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The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled
oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical
Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation
exactly yields Kuramoto dynamics on N -dimensional invariant manifolds. We show that locking of the phase
of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian
action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the
Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite
N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian
systems thus distinctly links dissipative to conservative dynamics.
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I. INTRODUCTION

Spontaneous synchronization constitutes one of the most
prevalent order forming processes in Nature [1]. In 1975,
Kuramoto introduced a now standard model of weakly
coupled limit cycle oscillators to analyze synchronization
processes [2]. The model characterizes the collective dynamics
of a variety of dynamical systems ranging from chemical
reactions [3] and neural networks [4] to coupled Josephson
junctions [5], laser arrays [6], and optomechanical systems [7].
In the Kuramoto model, N phase oscillators are coupled via
their phase differences. The rate of change of each phase φj is
given by

dφj

dt
= ω̃j +

N∑
�=1

K̃j,� sin(φ� − φj ), (1)

where ωj is the intrinsic frequency of the j th oscillator,
j ∈ {1, . . . ,N}, and K̃ denotes the symmetric coupling matrix.
Many studies deal with the important special case of a sym-
metric all-to-all coupling, i.e. K̃j,� ≡ K̃/N for all pairs (j,�),
and random frequencies drawn from a unimodal distribution
g(ω). If K̃ exceeds a certain threshold K̃c, this system exhibits
a phase transition from an incoherent to a synchronous, phase-
ordered asymptotic state in the thermodynamic limit N → ∞.
A second transition to a globally phase-locked state occurs
for much stronger couplings (see, e.g., [8,9] and references
therein). Despite its broad importance, many features of the
Kuramoto model remain unknown. In particular, several of its
relaxation and stability properties and the collective dynamics
for finitely many coupled oscillators seem unusual for a
dissipative system and are still not fully understood [10–15].

In this article, we introduce a class of (classical) Hamilto-
nian systems that exhibit a family of invariant tori on which the
dynamics is identical to that of the Kuramoto model (1). This
class of systems describes for instance the Lipkin-Meshkov-
Glick (LMG) model in the thermodynamic limit [16] or the
mean-field dynamics of a Bose-Einstein condensate (BEC) in a
tilted optical lattice in certain parameter regimes [17,18]. After
demonstrating mathematical equivalence of the Kuramoto and
the Hamiltonian models on the invariant tori, we numerically
and analytically study the full volume-preserving Hamiltonian

dynamics, focusing on the onset of phase locking and its
consequences. Intriguingly, the locking of the phase of one
oscillator to the collective (average) phase implies the onset of
transverse growth of that oscillator’s action off the invariant
tori. We derive an analytic expression quantifying the (phase)
order parameter in terms of the local action instability. Beyond
local dynamics, the deviation from the tori measured by the
inverse participation ratio of the Hamiltonian system provides
a distinguished indicator for the synchronization transition. It
even scales more favorably with system size than the standard
synchronization order parameter.

II. FUNDAMENTALS

Consider the Hamiltonian function

H′(q1,p1, . . .) =
N∑

�=1

ω�

2

(
q2

� + p2
�

) + L

4

(
q2

� + p2
�

)2

+ 1

4

N∑
�,m=1

K�,m(q�pm − qmp�)

× (
q2

m + p2
m − q2

� − p2
�

)
(2)

defined on the N -particle phase spaceR2N for local parameters
ω�,L and symmetric coupling strengths Km,� = K�,m. The
canonical transformation

I� = (
q2

� + p2
�

)/
2 and φ� = arctan (q�/p�) (3)

for � ∈ {1, . . . ,N} simplifies the representation of the Hamil-
tonian in terms of action-angle variables I� and φ� for
uncoupled harmonic (K�,m ≡ 0 and L = 0) oscillators with
single-particle HamiltonianH′

�(q�,p�) = ω�(q2
� + p2

� )/2. This
transformation is invertible if and only if all I� > 0, in
particular if all H′

