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Abstract. Supply and transport networks support much of our techni-
cal infrastructure as well as many biological processes. Their reliable
function is thus essential for all aspects of life. Transport processes
involving quantities beyond the pure loads exhibit alternative collec-
tive dynamical options compared to processes exclusively characterized
by loads. Here we analyze the stability and bifurcations in oscillator
models describing electric power grids and demonstrate that these net-
works exhibit instabilities without overloads. This phenomenon may
well emerge also in other sufficiently complex supply or transport net-
works, including biological transport processes.

1 Introduction

Today’s society depends on the reliable supply of electric power. The Energy transi-
tion to renewable energy (Energiewende) impairs the conventional power distribution
system and poses great challenges for the security of the energy supply [1,2]. It has
been shown by Pesch et al. [3] that the grid might become more heavily loaded in the
future as electric power generation varies over time and has to be transported over
large distances. For instance, current planning assigns new large-distance distribution
lines from off-shore wind parks to the inner land – making the grid more susceptible
to perturbations. Moreover, wind turbines and photovoltaic arrays are strongly inter-
mittent; their power output fluctuates on all timescales from years to below seconds
[4–6]. To ensure continued stable operation of power grids, it is advisable to under-
stand how the network structure of the power grid determines its dynamic stability
and how instabilities generally emerge.
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2 An oscillator model for power grid operation

In this article we analyze network models of power grids consisting of rotating ma-
chines representing electric generators and motors. These models describe the phase
dynamics of the machines and thus capture important problems of synchronization
and dynamical stability of complex power grids [7–10] and have recently attracted
considerable interest in physics and mathematics [11–16]. Notably, these models are
mathematically very similar to the celebrated Kuramoto model describing the dy-
namics of coupled limit cycle oscillators [17–19].
Variations of these models are widely used in power engineering [7,8,10,20–22].

In many of the applications, however, passive loads are considered instead of motors
which can be eliminated via a Kron reduction [23]. The resulting model is mathemat-
ical equivalent to the one analyzed here, but its dimension is typically significantly
smaller after this reduction (see Sect. 2.2 for details).

2.1 The oscillator model

We model the power grid as a network of N rotating machines representing, for
instance, wind turbines or electric motors [9,11]. Let the machines be denoted by
a natural number j ∈ ZN where ZN = {1, 2, · · · , N}. Each machine j is char-
acterized by the mechanical power Pmechj it generates (Pmechj > 0) or consumes

(Pmechj < 0). The state of each rotating machine is determined by its mechanical
phase angle φj(t) and its velocity dφj/dt. During the regular operation, generators
as well as consumers within the grid run with the same frequency Ω = 2π × 50Hz
(Europe) or Ω = 2π × 60Hz (USA). The phase of each element j is then written as

φj(t) = Ωt+ θj(t), (1)

where θj denotes the phase difference to the reference value Ωt.
The equations of motion for all θj can now be obtained from the energy con-

servation law, i.e. the generated energy Pmechj of each single element must equal the
accumulated and dissipated mechanical energy of this machine plus the electric energy
P elj transmitted to the rest of the grid. We also have

P dissj = Dj(φ̇j)
2 (2)

P accj =
1

2
Ij
d

dt
(φ̇j)

2, (3)

where Ij is the moment of inertia and Dj is the damping torque. The energy conser-
vation law reads

Pmechj = P dissj + P accj + P elj . (4)

We will now insert equation (1) in the formula for the accumulated and dissipated
mechanical energy to derive the equations of motion. In the vicinity of the regular
operation of the grid, phase changes are small compared to the reference frequency
[9] |θ̇j | � Ω and we can write the equations of motion for θj as

∀j ∈ ZN , IjΩθ̈j = Pmechj −DjΩ2 − 2DjΩθ̇j − P elj . (5)

The electric power is determined as follows. In a synchronous machine with pf number
of poles, the phase φj of the AC electric voltage and the mechanical phase φ

mech
j have

a fixed ratio [20, p. 47]

