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Spreading phenomena on networks are essential for the collective dynamics of various natural and

technological systems, from information spreading in gene regulatory networks to neural circuits

and from epidemics to supply networks experiencing perturbations. Still, how local disturbances

spread across networks is not yet quantitatively understood. Here, we analyze generic spreading

dynamics in deterministic network dynamical systems close to a given operating point. Standard

dynamical systems’ theory does not explicitly provide measures for arrival times and amplitudes of

a transient spreading signal because it focuses on invariant sets, invariant measures, and other

quantities less relevant for transient behavior. We here change the perspective and introduce

formal expectation values for deterministic dynamics to work out a theory explicitly quantifying

when and how strongly a perturbation initiated at one unit of a network impacts any other. The

theory provides explicit timing and amplitude information as a function of the relative position of

initially perturbed and responding unit as well as depending on the entire network topology.

Published by AIP Publishing. https://doi.org/10.1063/1.5000996

Networked systems characterize a large number of natu-

ral and man-made systems. Transient spreading phenom-

ena fundamentally underlie the dynamics of these

systems: an outbreak of a disease at one place may spread

through a human mobility network on continental scales

and a load shedding of a single power plant impacts dis-

tant parts of the power grid. It thus constitutes a natural

question when, how long, and how strongly such a pertur-

bation affects other units in the network. Interestingly,

this question does not possess a simple answer in stan-

dard dynamical systems theory, which often neglects

such transient dynamics. In this article, we introduce and

analyze intuitive measures for characteristic response

times and magnitudes via effective expectation values,

exploiting the formal equivalence between the activities

of each unit in the network to a probability density in

time. We derive simple analytical expressions for these

measures in linear dynamical systems. Across model sys-

tems, this makes it possible to analytically quantify tran-

sient spreading dynamics as a function of the network’s

interaction topology.

I. INTRODUCTION

Many collective transient phenomena are initiated by

perturbing some simple base state, for instance, a fixed

(operating) point in a deterministic dynamical system or a

stationary probability distribution of a Markov chain. For

network dynamical systems, such initial perturbations often

affect only a single unit and are thus local in the topology of

the network. Examples range from the start of an epidemic

in a population of susceptible agents (natural or artificial)1,2

to the failure of a single infrastructure in a supply net-

work.3–7 If a single unit’s variable is initially perturbed from

a given fixed point value, other units in the network will be

transiently affected by such a perturbation, with relevant

consequences only at some later time. Natural questions thus

include “at which time does a transient signal reach a given

unit?” and “how strongly does the signal affect that unit?”

Despite the growing interest in spreading and propaga-

tion processes, non-trivial waves, and other transient phe-

nomena,1,7–16 there is no general answer to these questions.

For certain stochastic systems, there is recent mathematical

progress in quantifying first arrival and routing times.2,17–19

For general deterministic dynamical systems, several mea-

sures have been proposed to quantify the response strengths

and time or duration of transients, based, for example, on the

H2-norm that describes the total squared deviation from the

operating point.20–23 It is possible to establish upper bounds

on the response magnitudes, relevant for systems where

deviations in a defined region of state space are allowed.24

However, major questions remain open even for simple

dynamical systems, mainly because existing mathematical

theory of such systems is restricted to mostly two relevant

classes of general statements: one about long term behavior,

characterized by different types of invariant sets such as

attractors in dissipative systems, and a second about statisti-

cal properties such as those captured by invariant measures
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in chaotic and stochastic dynamical systems. These two

classes of statements both do not explicitly capture transient

phenomena.

Mathematically, for instance, it becomes impossible to

provide an explicit formula for the time tpeak
i of the maxi-

mum magnitude of the transient signal at a given unit i as

soon as the network topology becomes non-trivial. Even for

linear dynamics, this impossibility persists because the task

is equivalent to solving a transcendental equation. The same

problem transfers to the signal amplitude at that time such

that quantifying arrival times and perturbation impact in net-

work dynamical systems constitutes an open challenge.

Here, we propose an alternative perspective to charac-

terize transient spreading dynamics in network dynamical

systems. We do not attempt to approximate peak positions of

maxima of the units’ variables in time and the respective

peak heights. Instead, we introduce a complementary per-

spective on the problem: For a class of local dynamics close

to given operating (fixed) points, we exploit the formal

equivalence of the units’ state trajectories xiðtÞ to probability

densities in time t after suitable normalization. We derive

formal expectation values that represent characteristic

response times and magnitudes. We analytically derive exact

expressions for these response measures as an explicit func-

tion of the matrix determining the network topology.

II. NETWORK DYNAMICAL SYSTEM AND PROBLEM
SETTING

Consider a network dynamical system

dy

dt
¼ FðyÞ (1)

of N coupled units whose collective dynamics is close to a

stable operating point y� 2 RN , where Fðy�Þ ¼ 0. The sys-

tem’s dynamics can then be specified in new difference vari-

ables xðtÞ ¼ yðtÞ � y� satisfying linear equations of the type

dx

dt
¼ Mx; (2)

where xðtÞ ¼ ðx1ðtÞ;…; xNðtÞÞT 2 RN defines the states xiðtÞ
of the unit i at time t 2 R and M ¼ DFðy�Þ 2 RN�N is a

weighted matrix. We also refer to xiðtÞ as the activity of unit

i at time t. We consider M to have only non-negative off-

diagonal elements with Mij¼ 0 if there is no direct interac-

tion from unit j to unit i. Wherever an element Mij> 0 for

j 6¼ i, unit i is directly coupled to j. Such systems arise not

only in network dynamical systems [Eq. (1)] of coupled units

i near fixed (operating) points but also naturally occur in

time-continuous master equations25 for probabilities PiðtÞ
� xiðtÞ of the system to be in state i at time t.

For a specific example class that we use for illustration

below, consider a strongly connected directed graph G with

the weighted graph adjacency matrix A with elements Aii¼ 0

and Aij � 0 for i 6¼ j.
A graph is strongly connected if there are directed paths

k! � � � ! j from every unit k to every other unit j. If a graph

has several disconnected, strongly connected components, we

consider each strongly connected component separately.

