increasing 
number of driving–response experiments yields more and more 
restrictions on the topology. Worked out explicitly for phase-lock-
ing oscillators, the method is insensitive to details of the units’ 
dynamics and their coupling function and a linear approximation is 
often sufficient to infer the topology. Hence, the experiments yield a 
system of linear equations that restrict the topology consistent with 
all experiments that is then solved to obtain the incoming connec-
tions for each unit. This approach has been successfully applied to 
Kuramoto oscillators, where networks of many hundreds of units 
were reconstructed. Assuming sparsity of the network connectivity, 
such reconstructions may be supplemented by an optimization step 
(Timme, 2007) that reduces the number of experiments needed 
to reconstruct up to a desired accuracy (cf. also Yeung et al., 2002; 
Napoletani and Sauer, 2008). Since all experimental approaches in 
practice have to deal with a systematic undersampling with regard 

1 IntroductIon
Reconstructing or reverse-engineering the exact interaction 
topology of coupled dynamical units has become an active area 
of research in different fields of biology, including genetics, ecol-
ogy, and neuroscience (see Yeung et al., 2002; Makarov et al., 2005; 
Cadenasso et al., 2006, for recent theoretical results). In neuro-
science, such efforts generally focus on establishing the functional 
or effective connectivity between individual neurons and different 
regions of the brain using methods based on correlations in the 
activity between the constituent parts of the network (Aertsen and 
Gerstein, 1985; Aertsen et al., 1989). This research has yielded many 
valuable results, commonly on a scale larger than the individual 
elements such as nerve cells and synaptic connections that make 
up the networks involved (Jirsa and McIntosh, 2007).

Explicit approaches that reconstruct actual connections between 
individual elements are more difficult in general, but where feasi-
ble they offer exact, fine-grained results, for instance by establishing 
the presence or absence of individual synapses. These more detailed 
approaches have attracted serious attention recently, triggered by the 
availability of large high-resolution data sets and the computational 
power to handle them. Noteworthy from a theoretical point of view 
is a method of stochastic optimization (Makarov et al., 2005) that fits 
a network model of spiking leaky integrate-and-fire (LIF) neurons 
to an oncoming data stream and thus avoids estimating parameters 
beforehand. The performance of this reconstruction method has 
been addressed for simulated, as well as real, extracellular multiunit 
array (MUA) recordings. The computational requirements seem 
however somewhat prohibitive as the largest network which Makarov 
et al. report having reconstructed consists of N = 5 neurons.

Other studies have focused on networks of smoothly coupled 
units. One of the earlier results in this regard is a synchronization 
method presented by Yu et al. (2006). Assuming pre-knowledge of 
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to finite measurement times and the number of neurons that can be 
reliably recorded, such optimization methods are likely a necessary 
step in any potentially useful algorithm.

Here, we present a method to explicitly reconstruct both topol-
ogy and connection weights for networks of LIF neurons. LIF neu-
rons with current-based synapses incorporate two key features 
of biological neurons: they integrate the input currents of their 
presynaptic neurons and send spikes whenever this accumulated 
and filtered input sufficiently depolarizes the membrane potential 
V(t). Though this class of LIF neurons lacks a lot of biophysical 
detail such as the spike dynamics itself, voltage-dependent integra-
tion properties, or neuronal morphology, their study can help to 
understand biologically relevant collective dynamic states of neu-
ronal networks, such as population rate oscillations (Brunel and 
Hakim, 1999; Brunel, 2000), propagation of synchronous activity 
volleys (Diesmann et al., 1999), or asynchronous irregular activity 
states (Brunel, 2000; Jahnke et al., 2009). Moreover, they are sim-
ple enough to be amenable to analytical methods and thus reveal 
principle insights regarding relations between network interactions 
and dynamics. In general, the collective dynamics of even simple 
networks of LIF neurons can be highly complex, depending not only 
on interaction topology but also on synaptic coupling strengths, 
local neuron parameters, and initial conditions (van Vreeswijk and 
Sompolinsky, 1996; Timme et al., 2002; Denker et al., 2004; Zillmer 
et al., 2009).

The method presented here is in part an extension to pulse-cou-
pled, spiking units of the driving–response approach for smoothly 
coupled phase-oscillators given by Timme (2007). In particular, it 
uses the information provided by spike times and model parameters 
only. Moreover, the method developed here does not require steady 
states as in Timme (2007) or Yu and Parlitz (2008), but works as 
well for complex spatio-temporal activity, such as irregular or even 
chaotic spiking, given that certain technical conditions are met. 
The robust optimization technique (Yeung et al., 2002; Timme, 
2007; Napoletani and Sauer, 2008) can be applied here as well, to 
reconstruct networks of several hundred nodes from a comparably 
small number of experiments with only a small loss of accuracy.