φj =
pf

2
φmechj .
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We here consider common two-pole machines where this ratio is unity, i.e. φj(t) =
φmechj (t).
In an AC circuit, where the current between two nodes Iij and voltage at jth node

Vj vary sinusoidally with a relative phase difference δ, the power transmitted from
node j to node i is

Pij(t) = Vj(t)Iij(t) (6)

=
(
Vj,rms

√
2
)
sin (Ωt)

(
Iij,rms

√
2
)
sin (Ωt+ δ) (7)

= Vj,rmsIij,rms cos δ︸ ︷︷ ︸
Pij,real

−Vj,rmsIij,rms cos (2Ωt+ δ). (8)

The second term oscillates between positive and negative values such that the direc-
tion of power flow changes direction. The net flow due to this term, when integrated
over a full period of the AC cycle, is zero. Since here we consider dynamics on time
scales much larger than a time period of the AC cycle (1/Ω), we ignore this second
term. The first term constitutes the real power flow from generator to consumers. It
is convenient to adopt complex notation at this point:

Ṽj = Vj,rmse
iΩt, Ĩij = Iij,rmse

i(Ωt+δ), (9)

such that the apparent and the real power reads

Sij = Ṽj Ĩ
∗
ij , Pij,real = �(Sij). (10)

The net electric power at node j: P elj in (5) is basically the total Preal transmitted to
all neighbouring nodes:

P elj =
N∑
k=1

Pkj,real (11)

= �
[
Ṽj

N∑
k=1

Ĩ∗kj

]
(12)

Ĩkj = Ykj(Ṽk − Ṽj). (13)

For simplicity we here neglect ohmic losses in the grid such that the admittance is
purely imaginary, Yjk = iBjk. Furthermore, we assume that the magnitude of the

voltage is constant throughout the grid, |Ṽj | = V0 for all nodes j ∈ ZN . Then P elj
simplifies to

P elj = �
[
N∑
k=1

V 20 Bjk {sin(θj − θk) + i (cos(θj − θk)− 1)}
]

(14)

=

N∑
k=1

V 20 Bjk sin(θj − θk). (15)

Substituting this result into Eq. (5) thus yields the equations of motion

IjΩ
d2θj

dt2
+Dj

dθj

dt
= Pmechj −DjΩ2 +

N∑
k=1

V 20 Bjk sin(θk − θj). (16)
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The same equations of motions constitute the so-called structure-preserving model in
power engineering [7], which is derived under slightly different assumptions.
For the sake of simplicity we introduce the abbreviations

Pj =
Pmechj −DjΩ2

IjΩ
(17)

αj =
Dj

IjΩ
(18)

Kjk =
V 20 Bjk

IjΩ
(19)

such that the equations of motion read

∀j ∈ ZN , d2θj

dt2
= Pj − αj dθj

dt
+

∑
k

Kjk sin(θk − θj). (20)

In this formulation the regular operation of the grid corresponds to a stable fixed
point with dθj/dt = 0 for all nodes j.
Throughout this paper we assume that the network defined by the coupling matrix

is globally connected. Otherwise we can simply consider each connected component
separately. We take symmetric transmission capacities

Kjk = Kkj (21)

for all j, k as appropriate for (electric) supply networks and Kjj = 0. Furthermore,
we assume that the power in the grid is balanced, i.e.

∑
j Pj = 0. This is appropriate

since we focus on the short-time dynamics of the grid and the stability of steady
states. On longer time-scales, the power balance is maintained by the grid operators
by adapting the generation.

2.2 Ohmic loads and the classical model

The oscillator model introduced above assumes that all nodes of the network represent
synchronous machines. In contrast, the so-called classical model widely studied in
power engineering [10] includes a set of synchronous generators as above, but considers
only ohmic loads. The load nodes of the network can then be eliminated which yields
a much lower dimensional dynamical system. The resulting equations of motion are
mathematically equivalent such that all our results equally well apply to the classical
model. However, the network topology is no longer obvious in this model as the
effective coupling matrix of the generator nodes is generally non-zero everywhere.
Bergen and Hill [24] rectified this issue by introducing the structure preserving model,
which also gives rise to equations of motion formally identical to the oscillator model.
We thus focus on the oscillator model in the rest of the paper.
In the following we briefly summarize the derivation of the classical model [23] to

show how to deal with ohmic loads in this framework. We divide the nodes of the
networks into active and passive nodes, where the passive ones represent ohmic loads.
For the sake of simplicity we label the nodes such that j = 1, . . . , L are the active
nodes and k = L + 1, . . . , N are the passive nodes. The passive nodes have a fixed
power consumption