� > 0. In the new action-angle variables
(I,φ) ∈ RN

+ × SN , the Hamiltonian reads

H(I1,φ1, . . . ,IN ,φN ) =
N∑

�=1

ω�I� + LI 2
� −

N∑
�,m=1

K�,m

√
ImI�

× (Im − I�) sin(φm − φ�) (4)
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and the equations of motion are given by

İj = − ∂H
∂φj

= −2
N∑

m=1

Km,j

√
ImIj (Im − Ij ) cos(φm − φj ), (5)

φ̇j = ∂H
∂Ij

= ωj + LIj +
N∑

m=1

Km,j [2
√

Ij Im sin(φm − φj ).

−√
Im/Ij (Im − Ij ) sin(φm − φj )]. (6)

One important property of these equations of motion is that
they leave specific manifolds invariant. Any state with all
actions homogeneous, Ij ≡ I > 0 for all j , yields dIj/dt = 0
and thus leaves all actions unchanged. Thus the family of toric
manifolds

T N
I = {(I,φ) ∈ RN

+ × SN | ∀j ∈ {1, . . . ,N} : Ij = I } (7)

are invariant under the flow generated by (5) and (6) for each
given I . On one given torus, i.e., for one value of I , the
dynamics of the phases

φ̇j = ωj + LI +
N∑

�=1

2IK�,j sin(φ� − φj ), (8)

equals that of the original Kuramoto model (1) with a rescaled
coupling matrix K̃j,� = 2IK�,j and shifted frequencies ω̃j =
ωj + LI . We conclude that the Hamiltonian function (2)
generates the Kuramoto model on the invariant tori T N

I .
This holds for all symmetric coupling matrices and arbitrary
frequency distributions.

The Hamiltonian dynamical system defined by (5), (6) has
two constants of motion, the Hamiltonian function H itself
and (twice) the total action

C2 =
N∑

j=1

(
p2

j + q2
j

) = 2
N∑

j=1

Ij . (9)

The dynamics (5) is equivariant under a simultaneous
scaling transformation (pj ,qj ) → (Cqj ,Cpj ) for all j and
K → K/C2 for every C > 0, so we fix the normalization
as C2 = N such that K̃ = K without loss of generality and
I = 1/2 defines the Kuramoto manifold T N

1/2. Furthermore,
the dynamics is equivariant with respect to a global phase
shift, because it depends only on the phase differences. The
two constants of motion and the shift-equivariance make
the state space of the full Hamiltonian system effectively
(2N − 3)-dimensional, while the invariant subspace T N

1/2 is
an (N − 1)-dimensional torus. In the following we drop the
subscript 1/2 for convenience.

III. ELEMENTARY MODEL SYSTEMS

What does the Hamiltonian dynamics tell us about the
Kuramoto dynamics on the invariant manifold T N? We first
consider the simplest system with N = 2 units, which arises in
the thermodynamic limit of the Lipkin-Meshkov-Glick model
from nuclear physics [16]; see Appendix A 1 for details. The
phase space structure of the Hamiltonian model is illustrated
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FIG. 1. (Color online) The full Hamiltonian dynamics for N = 2
coupled oscillators. Lines of constant energy of the Hamiltonian (2)
for the frequencies ω2 = ω = −ω1, L = 0 and coupling strength (a)
below the critical one, K < Kc = 2ω, and (b) above. points,

in Fig. 1 for two different values of the coupling strength. For
K := K1,2 = L = 0, there are two elliptic fixed points off the
Kuramoto manifold at (I1,I2) = (0,1) at (I1,I2) = (1,0). When
K exceeds the critical coupling strength Kc = |ω1 − ω2| two
additional elliptic fixed points emerge off and two hyperbolic
(“saddle”) points on T N via a Hamiltonian saddle node
bifurcation. One of the hyperbolic fixed points corresponds to
the phase-locked solution of the Kuramoto model. This phase-
locked state is stable within T N , but unstable transverse to it.