Biological neuronal networks naturally present much more 
challenging problems for reconstruction than moderately sized 
networks of model neurons. The technique presented here should 
hence not be considered as a substitute to current approaches that 
work with spiking data from experiments, but as a theoretical com-
plement. This notwithstanding, it has the advantage that it does 
not depend on continual access to the actual membrane potentials. 
Since in practice intracellular recordings from a large group of neu-
rons are still beyond technical feasibility, in general any method that 
restricts itself to spike time data has strong merits. In this sense it 
presents a necessary first step toward a robust explicit method that 
could be used in tandem with larger-scale statistical methods.

In Section 2 we will provide necessary definitions and deriva-
tions for the LIF neuron, and then outline the basic method as it 
applies to exact data and known model parameters. In Section 3 
we will discuss implementation and performance of the method in 
several contexts such as algorithmic efficiency, data requirements, 
and the effect of noise and uncertainty on reconstruction accuracy. 
In Section 4 possible extensions and applications of the method 
will be noted.

2 neuron model and reconstructIon theory
2.1 dynamIcs and collectIve solutIon between subsequent 
spIkes
The subthreshold dynamics of the membrane potential V

i
(t) of a 

LIF neuron i is given by the linear ordinary differential equation

 

dV t

dt
R I t V t S ti
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where g
i
 is the inverse of the membrane time constant, R

i
 is the 

membrane resistance, I
i
(t) is a temporally constant, externally 

applied stimulation current, and S
i
(t) represents recurrent net-

work interactions. Whenever V
i
(t) crosses the threshold value V

T,i
 

neuron i sends a spike to its postsynaptic neighbors and V
i
 reverts 

to the neuron’s reset potential V
R,i

 < V
T,i

. The interaction between 
neurons within the network is hence represented by the weighted 
d-pulse function
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in which t
j,k

 denotes the k-th spike time of neuron j, and a
ij
 and t

ij
 

are the synaptic coupling strength and the synaptic transmission 
delay of the connection j → i, respectively.

If there are no recurrent interactions (S
i
(t) ≡ 0) and I

i
 is constant 

the solution of (1) for initial condition V
i
(0) = V

R,i
 is given by
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This implies that for R
i
I

i
 > V

T,i
 (suprathreshold external current) 

the membrane potential is oscillating such that V
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The general solution of the non-autonomous inhomogeneous 
linear differential equation (1) for times t > t

0
 with initial condition 

V
i
(t

0
) is given by (cf. Arnol’d, 1992)
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This solution, which holds for all times t > t
0
 until neuron i 

next experiences a threshold crossing, provides the basis for the 
reconstruction method described below.

It should be noted that the tractable nature of this model means 
that simulating networks of LIF neurons is straightforward. In par-
ticular, it can be efficiently and exactly done using standard event-
based simulation techniques (Mattia and Giudice, 2000; Timme 
et al., 2003).

2.2 General reconstructIon methodoloGy
How can we obtain the interaction strengths a

ij
 for a particular 

neuron i and thus the network topology? The aim is to assemble 
multiple linearly independent instances of (5) into a linear system 
of rank N and solve for the unknown a

ij
 values. If the model param-

eters R
i
, V

R,i
, V

T,i
, g

i
, and t

ij
 are known and the dynamical quantities 
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inter-spike intervals, and T t ti m i im m, , ,= − −  1 be the respective inter-
spike interval of neuron i. We then define the M × N matrix Θ(i) 
and the column vector B(i) by
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The incoming connectivity for neuron i is obtained by solving 
the linear system

 Θ( ) ( )i
i

iA B =  (10)

for A
i
. Repeating the procedure for each neuron i ∈ {1,…, N} sepa-

rately yields all N rows of the coupling matrix A, and thus the entire 
synaptic connectivity of the network.

2.3 reconstructIon In the presence of sImple perIodIc spIkInG
The method described above can be applied to a broad range of 
spiking patterns and does not rely on network synchronization, 
phase-locking, or other steady state requirements. Since repeated 
spike patterns within the inter-spike intervals will lead to linear 
dependent rows in the derived Θ matrix (8), systems that do exhibit 
phase-locked dynamics may require special handling. For excita-
tory and mixed systems it is usually sufficient to use heterogeneous 
driving currents I

i
, e.g., randomly drawn from some distribution 

P(I), with a variance large enough to perturb the system out of 
any phase-locked state. Certain inhibition dominated LIF networks 
exhibit stable dynamics even under a wide range of heterogeneous 
drivings. Inhibitory networks where a