Sj = Ṽj

N∑
k=1

Ĩ∗kj
︸ ︷︷ ︸
=:˜I∗j

. (22)
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Even more, one assumes that both factors Ṽj and Ĩj are fixed independently. One can
then eliminate these nodes via a Kron reduction as follows.
One starts with Kirchhoff’s equations in the form (cf. Eq. (13))

Ĩj =
N∑
k=1

Ĩjk =
∑
k

Yjk(Ṽk − Ṽj) =
∑
k

QjkṼk, (23)

where
Qjk = Yjk − δjk

∑
�
Yj� (24)

is called the nodal admittance matrix. These equations are recast into matrix form
(
Ia
Ip

)
=

(
Qaa Qap
Qpa Qpp

)(
V a
V p

)
, (25)

where the vectors Ia and Ip collect the currents at the active and the passive nodes,
respectively. These equations are solved for the currents

Ia = (QapQ
−1
pp )︸ ︷︷ ︸

=:Qac

Ip + (Qaa −QapQ−1pp Qpa)︸ ︷︷ ︸
=:Qred

V a (26)

at the active nodes. The net electric power at one of the active nodes then reads

Sj = Ṽj

L∑
�=1

Qred∗j� Ṽ
∗
� + Ṽj

N∑
�=L+1

Qac∗j� Ĩ
∗
� . (27)

The second term is fixed by assumption, such that it can be transfered to the effective
mechanical power of the respective node,

P effj = P
mech
j −�

[
Ṽj

N∑
�=L+1

Qac∗j� Ĩ
∗
�

]
· (28)

Assuming again that the lines are lossless such that

Yjk = iBjk and Qred∗j� = iBredj� , (29)

the equations of motion for the active nodes are then derived from the energy con-
servation Eq. (4)

IjΩ
d2θj

dt2
+Dj

dθj

dt
= P effj −DjΩ2 +

L∑
�=1

V 20 B
red
j� sin(θ� − θj). (30)

This is fully equivalent to the equations of motion for the oscillator model (16) such
that all mathematical results obtained in the present article can thus be directly
applied to the classical model as well.

2.3 Further generalisations

Both the oscillator and the classical model describe only the phase dynamics of the
synchronous machines, assuming a constant voltage throughout the grid. Several im-
portant aspects of the voltage dynamics in a complex power grid are described by
the so-called third-order model [10]. A recent theoretical study of voltage instabilities
can be found in [25]. Still, all these models neglect Ohmic losses of the transmission
lines. If Ohmic losses are included, the equations of motion become significantly more
complex [10].
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3 The nature and bifurcations of steady states

During steady operation of a power grid all nodes run with the grid’s reference fre-
quency Ω and fixed phase differences. A stable fixed point (i.e. equilibrium/steady
state) of the equations of motion (20) describes the steady operation of the power
grid. The loss of such a fixed point or a dynamical instability induce a desynchroniza-
tion of the grid. Therefore, it is essential to understand the properties of the fixed
points of the oscillator model, in particular their bifurcations and dynamical stability.
The fixed points of the equations of motion (20) are determined by the nonlinear

algebraic equations

∀j ∈ ZN , Pj +
∑
k

Kjk sin(θ
∗
k − θ∗j ) = 0. (31)

In the following, we present several results on the existence, stability and bifurcations
of these fixed points, some aspects of which have been published for related systems
in [26]. Fixed points are marked by an asterisk and the vector θ = (θ1, . . . , θN )

T ∈ SN
collects the phases of all machines, where S = {x |0 ≤ x ≤ 2π }. The local frequencies
are referred to by vj = dθj/dt or v = dθ/dt, respectively.