If and only if the underlying graph has a directed edge

from unit j to unit i, we have Aij ¼ aij > 0, describing the cou-

pling between nodes i and j. The associated graph Laplacian is

L ¼ D� A where the diagonal matrix D has entries

Dii ¼
XN

j¼1

Aij (3)

for i 2 f1;…;Ng and Dij¼ 0 for i 6¼ j. The matrix M ¼ �L
�diagi2f1;…;NgðbiÞ then has entries Mii ¼ �bi �

P
j aij < 0

and Mij ¼ aij � 0 and describes both the internal dynamics

of the individual units (bi) as well as the coupling between

the units (aij):

Definition 1 (Linearized dynamics of coupled units). A
network of coupled units close to a fixed operating point is
described by

dxi

dt
¼ Mxð Þi ¼ �bixi þ

XN

j¼1

aij xj � xið Þ; (4)

xið0Þ � 0;

where at least one node k 2 1;…;Nf g is initially perturbed
xkð0Þ > 0. The matrix M is irreducible and has entries aij

� 0 and bi > 0.

This definition assures that M is negative diagonally

dominant and consequently all eigenvalues have negative

real part, meaning that x� ¼ ð0; 0;…; 0ÞT is a linearly stable

fixed point and all perturbations eventually decay exponen-

tially for large times t. Additionally, irreducibility of M
ensures that the network is strongly connected and all nodes

will be affected by an initial perturbation.

How does a perturbation applied at some unit k spread

across the network? When and how strongly do other units i
respond to the initial perturbation? How do these responses

depend on the relative locations of the units and the features

of the network topology? For the linear dynamical system

(Definition 1) with a single perturbed node

x0 :¼ xð0Þ ¼ ð0; 0;…; 1|{z}
xkð0Þ

; 0;…; 0Þ; (5)

the complete time-dependent trajectory

xiðtÞ ¼ exp ðMtÞx0½ �i ¼ exp ðMtÞ½ �ik (6)

is known analytically [here exp ð�Þ ¼ e� is the matrix expo-

nential]. Yet, a number of key obstacles hinder immediate

answers, as we will see below. In the current article, we con-

tribute to exactly specifying and analytically answering the

open questions raised above by changing the perspective

about how to address them.

III. TRANCENDENTAL EQUATIONS DETERMINE
STANDARD RESPONSE TIMES

Direct numerical simulations across a range of random

and regular network topologies (Fig. 1) suggest that the units
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respond to an initial perturbation in a characteristic way: we

observe that, as expected, all but the initially perturbed units’

state variables grow from zero to positive values, then decay

to zero exponentially, and thus exhibit (at least) one maxi-

mum in between.

In this article, we focus on the question of how to char-

acterize and quantify such transient dynamics, in particular

by determining the unit-dependent response times and

response strengths [Fig. 1(b)].

One natural characteristic measure for the response time

that may be interpreted as the time of signal arrival at unit i
is the peak time tpeak

i , where

dxi

dt

���
tpeak

i

¼ 0 and
d2xi

dt2

���
tpeak

i

< 0 (7)

and the activity amplitude xiðtpeak
i Þ at that time. In the gen-

eral case when there may be multiple extrema satisfying

Eq. (7), we define tpeak
i as the time of the first maximum.

Despite knowing the complete analytic solution [Eq. (6)],

an analytic expression for these times does not exist. In

fact, the equations

XN

j¼1

Mij eMtpeak

i x0

� �
j
¼! 0 (8)

that determine the maximum times tpeak
i contain differently

weighted sums of different exponentially decaying functions

and are not only implicit but also typically transcendental.

Only under strong conditions, for instance if the system is

very sparse such that unit i receives only one connection

from one other unit in the network, Eq. (8) becomes analyti-

cally solvable for tpeak
i .

A second candidate measure for a characteristic

response time is the time t
ðcÞ
i until the activity at unit i

increased above a certain predefined constant xiðtðcÞi Þ � c. In

analogy to tpeak
i in Eq. (7), the time

t
ðcÞ
i ¼ arg min

t>0
eMtx0

� �
i � c

n o
(9)

is again given implicitly by a transcendental equation.

Moreover, this time t
ðcÞ
i depends on an arbitrary parameter c

that is additionally introduced and, if chosen too large, t
ðcÞ
i

may not even exist for some units i.

IV. ALTERNATIVE PERSPECTIVE ON RESPONSE
TIMES

In the following, we propose an alternative perspective

to measure characteristic response times and response mag-

nitudes in linear network dynamical systems with arbitrary

interaction topology as in Definition 1. Instead of attempting

to approximate peak positions or threshold crossing times

discussed above, we first show that the units’ state trajecto-

ries xiðtÞ are positive for all times t> 0. Normalizing them

we interpret the new quantity qiðtÞ / xiðtÞ as a probability

density and use analogues to expectation values such as htii
:¼
Ð1

0
tqiðtÞdt to define characteristic response times,

response durations, and response magnitudes.

To be able to exploit the analogy to probability densi-

ties, we first establish positivity.

Lemma 1 (All component dynamics are positive). The
system given in Definition 1 has positive activities of all units
for all positive times: the solution xðtÞ of Eq. (4) satisfies
xiðtÞ > 0 for all t 2 ð0;1Þ and all i 2 f1;…;Ng.