i
 ≡ Σ

j
 a

ij
 < 0 and 0 < (max

i
 

a
i
 − min

i
 a

i
) < t

ij
 will generate stable phase-locked states with com-

mon period T when stimulated with a homogeneous current I
i
 = I 

(Denker et al., 2004). When a
i
 = a < 0 for each i the system will also 

be able to consistently achieve stability under heterogeneous driving 
conditions, since the spread of the spike pattern is solely caused by 
the spread ∆I

i,m
 ≡ max

i
 I

i,m
 − min

i
 I

i,m
 of the driving currents. This last 

subclass of networks we will denote as homogeneous inhibitory.
Homogeneous inhibitory LIF networks typically exhibit simple 

periodic spike patterns, i.e., all neurons fire exactly once before the 
same spike pattern repeats. If the neurons fire in a simple periodic 
pattern such that for any given inter-spike interval t

i, − 1
, t

i,
 each 

neuron j ≠ i spikes exactly once within (t
i, − 1

 − t
ij
, t

i,
 − t

ij
), each 

acceptable interval contains a complete set of representative arriv-
als, and (5) simplifies to
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for all i ∈ {1,…, N}.
In order to guarantee linear independence it is necessary to gather 

data from multiple, relatively short spike trains obtained under var-
ied driving conditions I

i,m
, m ∈ {1,…, N} (cf. Timme, 2007) which 

additionally satisfy ∀
i,j
i ≠ j ⇒ I

i,m
 ≠ I

j,m
. If a network is able to achieve 

periodic simple spike patterns under each of these drivings then all 
intervals after the initial transient period are acceptable with identical 
or close to identical arrival patterns, hence we can always choose the 
last intervals recorded to solve the N linear systems (5). This means 

t
0
, t, V

i
(t

0
), and V

i
(t) are specified, equation (5) provides a restriction 

on the N input coupling strengths a
ij
 for a given neuron i. Choosing 

sufficiently many different values of the pairs t and t
0
 so as to provide 

linearly independent instances of (5) will therefore give N restric-
tions that fully determine all coupling strengths a

ij
, j ∈ {1,…,N}. 

Repeated for each i this yields the entire network topology.

Acceptable inter-spike intervals
We can use subsequent spike times t

0
 = t

i,−1
 and t = t

i,
 to fix the 

dynamical quantities if they are chosen in an appropriate way. We 
first note that we can safely use any spike time to determine an 
initial condition, since post-spike the LIF neuron always imme-
diately resets to voltage V

R,i
. Hence our criterion for choosing an 

interval depends only on the way threshold crossings are induced, 
either by an incoming excitatory spike (spike-induced spiking) or 
by passive propagation due to sufficiently large driving I

i
 (current-

induced spiking). For current-induced spiking the membrane 
potential V ti i( ),

−  of neuron i is known to be exactly at the threshold 
value V

T,i
, while spike-induced spiking will generally supply excess 

depolarization such that the actual membrane potential will be at 
some unknown value V t Vi i T i( ), ,

− > . Hence if we restrict our choice 
of intervals (t

i, −1
, t

i,
) to those terminating with current-induced 

spikes the following substitutions are valid in (5):
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In order to find these intervals we must compare the spike times 
t

i,
 of neuron i with all possible arrival times t

j,k
 + t

ij
 of all neurons 

j. To exclude intervals with potentially spike-induced spikes, we 
restrict the analysis to intervals where no t

j,k
 + t

ij
 coincides with the 

respective t
i,

 and hence define the inter-spike interval (t
i, − 1

, t
i,

) as 
acceptable for neuron i if

 
t t j N kj k ij i, , { , , }, .+ ≠ ∈ … ∈t



for all 1 N  (7)

It is important to note two things: first, that we often have at our 
disposal many more than N acceptable intervals; and second, that not 
every set of N acceptable intervals will provide N linearly independent 
instances of (5). In particular, consecutive acceptable intervals might 
contain very similar arrival patterns, resulting in badly conditioned 
or even low-rank systems. Of course, there is no constraint to select 
only N intervals; if we use M > N intervals then the system will be 
formally overdetermined but solvable, though M  N is not favo-
rable for efficiency reasons. Usually, selecting a subset of N or more 
intervals distributed across the respective incoming spike trains will 
be sufficient if the spiking is asynchronous and irregular (meaning 
that inter-spike interval correlations decrease quickly with time), the 
mean firing rate for all neurons is positive, and the spike recording 
is long-enough to find sufficiently many uncorrelated acceptable 
inter-spike intervals to derive N linearly independent instances of (5). 
In Section 3.1 various strategies for selecting subsets of acceptable 
intervals will be discussed. Note that we are not constrained to use 
spike train segments obtained under a single driving condition.