Lemma 1. The network dynamics of the system defined by (20) and (21) for αj = 0
(zero damping) is a Hamiltonian system of the form

θ̇j =
∂H
∂vj
, v̇j = −∂H

∂θj
, (32)

where the phase θj and the phase velocity

vj = dθj/dt (33)

are canonically conjugate variables for all j ∈ ZN . The Hamiltonian function has the
natural form

H(v,θ) = T (v) + V (θ) (34)

with the kinetic and potential energies

T (v) =
1

2

∑
j

v2j (35)

V (θ) = −
∑
j

Pjθj − 1
2

∑
i,j

Kij cos(θi − θj). (36)

Proof. Let H(v,θ) = T (v) + V (θ) be a Hamiltonian function defined by (34), (35)
and (36). Then H is continuously differentiable on any open star-shaped subset of the
phase space with

∂H/∂vj = vj = θ̇j (37)

and

∂H
∂θj
= −Pj − 1

2

∑
k

∑
l

Kkl
∂

∂θj
cos(θk − θl) (38)

= −Pj −
∑
k

Kjk sin(θk − θj). (39)

Where the last equality follows from symmetry (21). Substituting (33), (37) and (39)
into the Hamilton Eq. (32), the claim follows. �	
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Corollary 1. The set of all fixed points of the oscillator Eqs. (20) and (21) for
arbitrary αj ∈ R, j ∈ ZN , is identical to the set of fixed points of the Hamiltonian
system (32) with (34) and (33). The fixed points are local extrema/saddle points of
the potential function V (θ) (cf. also [27]).

Proof. The set of fixed points of (32) is given by

PHamilton =

{
(θ∗,v∗)

∣∣∣∣∀j ∈ ZN ,
∂H
∂vj
= 0 ∧ −∂H

∂θj
= 0

}
· (40)

The set of fixed points of the oscillator Eq. (20) is given by

Posc =

{
(θ∗,v∗) = (θ∗,0)

∣∣∣∣∣∀j ∈ ZN , Pj +
N∑
k=1

Kjk sin(θ
∗
k − θ∗j ) = 0

}
, (41)

independent of all αj . If the transmission capacities are symmetric (21), the
Hamiltonian and the original oscillator dynamics in the αj = 0 case are equivalent
(have identical trajectories) as ensured by Lemma 1. Thus in particular their fixed
points are identical. And since the fixed points of the oscillator model don’t depend
on αj as per (41), the fixed points of the oscillator model for arbitrary αj are also,
by extension, identical to those of the Hamiltonian system.
As T (v) is independent of all θj we have at each fixed point (θ

∗,v∗) that

∂H(v,θ)
∂θj

∣∣∣∣
θ∗
=
∂V (θ)

∂θj

∣∣∣∣
θ∗
= 0 (42)

for all j such that the fixed points are located at local extreme/saddle points of V ,
demonstrating the second claim. �	
Because of this correspondence, the theory of (damped) Hamiltonian dynamical

systems (see [28] and references therein) helps us in characterizing the fixed points
of the oscillator model and their bifurcations. We note that one has to be careful
about the domain of H. In principle, the phases are only defined modulo 2π but H is
not 2π-periodic. This fact is not a major problem for our purpose, but it prohibits a
definition of Gibbsian ensembles in statistical mechanics [19,27].
As shown in Corollary 1, the location of the fixed points θ∗ = (θ∗1 , . . . , θ∗N ) is

independent of the damping coefficients αj . Furthermore, the location of the fixed
point is the same for the celebrated Kuramoto [17–19] model such that our results
may be adapted for this important model system. The question naturally arises: how
do the stability properties of the fixed points change when αj are varied or when
we go from the oscillator model to Kuramoto model? We will answer this question
subsequently, in Lemma 2 and Theorem 1.
The linear or spectral stability of a fixed point is obtained by linearizing the

equations of motion. Writing
ξ = θ − θ∗ (43)

the linearized equations of motion are given by

d

dt

(
ξ̇
ξ

)
= J

(
ξ̇
ξ

)
. (44)

For the given damped oscillator system with equations of motion (20), the Jacobian
is given by

J =

(−AN×N −MN×N
IN×N 0N×N

)
, (45)
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where

A =

⎛
⎜⎝
α1 0 · · ·
0 α2 · · ·
...
...
. . .