Proof. The solution dynamics [Eq. (6)] of unit i are
given by

xiðtÞ ¼
XN

j¼1

eMtð Þijxjð0Þ: (10)

Define a matrix

C :¼ M þ bIN; (11)

where b > maxifjMiijg and IN 2 RN�N denotes the identity
matrix. Then C is an irreducible matrix with strictly positive
diagonal entries Cii> 0 and non-negative off-diagonal
entries. Consequently, all entries ½Cn�ij � 0 for all n � 0 and
there exists n� 2 N such that, for all n � n�, Cn is strictly
positive, that means ½Cn�ij > 0 for all i; j 2 f1; 2…Ng (C is a
primitive matrix). Consequently, the matrix exponential
is also strictly positive, ðeCtÞij ¼

P1
n¼0 tn½Cn�ij=n! > 0, for

all i; j 2 f1;…;Ng and all positive t. Thus, we have for all
t> 0

FIG. 1. Dynamics of a transient perturbation spreading in a network of coupled units. (a) Network with N¼ 8 units and jEj ¼ 16 links describing directed inter-

actions with aij ¼ 1 and bi ¼ b ¼ 0:5 (Definition 1). (b) Response for an initial perturbation at unit k¼ 1, i.e., with initial condition xið0Þ ¼ di;1. The response

of each node is colored according to the node color in panel (a). Whereas the activity of the initially perturbed unit k¼ 1 (red curve) decays exponentially, the

activity dynamics of all other units are non-monotonic and generically exhibit (at least) one maximum.
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xiðtÞ ¼
XN

j¼1

eMtð Þijxjð0Þ;

¼
XN

j¼1

eCt�bINt½ �ijxjð0Þ;

¼
XN

j¼1

e�bt eCtð Þijxjð0Þ > 0; (12)

for all i; k 2 f1;…;Ng. �

Understanding that the response of a unit is always posi-

tive, it is natural to define the total response strength Zi.

Definition 2 (Total response strength). The total
response strength Zi of a unit i is given by

(13)

Since the analytical solution for xiðtÞ is known [Eq. (6)],

we can express Zi in terms of the matrix M defining the sys-

tem in Definition 1.

Lemma 2 (Total response strength). The total response
strength Zi of a unit i is given by

(14)

Proof.

Zi ¼
ð1

0

xiðtÞdt;

¼ð6Þ
ð1

0

exp ðMtÞx0

� �
i

;

¼ M�1 exp ðMtÞx0j10
	 


i;

¼ � M�1x0

� �
i :

Alternatively, we can simply integrate the differential
equation [Eq. (4)], see Appendix A. �

In particular, for initial perturbation of a single unit k
[Eq. (5)], we obtain

Zi ¼ �ðM�1Þik: (15)

Given this definition of the response strength and the

positivity of the units’ response dynamics xiðtÞ established in

Lemma 1, we interpret the response density

(16)

as a probability density. Note that standard response character-

istics, such as the peak response time tpeak
i , correspond to stan-

dard characteristics of a probability distribution, such as the

mode of distribution. We follow this similarity and interpret

also the expectation values as characteristic response mea-

sures, all of which are illustrated and summarized in Fig. 2.

We interpret the effective expectation value of t with

respect to qiðtÞ as the characteristic response time of unit i.
Definition 3 (Characteristic response time). The charac-

teristic response time htii of a unit i is given by

(17)

Lemma 3 (Characteristic response time). The character-
istic response time htii of a unit i is given by

(18)

Proof. We first calculateð1
0

txiðtÞdt ¼
ð1

0

t exp ðMtÞx0½ �idt

¼ M�1t expðMtÞx0j10 �
ð1

0

M�1 exp ðMtÞx0 dt

� �
i

¼ �M�2 exp ðMtÞx0j10
	 


i

¼ M�2x0

� �
i :

Together with Lemma 2 and the definition of qiðtÞ [Eq. (16)],
we arrive at the result. �

In particular, for initial perturbation of a single unit [Eq.

(5)], we obtain

htii ¼ �
ðM�2Þik
ðM�1Þik

: (19)

This provides information on the time when a perturbation

affects a unit. In order to also obtain a measure describing how

strongly this unit is affected, we similarly interpret the standard

deviation as the characteristic response duration.

Definition 4 (Characteristic response duration). The
characteristic response duration ri of a unit i is given by

(20)

FIG. 2. Quantifying the response to perturbations. Illustration of the charac-

teristic response measures derived from the interpretation of the response

xiðtÞ to a perturbation at unit k as a probability density over t [Eq. (16)]. The

effective expectation value htii describes the characteristic response time

and the standard deviation ri describes the characteristic response duration.

Assuming a response with fixed magnitude for the duration ri with total

impact Zi, Hi then describes the characteristic response magnitude. Standard

measures such as the peak response time tpeak
i and the response amplitude

xiðtpeak
i Þ correspond to the mode of the “distribution.”
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Lemma 4 (Characteristic response duration). The char-
acteristic response duration ri of a unit i is given by

(21)

Proof. We first calculateð1
0

t2 exp ðMtÞx0dt

¼ t2M�1 exp ðMtÞx0j10 �
ð1

0

2tM�1 exp ðMtÞx0dt

¼ �2tM�2 exp ðMtÞx0j10 þ
ð1

0

2M�2 exp ðMtÞx0dt

¼ þ2M�3 exp ðMtÞx0j10
¼ �2M�3x0 : (22)

We thus obtain ht2ii ¼
�2ðM�3x0Þi

Zi
. The lemma then follows

directly from hðt�htiiÞ
2ii ¼ ht2ii�hti

2
i and Eqs. (14)

and (18). �

For the particular initial condition [Eq. (5)], this becomes

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM�3ÞikðM�1Þik � ðM�2

ik Þ
2

q
�ðM�1Þik

: (23)

The definition of the characteristic response magnitude,

describing how strongly a unit is affected by the initial perturba-

tion, then follows naturally as the quotient of the total strength

Zi and the characteristic duration ri, illustrated in Fig. 2.

Definition 5 (Characteristic response magnitude). The
characteristic response magnitude Hi of a unit i is given by

(24)

For the particular initial condition [Eq. (5)], this becomes

Hi ¼
ðM�1

ik Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðM�3ÞikðM�1Þik � ðM�2
ik Þ

2
q : (25)

The definitions, Eqs. (13), (17), and (24), thus yield

explicit analytically derived quantifiers for the total response

strength, the characteristic response time, and the character-

istic response magnitude of unit i. Importantly, these deriva-

tions hold for arbitrary network topologies as defined above

(Definition 1). We note again that we can consider each com-

ponent of the graph separately. Otherwise, if there is no

directed path from unit k to i, this node will be unaffected by

the perturbation and xiðtÞ ¼ 0 for all t. Consequently, we

have a total impact of Zi ¼ ðM�1Þik ¼ 0 such that the arrival

time and the other measures are not defined for these nodes.