Systems with N � 3 show a much richer dynamics and
suggest the emergence of chaos (cf. Fig. 2). Consider for in-
stance three units with frequencies (ω1,ω2,ω3) = (−2,−1,3).
Whereas for small coupling, K < Kc1 ≈ 1.5, the Poincare
section [19] indicates exclusively regular Hamiltonian dy-
namics [Fig. 2(a)], irregular dynamics [Fig. 2(c)] prevails
for sufficiently large coupling, K > Kc2 ≈ 4.6, with mixed
state space [Fig. 2(b)] for intermediate K . Simultaneous to
the transitions in the full Hamiltonian system, synchronization
appears on the Kuramoto manifold T N as K increases. The
oscillators 1 and 2 are unlocked for weak coupling and phase
lock for K > Kc1, while the phase of the third oscillator
remains incoherent. For K > Kc2, global phase locking sets
in. For all K ∈ [0,∞), the dynamics is nonchaotic within the
Kuramoto manifold (compare also to [20–22]).

Phase locking is indeed closely linked to the instability of
the Hamiltonian action dynamics: For small coupling, where
the Kuramoto dynamics is not phase locked, the actions exhibit
stable dynamics [cf. Figs. 3(a) and 3(c)] and “action locking”
I1 ≈ I2 ≈ I3 ≈ 1/2. In contrast, if the coupling is sufficiently
strong such that oscillators lock their phases, the actions
“unlock” and chaos manifests itself in intermittent bursts of the
actions Ij (t) [cf. Fig. 3(b) and 3(d)]. For intermediate coupling
strengths, regular regions still exist around φ2 − φ1 ≈ 3π/2
[indicated by the trajectories colored in blue and green in
Fig. 2(b)] which confine the chaotic region around the torus T N

and lead to episodes of seemingly regular dynamics between
the bursts.

IV. OSCILLATOR LATTICES

We further analyze the dynamics of a chain of oscillators
with equidistant eigenfrequencies ωn = ωBn and nearest-
neighbor coupling, K�,m = K for |� − m| = 1 and zero
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FIG. 2. (Color online) Emergence of chaos in the full Hamiltonian dynamics? Panels display two-dimensional Poincaré section of the
phase space for N = 3, where the six-dimensional phase space reduces to effectively 2N − 3 = 3 dimensions [19]. Different colors are used
to guide the eye. The oscillator frequencies are (ω1,ω2,ω3) = (−2,−1,3). (a) K = 1 < Kc1, (b) Kc1 < K = 2.25 < Kc2, (c) K = 5 > Kc2.

otherwise. This system describes the dynamics of a Bose-
Einstein condensate in a tilted optical lattice [17,18], which is
a cornerstone model system for the study of nonlinear wave
phenomena [23,24] and correlated quantum matter [25,26].
In a mean-field approximation, the condensate wave function
evolves according to the nonlinear Schrödinger equation.
Expanding the wave function into the localized eigenfunctions
of the single-particle Schrödinger equation yields the Hamil-
tonian system (4) as shown in detail in Appendix A 2. In the
noninteracting limit K = L = 0, all amplitudes rotate with
with bare frequencies ωj leading to periodic revivals which
can be observed as Bloch oscillations [27–29]. The nonlinear
mean-field potential leads to a density-dependent frequency
shift (terms ∼L) and introduces a coupling of nearest-neighbor
eigenstates (terms ∼K).