⎞
⎟⎠ (46)

is a diagonal matrix specifying the damping coeeficient at each node and M is the
Hesse matrix of the potential function V (θ) with elements

Mij =
∂2V

∂θi∂θj
(47)

M =

⎛
⎜⎝

∑N
l=1K1l cos (θ

∗
1 − θ∗l ) −K12 cos (θ∗1 − θ∗2) · · ·

−K21 cos (θ∗2 − θ∗1)
∑N
l=1K2l cos (θ

∗
2 − θ∗l ) · · ·

...
...

. . .

⎞
⎟⎠ . (48)

This can be verified by a straightforward calculation.
Let λj be the eigenvalues of the Jacobian matrix J :

∀j ∈ {1, 2, . . . , 2N} , Jvj = λjvj (49)

and let μk be the eigenvalues of the Hesse matrix M :

∀k ∈ {1, 2, . . . , N} , Muk = μkuk, (50)

then we find the results stated below.

Lemma 2. If μk ≥ 0 for all k ∈ ZN , then �(λj) ≤ 0 for all j ∈ {1, 2, . . . , 2N}.
Moreover, for each vj such that Jvj = 02N , there exists one and only one uk such
that

Muk = 0N (51)

vj = (0, 0, · · · , 0︸ ︷︷ ︸
0N

, u1, u2, · · · , uN︸ ︷︷ ︸
uk

) (52)

:= 0N ⊗ uk. (53)

Proof. Suppose v = v1 ⊗ v2 ∈ RN ⊗ RN is an eigenvector of J with eigenvalue λ.
Then we have:

λv1 = −Av1 −Mv2 (54)

λv2 = v1. (55)

Substituting (55) in (54):

0 = Mv2 + λAv2 + λ
2v2 (56)

0 = v2
†Mv2 + v2†Av2λ+ v2†v2λ2 (57)

= κ21 + κ
2
2λ+ κ

2
3λ
2, (58)

where

κ21 = v2
†Mv2 ≥ 0, (M is positive semi− definite) (59)

κ22 = v2
†Av2 ≥ 0, (αj ≥ 0) (60)

κ23 = v2
†v2 ≥ 0, (61)
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such that

λ =
−κ22 ±

√
κ42 − 4κ21κ23
2κ23

· (62)

This implies �(λ) ≤ 0, which proves the first part of the Lemma. Moreover, �(λ) =
0 ⇐⇒ κ21 = 0, which happens only if Mv2 = 0. This can be checked by expanding
v2 in the eigenbasis of M . This proves the second part. �	
Using the technical results presented above, we now analyze the stability and

bifurcations in more detail. We show that stability is entirely determined by the
Hesse matrix M and independent of the damping coefficients αj . In many cases, M
can be interpreted as a Laplacian matrix [29], such that the stability can be analyzed
in terms of the topology of the grid.
Before we proceed, we note that by construction the Hesse matrixM has one zero

eigenvalue (proof in Corollary 4) with the eigenvector:

u1 = (1, 1, · · · , 1) (63)

Mu1 = 0. (64)

For notational convenience we denote the eigenvalues of M sorted in ascending order
of absolute values: 0 = |μ1| ≤ |μ2| ≤ |μ3| ≤ · · · ≤ |μN |.
Theorem 1. Let θ∗ be a fixed point of the oscillator model (20). Then θ∗ +
Δ(1, 1, · · · , 1)T is also a fixed point for all Δ ∈ R. If μj > 0 for all j ∈ {2, 3, . . . , N},
then the fixed point is transversely asymptotically stable.