V. ILLUSTRATING EXAMPLES

A. Directed homogeneous chains

To illustrate these response quantifiers, we consider a

basic example, a directed chain network which consists of N

units coupled only to one neighboring unit via a directed link

with identical coupling strength aij � a [Fig. 3(a)]. We

assume for each unit i identical internal dynamics bi � b.

The dynamics of the directed homogeneous chain is then

given by

_x ¼

�b 0 … 0

a �ðbþ aÞ … 0

..

. . .
. . .

. ..
.

0 … a �ðbþ aÞ

0
BBBBBB@

1
CCCCCCAx: (26)

We consider the initial condition x0 ¼ ð1; 0;…; 0Þ, per-

turbing the first unit k¼ 1 in the chain. In this particular

case, all quantities characterizing the response behavior can

be written explicitly as functions of the parameters a and b
and the position of the node i. This allows us to gain intuition

about how the measures proposed in the previous section

quantify perturbation spreading in networks and to see how

they compare to the standard measures.

The trajectory of each node i can be solved analytically,

which reads

xiðtÞ ¼
e�bt for i ¼ 1

e�bt 1� e�at
Xi�2

j¼0

ðatÞj

j!

0
@

1
A for i � 2 :

8>>><
>>>: (27)

As discussed in Sec. III, the measures characterizing the net-

work response latency, the signal arrival time tpeak
i , and the

activity amplitude xiðtpeak
i Þ cannot be determined analytically

via Eq. (7).

Alternatively, we analytically quantify the network

response times and response magnitudes from the probabilis-

tic perspective we proposed in Sec. IV. Using Eqs. (13),

(16), (17), (20), and (24), we obtain the effective partition

function Zi, the effective probability density qiðtÞ, the char-

acteristic response time htii, the characteristic response dura-

tion ri, and the characteristic response magnitude Hi as

follows:

Zi ¼
1

b
a

aþ b

� i�1

; (28)

qiðtÞ ¼
a

aþ b

� 1�i

be�bt 1� e�at
Xi�2

j¼0

ðatÞj

j!

0
@

1
A; (29)

htii ¼
aþ ib

abþ b2
; (30)

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2abþ ib2

p
ðabþ b2Þ

; (31)

Hi ¼
ðaþ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 2abþ ib2
p a

aþ b

� i�1

: (32)

For the detailed calculations, see Appendix B. Together

with the graph distance d � dði; 1Þ ¼ i� 1 between node i
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and the initially perturbed node 1, these equations also pro-

vide an explicit dependence.

How do these novel quantities characterize the perturba-

tion spreading in networks compared with the common mea-

sures, i.e., the first peak time tpeak
i and the activity amplitude

xiðtpeak
i Þ?
Figure 3(b) shows the response of the first few nodes in

the chain. The larger the distance from the source of the per-

turbation, the later the response occurs and the weaker it is.

While the quantitative values of htii and tpeak
i are different,

both measures show that the perturbation propagates through

the chain ballistically, which means with a unit-independent

speed (at least for large distances d) [see Fig. 3(c)]. Using

Eq. (30), we calculate the speed with respect to the distance

d from the origin of the perturbation as

Cchain :¼ dhtii
dd

� �1

¼ aþ b (33)

which agrees with the speed obtained from the observed

arrival times. Similarly, even though the measures of the

characteristic response magnitude Hi and the peak response

xiðtpeak
i Þ are different, we find identical scaling of both

quantities with increasing distance. Figure 3(d) illustrates

this scaling for the first nodes in the chain and shows that the

characteristic response magnitude Hi and the response ampli-

tude xiðtpeak
i Þ differ by a constant factor when the distance is

large but show the same scaling with increasing distance.

Altogether, these results demonstrate that the proposed

measures accurately characterize the response strength and

time.

B. Consistent quantification across topologies and
perturbed units

Can these measures also characterize the response for

complex coupling topologies? To investigate how consistent

the quantifiers are across different network topologies and

the choice of the perturbed unit, we study 10 systems

(Definition 1) with random topologies by perturbing each

unit one by one and measuring the responses. Figure 4 shows

that no matter which node is perturbed initially, the response

is accurately characterized by the characteristic response

time and magnitude. Like for the chain, the characteristic

response time htii is slightly larger than the peak response

time tpeak
i by an additive constant and shows ballistic

FIG. 3. Perturbation spreading in a directed chain. Illustration of the measures introduced above, describing approximate time and impact of the perturbation.

(a) Illustration of the network topology, a directed chain with N¼ 100 nodes and b¼ 1. The node at the beginning of the chain was perturbed. (b) Response

dynamics of the first 5 nodes in the chain. (c) Comparison of the characteristic response time htii and the peak response time tpeak
i for a ¼ 1. Both values scale

identically with increasing distance from the perturbation and the absolute difference is almost constant. The perturbation spreads with a constant speed, as pre-

dicted by Eq. (33) and shown as the black dashed line. For large distances, the approximation becomes more and more accurate, and the relative distance

decays for increasing d, independent of a (see inset). (d) Measurements of the strength of the perturbation given by the characteristic response magnitude Hi,

the response at the characteristic response time xiðhtiiÞ, and the response amplitude xiðtpeak
i Þ. All values scale identically with increasing distance from the per-

turbation. The height Hi overestimates xiðtpeak
i Þ by a constant factor, when the distance is large compared to the coupling strength (see inset).
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spreading of the perturbation with a constant speed for large

distances d. Likewise, the characteristic response magnitude

Hi is larger than the response amplitude xiðtpeak
i Þ by a con-

stant factor. Across all 100 random topologies tested and all

units perturbed in each network, the quantifiers consistently

indicate the same distance-dependent response times and

response magnitudes with only small deviations. These

results remain qualitatively identical across various classes

of interaction topologies as shown in Appendix C. This sug-

gests the possibility to modify these characteristic response

measures, for example, by rescaling the characteristic

response duration ri, to derive estimators for the actual peak

response times and magnitudes. Future work must show if

these estimators would become exact in the limit of large

distances as suggested by our results and whether universal

estimators can be defined independently of the network

topology.