The dynamics in the vicinity of the Kuramoto manifold
is particularly important for experiments as this corresponds
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FIG. 3. (Color online) Action bursts indicate onset of synchrony.
Panels show the dynamics of three coupled oscillators in the regime
of (a,c) no phase locking and (b,d) partial phase locking. Solid lines
show the dynamics of (a,b) the phases and (c,d) the actions Ij (t). The
initial state is drawn randomly by perturbing the actions Ij (0) off the
manifold Ij ≡ 1/2 by a random amount of the order of 10−4; it is thus
close to but not on T N . Dashed lines show the dynamics of the phases
φj (t) on the submanifold T N , i.e., Kuramoto dynamics. Parameters
are (ω1,ω2,ω3) = (−2,−1,3) and (a,c) K = 1 and (b,d) K = 2.25,
respectively.

to a homogeneous filling of the lattice. Weak nonlinearities
disturb the strictly periodic dynamics, whereas actions remain
“locked”, Ij ≈ I0, as shown in Fig. 4. In experiments this
leads to a damping of the atomic Bloch oscillations [18,30,31].
For stronger nonlinearities pairs of phases can lock, which
implies that the actions Ij unlock such that density fluctuations
start to grow exponentially as shown in Figs. 4(b) and 4(d).
Synchronization in the form of phase locking thus implies the
destruction of a Bose-Einstein condensate in a titled lattice.

V. THE SYNCHRONIZATION TRANSITION

The previous examples reveal the fundamental relation of
synchronization in the Kuramoto model and the instability
of the transverse dynamics: Stable synchronization of the
Kuramoto dynamics implies that the phase space flow is
contracting on the torus T N . As the full Hamiltonian flow
conserves the phase space volume, it must be expanding in
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FIG. 4. (Color online) Dynamics of a chain of N = 9 oscillators
with linearly increasing natural frequencies describing the mean-field
dynamics of a BEC in a tilted optical lattice, in the regime of (a,c)
no phase locking and (b,d) partial phase locking. The initial state is
chosen as a homogeneous BEC with small density fluctuations, i.e.,
Ij (0) = 1/2 + εj with small random perturbations εj of the order
10−4, and random phases φj (0). The initial state is thus close to but
not on T N . Parameters are ωB = 0.25 and (a,c) K = 0.03, L = 0.4
and (b,d) K = 0.15, L = 2 (cf. [17]).
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directions transverse to T N . These expansions are generally
observed as bursts of the Ij [cf. Fig. 4(d)].

To quantitatively understand the relation between synchro-
nization of the phases and the instablity of the actions, we
consider the original version of the Kuramoto model with all-
to-all coupling Kj,� ≡ K/N , L = 0, and frequencies drawn
randomly from a Lorentzian distribution [2]. We analytically
derive the approximate dynamics of perturbations

εj (t) = Ij (t) − I0 (10)

off the torus T N , where I0 = 1/2 via action normalization.
Expanding the equations of motion (5) to first order in εj

(around εj ≡ 0) yields the dynamics

ε̇j =
∑

�

Aj,�(t)ε� , (11)

where Aj,�(t) := K
N

(δj,�[
∑

m cos(φj − φm)] − cos(φj − φ�)).
This expression directly links the action instability to the phase
locking dynamics of the original Kuramoto model: For small
perturbations εj , we approximate the dynamics of the phases
φj (t) by the associated dynamics φT

j (t) on the Kuramoto
manifold T N . Assuming that the phase dynamics is fast, we
further approximate Aj,�(t) by its time-average

Aj,� := K

N
δj,�

[
N∑

m=1

cos
(
φT

j − φT
m

)] − K

N
cos

(
φT

j − φT
�

)
.

(12)

The structure of the matrix Aj,� becomes particularly simple
if N becomes large. The off-diagonal elements decay as 1/N

such that the matrix tends to be diagonal. Carrying out the sum
in the diagonal terms yields

Aj,� = δj,� K r cos
(
φT

j − ψ
) + O

(
1

N

)
, (13)

with the order parameter [10,11]

reiψ = 1

N

N∑
m=1

eiφT
m . (14)

In general, if the phase of an oscillator j is not locked to
the overall phase ψ , the cosine tends to average out (with
time) such that Aj,j ≈ 0. In contrast, Aj,j > 0 if the oscillator
j is locked. Therefore we find that the perturbation εj (t)
grow exponentially if and only if the corresponding phases
are locked, at least for N 
 1.