Assuming there are M ≥ N acceptable intervals that will 
ensure linear independence, all presynaptic connections for 
neuron i, A

i
 = (a

i1
,…,a

iN
) are obtained in the following way: let 

D t ti m i im m, , ,( , )= − 1  be the m-th member of our subset of  acceptable 
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while reducing search time and keeping M reasonably close to N. 
Multiple intervals found in close proximity are combined to cre-
ate exactly solvable N × N systems, since they are preferable to 
overdetermined systems in terms of both time requirements and 
numerical stability.

Within segments, our search strategy is based on a minimum-
scan-length policy. Given data segments S

m
, m ∈ {1,…,N}, then for 

each neuron i each segment S
m
 is scanned only as far as needed to 

obtain representative t
j,k

 + t
ij
 values for all neurons j, and intervals 

are only chosen if they contributed a new member to the repre-
sentative set. Instances of (5) for the intervals are then summed to 
become the m-th row of the solution matrix Θ(i) and m-th element 
of the vector B(i). When particular representatives are not present 
in particular segments then corresponding Θm j

i
,

( )  elements are set to 
zero. Balancing representatives by requiring a full set for each row 
and excluding redundancies is more than we technically require, 
but in practice this results in better conditioned Θ(i) matrices and 
hence more accurate results.

3.2 accuracy of the basIc method
We first analyze the performance of the method for full-rank sys-
tems without additional noise or uncertainty. As shown in Figure 1, 
the reconstruction error is negligible, both for networks with phase-
locked spike patterns as well as those with irregular spiking. The 
numerical error that appears in the reconstructions is solely the 

that although this type of network dynamics makes it mandatory 
to repetitively drive the system with independent sets of currents, it 
spares us the necessity of scanning the spike data for acceptable inter-
vals and so allows for fast reconstruction. We will refer to this case as 
the specialized method for homogeneous inhibitory networks.

3 ImplementatIon and performance
3.1 acceptable Interval searches
For LIF networks other than the homogeneous inhibitory net-
works described in Section 2.3, spike patterns will almost always be 
asynchronous rather than simple periodic; hence we must actively 
search through spike trains for acceptable intervals.

In principle, if a full-rank system is embedded in the data then 
only N intervals are required, some of which may contain zero or 
more than one representative t

j,k
 + t

ij
 value. One alternative to trying 

to identify such a minimum set of intervals would be to select M > N 
intervals according to some criterion which either guarantees or at 
least maximizes the chance that we have a full-rank subset; we could, 
for example, select all available acceptable intervals. Similarly, if we 
have M > N intervals we have the choice of solving the overdeter-
mined M × N system by, e.g., a least-squares method, or aggregating 
instances of (5) to patch together an N × N system.

In our implementation we used independent partial scans of 
spike train segments to collect M ≥ N intervals; the scans use the 
heuristic described below to construct a full-rank system if  possible 
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Figure 1 | Topology reconstruction from simple periodic and complex 
aperiodic spike patterns. (A) Simple periodic spike pattern of an 
inhibitory network. (B) Connection weights of the same network, 
with full-rank reconstruction error a aij ij− ˆ , and its magnification; strengths 
and errors are color coded on same scale. Error is on the level of 
numerical accuracy. (C) Complex spatio-temporal spike pattern of a 
heterogeneous network with both inhibitory and excitatory connections. 

(D) Connection weights and error for the heterogeneous network. 
Both networks share the same underlying adjacency structure; the 
heterogeneous network was obtained from the inhibitory network by 
randomly changing the signs of connections with probability p = 0.5. 
Simulation parameters for both systems (uniform for all neurons): external 
driving giRiIi = 1 mV/ms with uniform random variation ∆I/I = 5%,  
1/gi = 31.64 ms, VR,i = 0 mV, VT,i = 20 mV, tij = 5 ms.
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is of course that enough data be made available. As Figure 2A shows, 
the minimum number of intervals required to achieve full accu-
racy is not large; roughly 7 or 8 per segment (≈160 total) for a 
20-neuron network, for example. Whether data is obtained from N 
independent drivings or from a single run does not as well seem to 
have a large effect; sampling out of a very long run does reduce the 
minimum requirement by an interval or two, but the amount of 
data that must be generated in the first place to achieve this effect is 
appreciably greater. Compare also the specialized method featured 
in Figure 3, where the data requirement is exactly one interval per 
segment, but to achieve, e.g., 10−10 accuracy each segment needs to 
be ≈60 intervals long.