In all figures, we compare our measures to the time and

height of the first peak of xiðtÞ to illustrate that the proposed

effective expectation values yield accurate qualitative char-

acterizations of the transient dynamics of the perturbation

spreading in the network. Given a general network with

general coupling strengths, it is possible that xiðtÞ is not in

fact unimodal and may have multiple peaks, especially in

scale-free or star-like networks. Still, measures such as the

total response strength and the characteristic response time

describe the relative dynamics of the perturbation with only

a few numbers. If needed, one can easily extend the above

definitions to include higher-order measures such as skew-

ness to more accurately describe the perturbation.

VI. SUMMARY AND CONCLUSIONS

How networked systems transiently respond to external

signals fundamentally underlies their robustness against per-

turbations. For instance, for a range of transient phenomena,

such as the spreading of perturbations in power grids26 or of

viral infections during an epidemic,9 the transients are rele-

vant because brief deviations may cause system-wide fail-

ures or undesired states, from overloads of transmission lines

to power outages and from an increased number of infected

individuals to secondary outbreaks. Yet dynamical systems’

theory so far mainly focuses on steady states, thereby

neglecting the dynamics during transients. In particular, it

FIG. 4. Consistent quantification of perturbation spreading in random networks. Illustration of the measures introduced above, describing approximate time

and impact of the perturbation. (a) Illustration of the network topology, a connected random network with N¼ 100 nodes, M¼ 200, and b¼ 1. All results are

averaged over 10 different realizations of the network topology and perturbation of all nodes. Error bars indicate the standard deviation across these 1000 real-

izations of transient spreading, indicating a high degree of consistency across network topologies and perturbation sites. (b) Example response dynamics of

five nodes in the network with different distances to the initial perturbation. (c) Comparison of the characteristic response time htii and the peak response time

tpeak
i for a¼ 1. (d) Measurements of the strength of the perturbation given by the characteristic response magnitude H, the response at the characteristic

response time xiðhtiiÞ, and the response amplitude xiðtpeak
i Þ.
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remained unclear how to analytically quantify arrival time or

impact of a perturbation in a setting of deterministic network

dynamical systems.

In this article, we changed the perspective on how to

analyze transient trajectories resulting from perturbations

away from stable fixed points. We proposed alternative

quantitative measures describing arrival times and response

strengths to perturbations, different from naively employed

peak times and amplitudes of response maxima. To achieve

this goal, we exploited that suitably normalized trajectories

xiðtÞ are formally equivalent to probability densities, intui-

tively suggesting the definition of formal expectation values

htii that can be interpreted as characteristic response times.

We remark that already the total response Zi is a valid

measure of response strength. This definition of the total

response strength is similar to the total quadratic response (the

H2 norm) already used to study perturbations in networked

systems.22,23 However, which quantity is appropriate will

depend on the system and the question about the transients to

be answered. For instance, if a voltage excursion in an electric

signal may not exceed a certain maximum to protect an electric

device from shutdown, the magnitude of a response Hi might

be a relevant quantity, whereas if a current charges a device

that cannot safely store more than a certain amount of electri-

cal charge, the total response Zi is more suitable. In alternative

settings, for instance, the total response strength Zi is clearly

valuable describing the total number of infected individuals at

a given location in models of epidemics and the expected value

htii and standard deviation ri provide key information about

its arrival time and duration, indicating when the outbreak is

most severe. Such quantities may provide valuable information

across systems, e.g., help suggesting periods and locations

where additional preventive measures should be taken.

For basic linear dynamical systems, we derived sim-

ple analytical expressions writing all of those measures

as direct functions of the inverse of the effective cou-

pling matrix. We demonstrated that these expected value
quantifiers accurately describe the spreading of the per-

turbation across different network topologies and system

parameters. They scale with distance in the same way as

standard measures such as the time and height of the

largest perturbation. As such, these measures provide an

efficient analytical tool to predict and study transient

spreading dynamics.

Finally, we remark that these expected value quantities

can in principle be applied also to more general linear sys-

tems, independent even of the positivity of the trajectory,

and may serve as qualitative and sometimes quantitative

evaluators for nonlinear systems as well. For instance, in sys-

tems where a perturbation causes damped oscillations with

alternating positive and negative periods of the state varia-

bles xiðtÞ or observable gðxiðtÞÞ, computing the average htii
would often still provide a reasonable estimator for the order

of magnitude of the characteristic response time. Moreover,

nonlinear systems where the nonlinearities do not alter the

qualitative form of the trajectory substantially until after the

signal variation has almost ended, may be equally evaluated,

because of the only minor influence of the tail of qiðtÞ on the

effective expected values. How to extend the concept of

expected value quantifiers to reveal further information

about transient dynamics and how to generalize some of

them to broader classes of linear and nonlinear systems

needs to be explored in future research.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
ANALYTICAL EXPRESSIONS

In this section, we give an alternative proof for expres-

sion for the total response strength Zi given by Eq. (14) via

integration of the linear differential equation defined in Eq.

(4). Therefore, we start by integrating Eq. (4) which gives

xðtÞ ¼ MXðtÞ; (A1)

where we substituted the definition of the indefinite integral

XðtÞ ¼
ð1

0

xðtÞdt: (A2)

We obtain

XðtÞ ¼ M�1xðtÞ; (A3)

which we substitute into the definition of the total response

strength Zi from Eq. (13)

Zi ¼
ð1

0

xiðtÞdt; (A4)

¼ XiðtÞ½ �10 ; (A5)

¼ M�1xðtÞ
� �

i

h i1
0
; (A6)

¼ � M�1x0

� �
i; (A7)

so that we obtain the same expression for the total response

strength as derived in Eq. (14).