The numerical example shown in Figs. 5(a) and 5(b)
illustrates this reasoning: Perturbations are particularly large,
where the associated Kuramoto oscillators are phase locked
(shaded regions). In particular, the fastest rate of divergence of
the actions from the invariant manifold is expected for those
oscillators that (i) are locked and (ii) are closest to the overall
phase ψ (center of locking region) such that the cosine term is
maximal.

The largest eigenvalue λ1 of the matrix (Aj,�)j,� dominates
the rate of divergence of the actions for randomly chosen
initial conditions close to the Kuramoto manifold. In the
diagonal approximation (13) for N 
 1 and assuming inde-
pendence of r and cos(φT

j − ψ) such that r cos(φT
j − ψ) =
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FIG. 5. (Color online) Transverse instability of actions predicts
order parameter. (a) Average phase velocity dφj/dt of N = 100
oscillators in the regime of partial phase locking at K = 2.2.
(b) Perturbations |εj (t)| grow off the Kuramoto manifold, shown
after t = 10, starting from εj (0) = ±10−6 with random signs. Exact
numerical results for the Hamiltonian dynamics (�) are displayed in
comparison to the diagonal approximation (11, 13), (�). Actions grow
substantially more for those oscillators that are phase-locked (shaded
area). (c) The prediction of the order parameter from the Hamiltonian
action dynamics (16) (�) well agrees with the actual order parameter
r (14) (—) directly measured from the Kuramoto phases. [N = 250;
data averaged over 100 realizations of the ωj ; vertical lines indicate
standard deviation of (16)] [32].

r × cos(φT
j − ψ) and we obtain

r ≈ 1

K
max

j
Ajj (15)

because φT
j − ψ ≈ 0 for the j yielding the maximum and

thus cos(φT
j − ψ) ≈ 1. This expression explicitly maps the

stability properties of the actions to the locking properties of
the phases. Thus the growth of the action perturbations in the
full Hamiltonian system predicts the synchronization order
parameter via

r ≈ 1

Kt
max

j
log[εj (t)/εj (0)]. (16)

Direct observation of the order parameter from the Kuramoto
phases shows excellent agreement [cf. Fig. 5(c)] with this
prediction.

How can the instability be quantified beyond the linear
approximation (11)? Again, we compare the dynamics on the
Kuramoto manifold T N (with initial actions Ij (0) = 1/2) with
trajectories started in its immediate proximity (initial actions
Ij (0) = 1/2 + εj ), and measure how much these dynamics
deviate from each other by evaluating the variance of (2Ij ).
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For this quantity, the inverse participation ratio, we find

P2 := 〈(2Ij )2〉j − 〈2Ij 〉2
j

〈2Ij 〉2
j

= 1

N

N∑
j=1

(
p2

j + q2
j

)2 − 1 (17)

due to action normalization. By construction, P2 = 0 on the
torus T N .

P2 > 0 indicates that the trajectory leaves the torus T N and
starts to burst. It is known that systems of Kuramoto oscillators
exhibit a phase transition from an incoherent to a synchronized
state at some Kc in the thermodynamic limit N → ∞ [10].
For finite N , however, the transition is strongly blurred and
the order parameter r increases smoothly with K (see also
Fig. 6). Strikingly, the same transition in the full Hamiltonian
system is substantially clearer as indicated by a sharp increase
of the inverse participation ratio P2 > 0 from originally small
values close to zero (Fig. 6). In fact, P2 indicates the transition
more precisely than the Kuramoto order parameter, both with
respect to the finite-size scaling below the transition and the
jump occurring at the transition point Kc [see the insets of
Figs. 6(b) and 6(c)].
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FIG. 6. (Color online) Inverse participation ratio of Hamiltonian
dynamics reveals synchronization phase transition. (a) Order parame-
ter r (◦, left scale) and inverse participation ratioP2 (�, right scale) as
a function of coupling strength K for N = 250 oscillators. Mean-field
theory predicts the onset of phase order in the Kuramoto model
at Kc = 2 (dashed vertical line). (b) width of the transition region
δK , where r increases by 50% from its critical value at Kc, i.e.,
r(Kc + δK) = 1.5 r(Kc) as a function of the number of oscillators N .
(c) Finite size scaling of r and P2 for a subcritical coupling strength
K = 1.8. Initial actions are Ij = 1/2 (◦) and Ij = 1/2 + εj (�),
where the εj are drawn from a Gaussian distribution with standard
deviation 10−4. All data points are averages over 100 realizations
each [32].