Independent of the driving conditions applied, there is no prior 
constraint on network configurations solvable by the methodology, 
aside from the assumption that a

ij
 < V

T,i
 − V

R,i
, i.e., that no single 

spike can move the membrane potential from reset to threshold. In 

result of small truncation errors in the derived data being propa-
gated through global operations such as matrix inversion. When 
the specialized version of the method is used on phase-locking 
networks, this error level is as well directly and linearly depend-
ent on the degree of synchronization experienced by the network 
(see Figure 3). As the exit tolerance is decreased this tunable error 
meets a hard limit where the truncation is no longer caused by early 
termination of the simulation, but instead by the fixed-precision 
numbers used by the machine the calculations are performed on. It 
should be noted that (apart from their influence on the network’s 
ability to synchronize) the magnitude of simulation parameters 
does not affect the accuracy of the results in any noticeable way.

Since the general reconstruction method does not depend on 
synchronization, for data characterized by sustained irregular or 
chaotic spiking the entire error can be attributed to fixed-precision 
effects. A necessary precondition for achieving this level of  accuracy 
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Figure 2 | reconstruction accuracy for complex spatio-temporal patterns as 
affected by search requirements. (A) Maximum reconstruction error 
e a aij ij ij= − ˆ  vs. data availability as measured by segment length (in spikes) for 
slowest neuron. Different curves compare effect of data source: (blue) segments 
obtained under N different drivings, (green) contiguous segments taken from one 
run of moderate length, or (red) segments taken at equally spaced intervals from a 
long run (roughly 1000 spikes per neuron in this case). Runs use the same sample 

network and parameters as shown in Figures 1C,D. (B) Interval search length L 
using min-scan-length strategy vs. size of network N for different connection 
densities P. Note: all reconstructions here achieved the numerical limit of 
accuracy. Simulation parameters: balanced networks (Σj aij = 0) with no other 
restriction on pre- or postsynaptic connectivity, data obtained under N uniformly 
randomized driving conditions, base driving giRiIi = 1.5 mV/ms, ∆I/I = 1%; 
tij = 2 ms, 1/gi = 20 ms, VR,i = 0 mV, VT,i = 20 mV (uniform for all neurons).
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Figure 3 | reconstruction accuracy for phase-locking networks as 
affected by periodicity. (A) Maximum reconstruction error e a aij ij ij= − ˆ  vs. 
phase-locking as measured by exit tolerance ∆T, the maximum difference 
between final period lengths of different neurons. (B) Length of simulation 

runs Sm (given as number of spikes emitted by neuron i, | |( )Sm
i ) needed to achieve a 

specified ∆T. Annotations: (1) indicates non-full-rank solutions due to insufficient 
synchronization; (2) indicates numerical saturation. Data is from sample network 
used for Figures 1A,B.
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connectivity of spiking neural networks scales polynomially, and 
not exponentially, with network size. This is a significant finding 
concerning network reconstruction, since many other problems in 
bioinformatics are known or conjectured to be NP-complete, that 
is, for all intents and purposes intractable (cf. Foulds and Graham, 
1982; Ngo et al., 1994).

3.4 exploItInG sparsIty – solutIons for underdetermIned 
systems
Recent studies (Yeung et al., 2002; Timme, 2007) used singular 
value decomposition USVT = Θ(i) and optimization for sparsity to 
reconstruct with M = N distinct driving conditions. In general, this 
yields the underdetermined system A VS U B Vxi

i= +−


1 T ( )  where S−1 
is the pseudoinverse of S and x is any vector. Setting x =



0 gives us 
the usual least-squares solution, but on the naturalistic assump-
tion that neuronal network connectivity matrices A are sparse 
we can choose x so as to maximize the number of zeros in each 
A

i
. To do this we use the heuristic of solving the overdetermined 

system Vx VS U B i= − −


1 T ( ) for x so as to minimize the L
1
-norm of 

the difference; our implementation uses the fast L
1
-norm solver of 

Barrowdale and Roberts (1974).
Our primary interest is the lowest M < N we require to obtain 

sufficiently many reconstructed couplings âij
 close enough to the 

corresponding elements of the original connectivity matrix a
ij
, so 

that Â (after appropriate rounding) can be used as a plausible esti-
mate for A in any hypothetical analysis. Hence along with the usual 
error measurements we also use a custom quality-of-fit metric, 
Q A

w
α
( ) ( )ˆ , that essentially yields the proportion of sufficiently close 

element-to-element matches, in this case for a given M:
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The parameter a is a value between 0 and 1 governing the desired 
per-element accuracy, e.g., an a value of 0.80 means we want the 
proportion of elements in the reconstructed matrix that are within 
(roughly) 80% to 120% of the target value. nz(A) and z(A) are the 
sets of all non-zero and all zero elements of A, respectively, and H 
is the Heaviside step function. The weighting is incorporated to 
prevent false high scores when M is low and the target A is very 
sparse (cf. the original version of the quality measure in Timme, 
2007). We exclusively used Q w