APPENDIX B: NETWORK RESPONSE MEASURES IN
HOMOGENEOUS CHAINS

In this section, we show the detailed calculation of the

network response measures: the total response strength Zi,

the effective probability density piðtÞ, the characteristic

response time htii, the effective standard deviation ri, and

the characteristic response magnitude Hi.
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1. Total response strength Zi and effective probability
density qiðtÞ

We start with the total response strength Zi, which

allows the calculation of the response density [Eq. (16)] and

the characteristic response time [Eq. (17)]. To solve the inte-

gral in the definition of Zi [Eq. (13)], we have to find the

indefinite integral

XiðtÞ :¼
ð1

0

xiðtÞ dt: (B1)

We assume an ansatz

XiðtÞ ¼ �
e�bt

b
� e�ðaþbÞt

Xi�2

j¼0

Aj tj; (B2)

where the coefficients Aj yet need to be determined.

Calculating the time derivative of both sides of Eq. (B2)

yields the condition _XiðtÞ¼! xiðtÞ given by the definition of

XiðtÞ [Eq. (B1)] and thereby the coefficients Aj. The time

derivative of the right hand side of Eq. (B2) reads

_XiðtÞ ¼ e�bt � e�ðaþbÞt
Xi�2

j¼0

jAjt
j�1 � ðaþ bÞ

Xi�2

j¼0

Ajt
j

0
@

1
A:
(B3)

Defining a new index j0 ¼ jþ 1 gives

_XiðtÞ ¼ e�bt� e�ðaþbÞt
Xi�2

j¼0

jAjt
j�1�ðaþbÞ

Xi�1

j0¼1

Aj0�1tj0�1

0
@

1
A:

(B4)

Now we combine the two sums into one running from 1 to i
� 2 and obtain

_XiðtÞ ¼ e�bt � e�ðaþbÞt �ðaþ bÞAi�2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼! ai�2

ði�2Þ! ðIÞ

ti�2
0
@

þ
Xi�2

j¼1

ðj Aj � ðaþ bÞAj�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼! aj�1

ðj�1Þ! ðIIÞ

t j�1

1
CCA; (B5)

where the relations (I) and (II) follow from the condition that
_XiðtÞ¼! xiðtÞ with the solutions xiðtÞ in Eq. (27)

_XiðtÞ¼! e�bt 1� e�at
Xi�2

j¼0

ðatÞj

j!

0
@

1
A (B6)

for i � 2. From relation (I), we obtain

Ai�2 ¼ �
ai�2

ði� 2Þ!
1

ðaþ bÞ ; (B7)

and the remaining coefficients are obtained recursively using

relation (II). This procedure yields the coefficients

Aj ¼ �
Xi�2

‘¼j

a‘

j!ðaþ bÞ‘�jþ1
; (B8)

for j 2 f0;…; i� 2g. We use the indefinite integral XiðtÞ we

determined [Eqs. (B8) and (B2)] to calculate the total

response strength by its definition given in Eq. (13)

Zi ¼ Xið1Þ � Xið0Þ

¼ lim
t!1

� e�bt

b
� e�ðaþbÞt

Xi�2

j¼0

Ajt
j

0
@

1
A� � 1

b
� A0

� 
:

(B9)

The first term converges to zero, since limt!1 e�ct ¼ 0 for

any c 2 R�0. So does the second term because

lim
t!1

e�ct
Xn

i¼0

ti ¼ lim
t!1

Xn

i¼0

ti

ect
¼L’Hospital’s

Rule
lim
t!1

n!

cnect
¼ 0 (B10)

holds for finite n 2 N. Thus we have

Zi ¼
1

b
þ A0

¼Eq: ðB8Þ 1

b
�
Xm�2

j¼0

aj

ðaþ bÞjþ1

¼ 1

b
� 1

aþ b

Xi�2

j¼0

aj

ðaþ bÞj

¼ 1

b
� 1

aþ b

1� a
aþ b

� i�1

1� a
aþ b

0
BBB@

1
CCCA (B11)

for all units i � 2. For i¼ 1 using the solution given in Eq.

(27) the total response strength becomes

Z1 ¼
1

b
: (B12)

With further simplifications, we obtain

(B13)

for all i 2 f1;…;Ng.
Now we calculate the effective probability density

directly following the definition [Eq. (16)]. Using the expres-

sion of the total response strength [Eq. (B13)], we obtain

qiðtÞ ¼
a

aþ b

� 1�i

be�bt 1� e�at
Xi�2

j¼0

ðatÞj

j!

0
@

1
A: (B14)

2. Characteristic response time htii
As the next step, we calculate the characteristic response

time htii based on the previous results. Following the defini-

tion of htii in Eq. (17) and the definition of the effective

probability density qiðtÞ in Eq. (16), we have by partial

integration
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htii ¼
1

Zi
XiðtÞt jt!1t¼0 �

ð1
0

Xiðt0Þ dt0
� 

; (B15)

where XiðtÞ is defined in Eq. (B1) and given by Eqs. (B2)

and (B8). Substituting Zi with the expression in Eq. (B2)

yields

htii ¼
1

Zi
t
�e�bt

b
� e�ðaþbÞt

Xi�2

j¼0

Ait
i

0
@

1
A�����

t!1

t¼0

0
@

þ
ð1

0

e�bt0

b
þ e�ðaþbÞt0

Xm�2

i¼0

Ait
0i

 !
dt0

!
: (B16)

It is easy to see that the first term vanishes [cf. Eq. (B10)],

hence the expression becomes

htii ¼
1

Zi

ð1
0

e�bt0

b
dt0 þ

ð1
0

e�ðaþbÞt0
Xi�2

j¼0

Ajt
0j

0
@

1
Adt0

0
@

1
A:
(B17)

The first integral is easy to solveð1
0

e�bt

b
dt ¼ �e�bt

b2

����1
0

¼ 1

b2
; (B18)

whereas the second one can be solved with a similar method

as used for calculating the total response strength Zi. We

define

FiðtÞ :¼
ðt

�1
e�ðaþbÞt0

Xi�2

j¼0

Ajt
0j

0
@

1
Adt0; (B19)

so that the characteristic response time htii can be written as

htii ¼
1

Zi

1

b2
þ Fið1Þ � Fið0Þ

� 
: (B20)