Proof. If μj > 0 for all j ∈ {2, 3, . . . , N}, Lemma 2 shows that the Jacobian J will have
only one zero eigenvalue. We can see from (63) that the eigenvector corresponding to
zero eigenvalue is

v∗ = 0N ⊗ (1, 1, · · · , 1). (65)

This eigenvector implies that a perturbation around a fixed point in the direction

Δθ̇∗j = 0, Δθ
∗
j = constant (66)

is neutrally stable. However, this is simply due to the fact that the equations of motion
(20) remains unchanged on adding a uniform global shift to the phase angles θj .
Since all other eigenvalues of the Jacobian J are less than 0, as guaranteed by

Lemma 2, we see that all small perturbations transverse to the global shift (66) decay
to zero with time. Transverse asymptotic stability therefore follows from the center
manifold theorem (cf. [30]). �	
Lemma 3. A stable fixed point of the oscillator model (20) can be lost only via an
inverse saddle-node bifurcation where one of the μj as defined in (50) becomes zero.

Proof. To analyze the nature of bifurcations consider first the hamiltonian limit
αj = 0. In a hamiltonian system only two types of bifurcation are possible when
a parameter is varied smoothly [28]: a saddle-node bifurcation or a Krein bifurcation.
At a Krein bifurcation complex quadruplets of eigenvalues emerge. However, this is
impossible for the given dynamical system as eigenvalues of the Jacobian J are al-
ways purely real or purely imaginary for α = 0, as demonstrated in (62). Thus the
only possible bifurcation scenario is that of a saddle-node bifurcation. As the position
(Theorem 1) and stability properties (Lemma 2) of fixed points are both independent
of αj the bifurcation remains the same also for the non-Hamiltonian case αj > 0. �	
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We note that in the Hamiltonian limit α = 0 stability always means neutral stabil-
ity. A minimum of the potential function V (θ) is an “elliptic fixed point” or “center”
of the dynamical system as all eigenvalues of the Jacobian are purely imaginary. For
αj > 0 all eigenvalues of the Jacobian acquire a negative real part, such that the fixed
point becomes asymptotically stable.
We note that Theorem 1 also implies that the fixed points of the oscillator model

share identical position and linear stability properties with the famous Kuramoto
model [19] because −M happens to be the Jacobian of the Kuramoto system.

4 Elementary example

To illustrate the mathematical results of the previous section, we first consider the
simplest non-trivial grid, a two-element system consisting of one generator and one
consumer. We assume that the power is balanced, i.e. −P1 = P2 and damping is
uniform, i.e. α1 = α2 = α. Therefore, θ̈1 + θ̈2 = −α(θ̇1 + θ̇2) and the mean phase
θ1 + θ2 of the grid reaches a constant value exponentially in time. We thus consider
only the dynamics of the phase difference x = θ2 − θ1. With ΔP = P2 − P1 the
equation of motion for this system reads

d2x

dt2
= ΔP − αdx

dt
− 2K sin(x). (67)

As the phase difference is defined modulo 2π, the phase space is cylindrical, (ẋ, x) ∈
R × 2πS1 (however, for illustration purposes and for comparing to the Hamiltonian
case, it might be helpful to “unravel” the cylinder, i.e. assume that phases can take
arbitrary values in R).
Two fixed points exist for 2K > ΔP . The physical reason is that a steady op-

eration of the grid is possible only when the transmission capacity of the line is
larger than the power that must be transmitted. The location of the two fixed points
Fk = (x

∗, ẋ∗) are specified by the conditions ẋ∗ = 0, ẍ∗ = 0. The eigenvalues of the
Jacobian at these points are given by

F1 : x
∗ = arcsin

ΔP

2K
(68)

λ
(1)
± = −

α

2
±

√(α
2

)2
− 2K cos

(
arcsin

ΔP

2K

)
(69)

F2 : x
∗ = π − arcsin ΔP

2K
(70)

λ
(2)
± = −

α

2
±

√(α
2

)2
+ 2K cos

(
arcsin

ΔP

2K

)
· (71)

The fixed point F1 is stable: Depending on α, the eigenvalues are either both real and

negative or complex with negative real values. The fixed point F2 is a saddle, as λ
(1)
+

is always real and positive while λ
(1)
− is always real and negative.