a

( ) with w = 0.5, which in the follow-
ing we simply denote by Q

a
. Figure 4A shows a sampling of Q

a
 

values vs. M.
Networks with simple phase-locked spike pattern dynamics 

are solvable using the faster specialized method, so since a great 
many reconstruction computations were required these were used 
as our testbed. Comparison of interpolated values of Q

a
 across 

different values of N, M, the number of connections E, and other 
simulation parameters confirmed that the quality of reconstruc-
tion for M < N depends almost entirely on M/N and the edge 
density P = E/N2. To determine the minimum M necessary to 
achieve a desired quality-of-fit we define

particular there are no other restrictions on the synaptic coupling 
strengths a

ij
, or whether they are zero (no synapse present), positive 

(excitatory), or negative (inhibitory).
There is on the other hand no prior guarantee that any par-

ticular driving will give good results. In practice, randomly var-
ied driving which satisfies R

i
I

i
 > V

T,i
 almost always gave us fully 

accurate reconstructions. There are two situations that can cause 
problems for the general method when otherwise long-enough 
data streams are made available: (i) quiescent neurons (no recov-
erable incoming or outgoing connections), and (ii) neurons for 
which all spiking throughout entire segments is spike-induced 
(outgoing connections recoverable, incoming connections not). 
Only (i) arose in our testing on random networks with random 
drivings, and never with networks subject to any kind of balance 
conditions, e.g., |Σ

j,inhib
 a

ij
|  |Σ

j,excit
 a

ij
|. It should be noted that 

with respect to both situation (i) and situation (ii) the accuracy 
of reconstruction of the remainder of the network is not affected, 
and if needed both situations can be prevented by adjusting the 
driving to the relevant neurons.

3.3 effIcIency
To check the speed of the methods we reconstructed networks of 
N = 50 to N = 500 neurons. As the range of N here implies, mod-
erately sized networks (several hundred neurons) are still feasible 
for both the specialized and the general method; using the special-
ized method reconstruction of 250 neuron networks took about 
1 min on a single node of a 4-CPU 2 GHz machine, while general 
reconstruction of the same network took about 20 min.

As these time ranges imply, the general method’s reliance on data 
acquired from directly searching spike trains makes it noticeably 
slower than the specialized method in the size range tested here. 
This is in part due to the length of searches, but fixed costs for set-
ting up the searches and computational platform were also factors 
(implementations were done in Matlab, which is optimized for 
matrix operations but not generic search routines).

The worst case running time for the search phase of the gen-
eral method is O(S

max
N3), where S

max
 is the length of the longest 

spike train. In practice most searches are not worst case; for the 
network of Figure 1D, for example, the mean segment length was 
92 spikes, while the mean search length was 12 intervals and the 
mean number of acceptable intervals selected was around 3. As 
Figure 2B shows, the search length does not seem to increase as 
N grows but rather converges to a constant value; a similar effect 
is seen with the connection density (and hence the number of 
connections). We note that if situation (ii) mentioned in Section 
3.2 occurs, the search time will in fact revert to the theoretical 
worst case.

After the search phase is completed, the algebraic operations 
require solving N individual N × N linear systems, so they have a 
time complexity of O(N4) using conventional matrix inversion or 
Gaussian elimination. Hence, if the length of each neuron’s spike 
train is bounded within O(N) (i.e., each neuron spikes a fixed 
number of times for each neighbor) the worst case running time 
for the method as a whole is as well O(N4). The numerical results 
shown in Figure 1 suggest that this amount of data should gener-
ally be quite sufficient for accurate reconstruction. The implication 
is that the computational effort of reconstructing the structural 
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on the network state itself (Gerstner and Kistler, 2002). This leads to 
variability in both spike times as well as transmission delays, even 
under identical external conditions (Mainen and Sejnowski, 1995; 
van Steveninck et al., 1997; Destexhe et al., 2003).

In this section we present some preliminary results concern-
ing the performance of the reconstruction method when spike 
reception times are subject to additive random jitter bounded by 
an upper amplitude d

S
. The presence of temporal jitter induces an 

uncertainty in comparison of spike times and estimated arrival 
times, and hence the identification of acceptable intervals [cf. 
(7)]. Given a spike by neuron i at time t

i,
 induced by a spike 

from neuron j at t
j,k

, if we naively try to apply the acceptable 
interval criterion in Section 2.2 to the jittered times 

  

t ti i i, , ,= + d  
and t tj k j k j k, , ,= + d , then the interval as measured ( , ), ,

 

 

t ti i−1  will 
very likely be erroneously accepted. Note that the measured/esti-
mated time between the simultaneous arrival and spiking events 
is |d

j,k
 − d

i,
| ≤ 2max{|d

j,k
|, |d

i,
|} ≤ 2d

S
. As well, even if the interval 

is actually acceptable, arrivals close to both the initial spike time 
t

i,l − 1
 and the terminal spike time t

i,l
 can cause inaccuracy by being 

wrongly assigned (or not assigned) to it. In order to exclude either 
case a new condition for the interval to be acceptable for neuron 
i has to be defined:

∀ ∈ …{ } ∈ + ∉ − +  −− −j N k t t t tj k ij i i i1 1 1, , , : , [ ,, , , ,N    

  

t   





ti , ],+
 

 (15)

with the uncertainty  depending on the noise amplitude d
S
.