VI. SUMMARY

We have analytically and numerically demonstrated that a
family of Hamiltonian systems bears the celebrated Kuramoto
model of coupled oscillators as dynamics on its invariant (toric)
manifolds T N

I . Interestingly, the emergence of phase locking is
equivalent to the emergence of a transverse instability off such
a torus. An important consequence has been explicated for
the dynamics of a Bose-Einstein condensate in a tilted optical
lattice. The onset of phase locking between the lattice wells
implies a dynamical instability and thus the destruction of the
condensate. Moreover, studying the Hamiltonian systems can
support our understanding of the collective dynamics of the
Kuramoto model, in particular for finite N . The divergence of
the actions quantifies the standard order parameter of the exact
Kuramoto dynamics on T N

I . The inverse participation ratio
provides a distinguished indicator for the onset of transverse
instability in the full Hamiltonian system and, consequently,
the onset of synchronization of the Kuramoto phase dynamics.
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APPENDIX: PHYSICAL REALIZATIONS
OF THE HAMILTONIAN SYSTEM

In this Appendix we provide details on the physical
systems exhibiting the discussed Hamiltonian dynamics and
discuss the occurrence of chaos. In Sec. A 1 we demonstrate
how the Hamiltonian Kuramoto model with N = 2 oscilla-
tors arises in the thermodynamic limit of the longitudinal
Lipkin-Meshkov-Glick model. This model was originally in-
troduced in nuclear physics [16], and a variety of different
experimental realizations have been propsed in recent years
[33–35]. In Sec. A 2, we analyze the mean-field dynam-
ics of Bose-Einstein condensates in tilted optical lattices
described by the Gross-Pitaevskii or nonlinear Schrödinger
equation [23,24]. Expanding the condensate wave func-
tion into the localized single-particle eigenstates yields the
Hamiltonian model we introduced with a nearest-neighbor
coupling [17,18].

1. Kuramoto dynamics in the themodynamic limit
of the Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model is a standard
model in statistical physics which was originally introduced to
analyze shape transitions of atomic nuclei [16,36]. It describes
N indistinguishable particles with two internal states, e.g., N

hadronic spins or N two-level atoms. The particles interact
symmetrically with each other and with an external magnetic
field h. The hamiltonian in its most general form is then
given by

Ĥ = 1

N

(
λxŜ

2
x + λyŜ

2
y

) + hzŜz + hyŜy . (A1)
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Traditionally, the case of a purely transversal field (hy = 0) has
received the most interest. However, a longitudinal field arises
naturally in many quantum-optical realizations of the LMG
model [33–35]. The LMG model is formulated in terms of the
collective spin operators Ŝx,y,z. The operator Ŝ± = Ŝx ± Ŝy

generates (+) or annihilates (−) one collective spin excitation.
The operator Ŝz is the population difference of excited and
nonexcited spins or atoms, repectively. These operators form
an angular momentum algebra with quantum number N/2,