Again we assume an ansatz for the integral

FiðtÞ ¼ e�ðaþbÞt
Xi�2

j¼0

Bj tj: (B21)

According to the definition [Eq. (B19)], the time derivative

of FiðtÞ has to obey

_FiðtÞ¼! e�ðaþbÞt
Xi�2

j¼0

Aj tj: (B22)

Inserting the ansatz for FiðtÞ [Eq. (B21)] into Eq. (B22) and

comparing the coefficients allows us to determine the coeffi-

cients Bj. We take the time derivative of the ansatz and

obtain

_FiðtÞ ¼ e�ðaþbÞt
Xi�2

j¼0

iBjt
j�1 � ðaþ bÞ

Xi�2

j¼0

Bjt
j

0
@

1
A: (B23)

Defining a new index j0 ¼ jþ 1 for the second sum to shift

the order of t yields

_FiðtÞ ¼ e�ðaþbÞt
Xi�2

j¼0

jBjt
j�1 � ðaþ bÞ

Xi�1

j0¼1

Bj0�1tj0�1

0
@

1
A:
(B24)

Again we combine the sums into one and compare the coeffi-

cients, thus obtain

_FiðtÞ ¼ e�ðaþbÞt �ðaþ bÞBi�2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼! Ai�2

ti�2
0
@

þ
Xi�2

j¼1

ðjBj � ðaþ bÞBj�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼! Aj�1

tj�1

1
CCA: (B25)

The coefficients of the highest order of t read

Bi�2 ¼
�Ai�2

ðaþ bÞ : (B26)

The remaining coefficients are again obtained recursively

Bj ¼
ðjþ 1ÞBjþ1

ðaþ bÞ �
Aj

ðaþ bÞ : (B27)

Hence, the general expression of coefficients can be written as

Bj ¼ �
Xi�2

‘¼j

A‘

ðaþ bÞ‘�jþ1

‘!

j!
(B28)

for j 2 f0;…; i� 2g. Now we calculate the characteristic

response time htii using the expression of FiðtÞ given by

Eqs. (B21) and (B28). Writing FiðtÞ explicitly in Eq. (B20)

yields

htii ¼
1

Zi

1

b2
þ lim

t!1
e�ðaþbÞt

Xi�2

j¼0

Bjt
j � B0

0
@

1
A: (B29)

As discussed [cf. Eq. (B10)], the term in the middle con-

verges to zero, which leaves

htii ¼
1

Zi

1

b2
� B0

� 
: (B30)

Here B0 can be determined using Eqs. (B28) and (B8) as

B0 ¼ �
Xi�2

j¼0

Ajj!

ðaþ bÞjþ1
;

¼
Xi�2

j¼0

j!

ðaþ bÞjþ1

Xi�2

k¼j

ak

j!ðaþ bÞk�jþ1
;

¼
Xi�2

j¼0

1

ðaþ bÞ2
Xi�2

k¼j

a
aþ b

� k

: (B31)

Noticing that the sums are determined by the formula for

summing geometric series, we further simplify the expres-

sion of B0 and obtain
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B0 ¼
1

b2
�

a
aþ b

� i�1

ðaþ bÞ
aþ ib

b2

� 
: (B32)

Using this result and the expression of the total response

strength [Eq. (B13)], we thus obtain the effective response time

(B33)

We notice that htii shows a linear dependence on the index

of unit i

dhtii
di
¼ 1

aþ b
: (B34)

That means, in a homogeneous directed chain, the perturbation

spreads with a constant speed 1
aþb, if we measure the arrival

time of the perturbation with the effective response time htii.

3. Characteristic response duration ri and response
magnitude Hi

Next, we derive the effective standard deviation ri

which we interpret as the characteristic response duration

[Eq. (20)] and the characteristic response magnitude Hi

[Eq. (24)], which quantify the width and the height of the

response profile. First we calculate the second central

moment of t and using the result the square of the effective

standard deviation [Eq. (20)]. The second moment of t is

given as

ht2ii ¼
ð1

0

qiðt0Þt02 dt0 ¼Eq: ð16Þ 1

Zi

ð1
0

xiðt0Þt02 dt0: (B35)

Partial integration yields

Ziht2ii ¼ XiðtÞt2j10 � 2

ð1
0

Xiðt0Þt0 dt0; (B36)

where XiðtÞ is defined above in Eq. (B1). To determine the

integral in Eq. (B36), we define

~FiðtÞ :¼
ðt

�1
Xiðt0Þ dt0: (B37)

Using the expression of XiðtÞ [Eq. (B2)] and FiðtÞ [Eq.

(B19)], we obtain the following relation between ~FiðtÞ and

FiðtÞ:

FIG. 5. Perturbation spreading in a random small-world network. Illustration of the measures introduced above, describing approximate time and impact of the

perturbation. (a) Illustration of the network topology, a small-world network27 constructed from a ring of N¼ 100 nodes. Each node is connected to its two

nearest neighbors on either side (for a total of 4 connections) and 10 links are uniformly randomly added to create shortcuts in the network. As always, we

choose b¼ 1. All results are averaged over 10 different realizations of the network topology and perturbation of all nodes. Error bars indicate the standard devi-

ation. (b) Example response dynamics of 5 nodes in the network with different distances to the initial perturbation. (c) Comparison of the characteristic

response time htii and the peak response time tpeak;i for a¼ 1. (d) Measurements of the strength of the perturbation given by the characteristic response magni-

tude Hi, the response at the characteristic response time xiðhtiiÞ, and the response amplitude xiðtpeak;iÞ.
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~FiðtÞ ¼
Eq: ðB2Þ

ðt

�1
� e�bt0

b
� e�ðaþbÞt0

Xi�2

j¼0

Aj t0j

0
@

1
A dt0;

¼Eq: ðB19Þ
ðt

�1
� e�bt0

b

 !
dt0 � FiðtÞ;