Without explicit knowledge of d
S
, deciding on which  to choose 

is problematic: if too small there will be too many false positives, 
leading to large errors in the reconstruction; if too large many false 
negatives may lead to long interval searches, and in the worst case 
no acceptable intervals will be identified at all. As well, for fixed 
d

S
 and  simple probability dictates that increasing the network 

size will also increase the number of false negatives. This issue is a 
subject of future research.

Figure 5A shows how reconstruction accuracy (as given by 
the maximum absolute error) grows with uncertainty in the data, 
here implemented as jitter of amplitude d

S
 applied after the fact to 

 
M M Q A qq

M N
M, min : .a = ( ) ≥{ }≤ ≤1

α  (13)

The Q
a
 profiles in Figure 4A show that there will be values of q 

for which Q
a
 does not exist or is not unique. When both q, a ≥ 0.75, 

however, M
q,
a is well-defined and we consistently obtained rela-

tions of the form

 
M E cq,α

β≈ +  (14)

where scaling exponent β = +1
2  , with || = 1/2 and c = E. A sim-

ple log-log fit of the data used for Figure 4B, for example, gives 
a scaling exponent of 0.504, with c below one. The overall result 
implies that we can expect M

q,a
 to grow linearly with N when P is 

fixed, and roughly as P  when N is fixed.
For general spatio-temporal patterns we obtain similar results, 

though they are not as pronounced or consistent, and there seems 
to be a greater dependence on factors other than M, N, and E, 
such as actual network parameters and specific spike pattern. The 
particular interval search strategy used has an influence as well. 
These intermingled technical issues require further theoretical and 
computational studies.

3.5 spIke tImInG varIabIlIty due to noIse and uncertaInty
In the previous subsections we have described the performance 
of the reconstruction method for exactly known model param-
eters and spike times. In such cases, when there is sufficient 
data available for a full-rank solution the accuracy is limited 
only by machine precision, demonstrating that reconstruc-
tion of large pulse-coupled networks from spike time data is in 
principle feasible.

For real world data one must deal with limitations in our knowl-
edge of neuron parameters, and also uncertainties due to the noisiness 
of the system. Even if spike times themselves are accurately measured 
and correctly assigned to their respective source neurons, spike timing 
is an inherently noisy process with intrinsic contributions from, e.g., 
fluctuations in ion channel dynamics and dendritic integration, as well 
as extrinsic contributions from, e.g., synaptic failure and  dependence 
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Figure 4 | Quality of rank-deficient reconstruction. (A) Various Q
a
 values vs. M 

[N = 50, mean number of presynaptic connections K = 12; model parameters 
(uniform for all neurons) tij = 2 ms, 1/gi = 20 ms, VR,i = 0 mV, VT,i = 20 mV, base 
driving giRiIi = 1.5 mV/ms, ∆I/I = 1%]. (B) Log-log plot of M0.90,0.95 vs. E for networks 
with N = 20–40 neurons and average presynaptic connections K∈{1,2,…,N − 1} 

(over 600 points in total). Q
a
 values for (B) were obtained from averages of 20 trials 

for each N, K combination over each M from 1 to N; simulation parameters 
(unitless, uniform for all neurons) are tij = 0.25, gi = 1 − e−1, VR,i = 0, VT,i = 1, base 
driving giRiIi = 1, ∆I I/ %= 1

10 . For both panels, all networks are random 
homogeneous inhibitory with normally distributed random connection weights.
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dynamics (i.e., “plain” irregular spiking, Section 2.2); to solve net-
works with strong synchronizing tendencies it can, for example, 
make use of multiple randomized external driving conditions. A 
specialization of the method allows it to very efficiently reconstruct 
networks exhibiting simple spike patterns (Section 2.3), a dynamics 
that is reliably generated by a large subset of uniformly inhibitory 
LIF networks. This class is often used as a stand-in for inhibition 
dominated cortical networks (cf. Brunel and Hakim, 1999; Denker 
et al., 2004; Jahnke et al., 2009).