[Ŝa,Ŝb] = +iεa,b,cŜc,

Ŝ2
x + Ŝ2

y + Ŝ2
z = N

2

(
N

2
+ 1

)
, (A2)

where εabc is the totally asymmetric tensor. Using the con-
servation of the total angular momentum (A2) and rotating
the coordinate system according to Ŝy = (Ŝ ′

z + Ŝ ′
y)/

√
2 and

Ŝz = (Ŝ ′
z − Ŝ ′

y)/
√

2, the LMG Hamiltonian reads

H ′ = λy − 2λx

2N

(
Ŝ ′2

y + Ŝ ′2
z

) + λy

2N
(Ŝ ′

yŜ
′
z + Ŝ ′

zŜ
′
y)

+ hy + hz√
2

Ŝ ′
z + hy − hz√

2
Ŝ ′

y . (A3)

up to a constant.
In the thermodynamic limit, the dynamics of the LMG

model is equivalent to the Hamiltonian Kuramoto model
introduced in the main text for the parameters

λy = 2λx =: −4K,

hy = hz =:
�ω√

2
. (A4)

To show this we calculate the evolution equations for the
expectation values sa = 2〈Ŝ ′

a〉/N using Heisenberg equations.
This yields

ṡx = −2K
(
s2
z − s2

y

) − �ωsy − 4K

N
(Czz − Cyy),

ṡy = −2Ksysx + �ωsx − 4K

N
Cxy , (A5)

ṡz = −2Ksxsz − 4K

N
Cxz .

using units where � = 1. In the thermodynamics limit
N → ∞ the terms including the covariances Cab := 1

N
〈Ŝ ′

aŜ
′
b +

Ŝ ′
bŜ

′
a〉 − 2

N
〈Ŝ ′

a〉〈Ŝ ′
b〉 can be neglected. Then we evolution

equations close and we obtain a classical dynamical system.
The equivalence to the Hamiltonian Kuramoto model can be
seen explicitly by the parametrization of the Bloch vector,

⎛⎝sx

sy

sz

⎞⎠ =
⎛⎝

√
1 − �I 2 cos(�φ)√
1 − �I 2 sin(�φ)

�I

⎞⎠. (A6)

One then finds the evolution equations for the paramters

d

dt
�φ = �ω − 2K

√
1 − �I 2 sin(�φ)

+ 2K
�I 2

√
1 − �I 2

sin(�φ),

d

dt
�I = − 2K �I

√
1 − �I 2 cos(�φ).

(A7)

These equations are equivalent to the Hamiltonian Kuramoto
model with N = 2 oscillators and L = 0 introduced in the
main text if we identify �I = I2 − I1, �φ = φ2 − φ1, and
�ω = ω2 − ω1.

2. Kuramoto dynamics of Bose-Einstein condensates
in tilted optical lattices

Ultracold atoms in optical lattices provide a unique exper-
imental system to study fundamental aspects of condensed
matter physics [26], quantum-field theories [37–40], or non-
linear dynamical systems [23,24]. For very low temperatures
and intermediate densities, bosonic atoms condense to a single
quantum state (Bose-Einstein condensation), which can be
described in a mean-field approximation. The dynamics of the
order parameter or condensate wave function ψ(x,t) is then
described by the Gross-Pitaevskii or nonlinear Schrödinger
equation (NLSE)

i�
∂

∂t
ψ(x,t) =

(
− �

2

2m

∂2

∂x2
+ V (x) + g|ψ |2

)
ψ(x,t). (A8)

The atoms experience a nonlinear mean-field potential
g|ψ(x,t)|2, which is proportional to the density of the
condensate. Here, we consider the case of an accelerated or
tilted one-dimensional optical lattice,

V (x) = V0 cos2(kx) + Fx. (A9)

The one-dimensional limit can be realized by a tight con-
finement of the atoms in the radial directions, while the
external field F can be realized by accelerating the entire
lattice [27], by gravity or by magnetic gradient fields [30,31]. A
similar equation describes the light propagation in periodically
structured nonlinear optical media [41].