¼Eq: ðB18Þ e�bt

b2
� FiðtÞ: (B38)

Expressing the integral in Eq. (B36) in terms of ~FiðtÞ and

using partial integration again, we have

Ziht2ii ¼ Xit
2j10 � 2 ~FiðtÞtj10 �

ð1
0

~Fiðt0Þdt0
� 

;

¼ Xit
2j10 � 2 ~FiðtÞt j10|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ2

ð1
0

~Fiðt0Þdt0: (B39)

The first two terms vanish according to Eq. (B10). We then

use the relation Eq. (B38), thus

Ziht2ii ¼ 2

ð1
0

e�bt0

b2
dt0 � 2

ð1
0

Fmðt0Þdt0;

¼ � 2e�bt

b3

���1
0
� 2

ð1
0

Fmðt0Þdt0: (B40)

By further defining

�FiðtÞ :¼
ðt

�1
Fiðt0Þ dt0; (B41)

we write Ziht2ii in terms of the integral �FiðtÞ

Ziht2ii ¼
2

b3
�2 �FiðtÞj10 ¼

2

b3
� 2 �Fið1Þ þ 2 �Fið0Þ: (B42)

In analogy to the method for deriving FiðtÞ, we again assume

an ansatz for �FiðtÞ

�FiðtÞ ¼ e�ðaþbÞt
Xi�2

j¼0

Cjt
j; (B43)

which by definition obeys

_�FiðtÞ¼! FiðtÞ ¼Eq: ðB21Þ
e�ðaþbÞt

Xi�2

j¼0

Bj tj: (B44)

Again, by taking the derivative of the ansatz of �FiðtÞ and

comparing the coefficients, as we did before in deriving FiðtÞ
[Eqs. (B23)–(B28)], we obtain the coefficients

FIG. 6. Perturbation spreading in a random scale-free network. Illustration of the measures introduced above, describing approximate time and impact of the

perturbation. (a) Illustration of the network topology, a scale-free network with N¼ 100 nodes. The network is constructed by sequentially adding nodes with

two links to the network, starting from a core of 5 fully connected nodes. New nodes are attached to the network following the preferential attachment mecha-

nism.28 As always, we choose b¼ 1. All results are averaged over 10 different realizations of the network topology and perturbation of all nodes. Error bars

indicate the standard deviation. (b) Example response dynamics of 4 nodes in the network with different distances to the initial perturbation. (c) Comparison of

the characteristic response time htii and the peak response time tpeak;i for a¼ 1. (d) Measurements of the strength of the perturbation given by the characteristic

response magnitude Hi, the response at the characteristic response time xiðhtiiÞ, and the response amplitude xiðtpeak;iÞ.
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Cj ¼ �
Xi�2

‘¼j

Bj

ðaþ bÞ‘�jþ1

‘!

j!
: (B45)

Now we determine Ziht2ii by means of the expression of
�FiðtÞ. Inserting Eq. (B43) into Eq. (B40), we have

Ziht2ii ¼
2

b3
� 0þ 2C0

¼ 2

b3
þ 2C0: (B46)

Using the expression of Bj [Eq. (B28)] and Aj [Eq. (B8)], we

determine C0 as follows:

C0 ¼ �
Xi�2

j¼0

Bj

ðaþ bÞjþ1
j!

¼
Xi�2

j¼0

j!

ðaþ bÞjþ1

Xi�2

k¼j

k!

j!

1

ðaþ bÞk�jþ1

Xi�2

‘¼k

a‘

ðaþ bÞ‘�kþ1

1

k!

¼ 1

ðaþ bÞ3
Xi�2

j¼0

Xi�2

k¼j

Xi�2

‘¼k

a
aþ b

� ‘

¼ 1

b3
� a

aþ b

� i�1 1

b
1

b2
þ ði� 1Þ
ðaþ bÞb

 

þ ði� 1Þ
ðaþ bÞ2

þ ði� 2Þði� 1Þ
2ðaþ bÞ2

!
: (B47)

In the last equation, we executed the geometric sums.

Substituting C0 and the total response strength Zi [Eq. (B13)]

into Eq. (B46) gives

(B48)

Now we obtain the characteristic response duration ri using

its definition [Eq. (20)], the expression of the characteristic

response time htii [Eq. (B33)], and the second moment ht2ii
[Eq. (B48)]

(B49)

Hence, by definition [Eq. (24)], the characteristic response

magnitude Hi is given by

FIG. 7. Perturbation spreading in a random geometric network. Illustration of the measures introduced above, describing approximate time and impact of the

perturbation. (a) Illustration of the network topology, a random, geometrically embedded network with N¼ 100 nodes. The network is constructed as a periodic

Delaunay triangulation of 100 points uniformly randomly distributed in the unit square. As always, we choose b¼ 1. All results are averaged over 10 different

realizations of the network topology and perturbation of all nodes. Error bars indicate the standard deviation. (b) Example response dynamics of 5 nodes in the

network with different distances to the initial perturbation. (c) Comparison of the characteristic response time htii and the peak response time tpeak;i for a¼ 1.

(d) Measurements of the strength of the perturbation given by the characteristic response magnitude Hi, the response at the characteristic response time xiðhtiiÞ,
and the response amplitude xiðtpeak;iÞ.
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APPENDIX C: QUANTIFYING SPREADING ACROSS
NETWORK ENSEMBLES

In this section, we give additional simulation results.

We show that across various network topologies that the

“effective expectation values” we proposed provide consis-

tent measures of the response characteristics independent of

the network topology. We consider different network topolo-

gies and perform the same analysis on them as in Sec. V,

averaging the result of a total of 1000 different initial pertur-

bations. For small-world networks (Fig. 5), scale-free net-

works (Fig. 6), and random geometric networks (Fig. 7), we

observe qualitatively the same results as obtained in Fig. 3.

Thus, also for differing network topologies the characteristic

response time and the characteristic response magnitude give

a consistent description of the response dynamics.
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