The general method is capable of reconstructing networks with 
several hundred neurons and arbitrary connectivity in a reason-
able time given standard computational resources. In this regard 
the methodology compares favorably with reconstruction meth-
ods previously put forward for neuron networks (Makarov et al., 
2005) and oscillator networks (Yu et al., 2006). Furthermore, the 
method is amenable to an optimization used earlier with recon-
struction techniques for networks with fixed point dynamics 
(Yeung et al., 2002) and periodic dynamics (Timme (2007), cf. 
also Napoletani and Sauer (2008)) that substantially reduces the 
amount of data required.

The method introduced here is one of the first to achieve synapse-
level reconstructions working from spike-based data, and it extends 
recoverability of pulse-based networks far beyond previously acces-
sible sizes. However, as it currently stands, it does have its limitations 
that need to be addressed by future research if it is to be applied to 
biologically realistic data. To begin with, it is model dependent, and 
has to be given fixed known parameter values, even though these 
values need not be the same for every neuron in the network. As well, 
the method requires injection of external currents to individual neu-
rons with a precision not yet generally achievable in an experimental 
setting (Houweling et al., 2010), nor will it work with externally 
undriven or weakly driven systems. While with some modification 
it can handle bounded amounts of noise and/or uncertainty, it is 
sensitive to errors with respect to, e.g., spike sorting.

Neuron models with more realistic spike generation mecha-
nisms are worth further analysis within the response–dynamics idea 
that underlies our methodology. Possible extensions include: the 
spike-response model, a modification of the LIF neuron that incor-
porates refractoriness (Gerstner and Kistler, 2002); the two variable 
adaptive exponential integrate-and-fire neuron, which is capable of 

exact simulation data. The  used = 2 max d
S
. Figure 5B shows how 

our custom quality-of-fit metric Q
a
 scales with applied noise as it 

approaches the model parameter values in magnitude. The a value 
of 0.95 means that we are only considering a reconstructed element a 
hit when its value deviates from the target’s by 5% or less. What may 
not be apparent from the log-log plot is that the decline in accuracy 
scales in a roughly linear way with the noise level, until the last point 
at 1.0 (this jog is an artifact of the Q w

α
( ) weighting used: the method 

can detect insufficient data and suppress untrustworthy results, but 
this feature was turned off for the error level tests; without the self-
diagnostics, when there is no usable data whatsoever the method will 
return a uniformly zero matrix, which will generate correct matches 
for every non-connection in the original network).

Rank-deficient reconstruction as discussed in the previous sub-
section could be used to improve the accuracy of results for noisy 
systems. In our testing we have found that when M is close to but 
strictly less than N, application of SVD plus the L

1
-norm solver acts 

as a numerical filter by forcing spurious low-grade connections 
toward zero strength. The optimal value for M in this case has yet 
to be determined (using M = N − 1 usually gives very similar results 
to full-rank reconstruction). A potential application of the same 
principle is removing real but marginal connections from recon-
struction results in order to obtain simpler connectivity patterns.

4 dIscussIon
Understanding the relationship between structure and function 
of neuronal circuits lies at the very core of neuroscience. Modern 
recording devices, such as MUA that record the extracellular spike 
activity of tens to hundreds of neurons, provide time series whose 
interpretation can aid the understanding of the relevant functional 
connectivity and its spatial structure (cf. Aertsen and Gerstein, 1985; 
Aertsen et al., 1989; Berger et al., 2007, 2010, and others). Yet, to 
reconstruct the detailed connectivity of a neuronal network from 
recorded spike data is beyond recent data analysis techniques due 
to the complexities introduced by both individual neuron dynamics 
and network effects.

Here we have developed an explicit method for the reconstruc-
tion of network connectivity of LIF neurons from spike time infor-
mation that is fast, accurate, and robust. The method works natively 
on networks exhibiting non-stationary complex spatio-temporal 
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were obtained from the same sample network and parameters as shown 
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tions. The complexity analysis provided in Section 3.3 shows for the 
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a much wider range of individual neural behavior (bursting, fast, 
and slow mode, etc., cf. Brette and Gerstner, 2005); and further 
non-linear models such as the quadratic integrate-and-fire neu-
ron (Izhikevich, 2007). Ultimately, the general aim is that a single 
algorithm contains the specifications for a repertoire of different 
models, which can be adapted to particular self-contained networks 
or also parts of networks, given an input model that mimics the 
residual large-scale network or upstream input areas. Since all avail-
able recording techniques have to deal with the general problem 
of undersampling, both with regard to the number of neurons as 
well as with regard to the finite time a stable recording is possible, 
minimizing the data required for desired accuracy is an important 
feature of any potentially useful reconstruction algorithm.

The method presented here is not designed to replace large-scale 
correlation-based methods, as functional connectivity continues to 
be the main approach to reconstruction problems in neuroscience. 
However, to determine the details within the regions of interest 
that functional connectivity studies identify will require methods 
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