The mean-field dynamics can be understood by expanding
the wave function into the eigenstates of the linear system, the
so-called Wannier-Stark resonance states [28,29]. The linear
system has a fundamental symmetry: it is invariant under a
combined translation by the lattice period d = π/k and a shift
of the energy by Fd. The eigenstates are therefore organized
in ladders,

α,n(x) = α,0(x − dn),

Eα,n = Eα,0 + dFn, (A10)

where  is the wave function and E the energy of the
eigenstates. Each ladder α = 0,1,2, . . . roughly corresponds
to one Bloch band in the field-free case and n ∈ Z labels the
rung of the ladder.

If the external field is not too strong, Landau-Zener tun-
neling between the bands can be neglected and the dynamics
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takes place in the ground ladder α = 0 only. Expanding the
NLSE into the Wannier-Stark resonance states

ψ(x,t) =
+∞∑

n=−∞
cn0,n(x) (A11)

then yields the equations of motion [17,18]

iċn = −ωncn + g
∑
k,�,m

χk,�,mc∗
n+kcn+�cn+m. (A12)

The linear eigenfrequencies are equidistant,

ωn = −ωB n, (A13)

where ωB = dF/� is the Bloch frequency, and the coupling
coefficients are given by

χk,�,m = 1

�

∫ +∞

−∞
∗

0,0(x)∗
0,k(x)0,�(x)0,m(x) dx. (A14)

The dynamics becomes much simpler if the lattice is not
too shallow. The Wannier-stark states n(x) are strongly
localized such that only few of the coupling coefficients
χk,�,m significantly differ from zero. The most important
contributions are then given by the terms proportional to

gχ0,0,0 =: −L,

gχ0,0,+1 ≈ −gχ0,0,−1 =: −K

and all other contributions can be safely neglected. The
evolution equations then read

iċn = −ωncn − L|cn|2cn

−K
[
(c∗

n+1 − c∗
n−1)c2

n + 2|cn|2(cn+1 − cn−1)

+ |cn−1|2cn−1 − |cn+1|2cn+1
]
. (A15)

To further analyze this dynamics, we decompose the cn into
amplitude and phase according to

cn =
√

Ine
i(φn−nπ/2). (A16)

The additional constant phase shift e−inπ/2 has been introduced
for notational convenience and has no physical consequences.

This yields the equations of motion

İn = − 2K[
√

In+1In(In+1 − In) sin(φn+1 − φn)

+
√

In−1In(In−1 − In) sin(φn−1 − φn)], (A17)

φ̇n = ωn + LIn + K[2
√

In+1In sin(φn+1 − φn)

−
√

In+1/In(In+1 − In) sin(φn+1 − φn)

+ 2
√

In−1In sin(φn−1 − φn)

−
√

In−1/In(In−1 − In) sin(φn−1 − φn)]. (A18)

This is equivalent to the Hamiltonian system analyzed in the
main text with equidistant frequencies defined by (A13) and
nearest-neighbor coupling given by the coupling matrix

K�,m =
{
K for |� − m| = 1,

0 else. (A19)

This dynamical system becomes classically chaotic when
the interaction strength increases as shown by Thommen
et al. [17]. The authors show that chaos first appears for a very
inhomogeneous filling, i.e., when the actions In differ signif-
icantly, and explain this scenario in terms of the Kolmogorov
Arnold Moser (KAM) theorem. In the present paper we
analyze the dynamics for a different scenario. The Kuramoto
manifold defined by In ≡ I corresponds to a homogeneous fill-
ing of the lattice, which is commonly realized in experiments.

The results presented in the main manuscript show
that phase locking implies the transversal instablity of the
Kuramoto manifold. For a Bose-Einstein condensate this
corresponds to an unstable dynamics of the atomic density.
Even more, a dynamical instability of the classical mean-field
dynamics implies a dynamical instability of the underlying
quantum dynamics, leading to an exponentially fast depletion
of the condensate mode [42–44]. We thus conclude the
following: Phase locking between different wells of the optical
lattice implies the destruction of the Bose-Einstein condensate.
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