At 2K = ΔP these two fixed points vanish in an inverse saddle-node bifurcation.
No steady operation is possible for 2K < ΔP as the load exceeds the capacity of
the link. The nature of this bifurcation becomes most obvious when we consider the
potential function introduced in the Hamiltonian formulation (36). The dynamical
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Fig. 1. The tilted washboard potential (73) for K = 5 and (a) ΔP = 3, (b) ΔP = 6, (c)
ΔP = 9 and (d) ΔP = 12, respectively. The green (red) points illustrate the local minima
(maxima) of the potential determining the location of a stable (unstable) fixed point.

system (67) can be viewed as the equation of motion of a mechanical particle moving
in a tilted washboard potential with friction

d2x

dt2
= −αdx

dt
− dV (x)
dx

(72)

with V (x) = −ΔPx−K cos(x). (73)

The tilted washboard potential V (x) and the critical points are illustrated in Fig. 1.
When the tilting ΔP is increased, maxima and minima approach each other. At
ΔP = 2K the critical points collide and vanish in an inverse saddle-node bifurcation,
as previously explained by the form of the eigenvalues (68). This mechanical analog
has been analyzed in great detail in statistical physics (see [31,32] and references
therein).

5 Local vs. global stability

How about the global stability? Here we focus on the mathematical aspects of global
stability and confine ourselves to the elementary example introduced in the previous
section. Numerical studies for large complex networks were recently presented in
[16,33].
The global stability properties of the two-element grid are summarized in the

parametric portrait in Fig. 2, cf. also [31]. For ΔP > 2K, there is no fixed point
as discussed above. All trajectories converge to the global attractor – a limit cycle
representing a run-away solution. For ΔP < 2K and strong damping, the stable fixed
point F1 is a global attractor. For weak damping, there exists a stable limit cycle,
which coexists with the stable fixed point. The system will converge to either of them,
depending on which basin of attraction the initial conditions belong to. This weak
damping regime characterizes regular power grid operation such that the coexistence
might be typical of real world power grids.
The critical damping αc(ΔP,K) is defined by the boundary that separates these

two regions in the parametric portrait. At the boundary, the limit cycle emerges from
a homoclinic orbit of the saddle fixed point in a homoclinic bifurcation, as illustrated
in Fig. 3. Along the homoclinic orbit, the phase x increases 2π. The boundary in-
tersects the saddle-node bifurcation line (ΔP = 2K) at a numerically determined
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Fig. 2. Global stability phase diagram in parameter space for an elementary power grid
consisting of one generator and one consumer (cf. [32]). The dashed red line shows the
approximate phase boundary (85) in the case of low friction α. The dotted horizontal lines
labelled by letters indicate the parameter values at which the potential V has been drawn
in Fig. 1.

Fig. 3. Homoclinic bifurcation from globally stable fixed point to coexistence of limit cycle
and fixed point in the two-element system. Black lines indicate the stable/unstable manifolds
of the fixed points, brown lines indicate the homoclinic orbit. (a) In the globally stable region
all trajectories converge to the stable focus (�). (b) At the bifurcation, a homoclinic orbit
(brown) is attached to the saddle (◦). (c) The coexistence region. One unstable manifold
of the saddle extends to the limit cycle, which has emerged from the homoclinic orbit.
Parameters are: ˜K = 2K

α2
, ˜P = ΔP

α2
, ˜R = ΔP

2K
.

value of α√
K
≈ 1.69. For α√

K
� 1.69, the saddle-node bifurcation and the homoclinic

bifurcation combine to a saddle-node homoclinic bifurcation (cf. [34], Fig. 7.2).
An analytical approximation for the border between the globally stable and the

coexistence regime can be obtained in the low-friction limit [32]. In order to determine
stability criteria according to Lyapunov’s second method [35], we define the energy
E of the system as

E =
(ẋ)2

2
− 2K cos(x). (74)

It is to be noted that this energy E is not identical with the Hamiltonian H since
this does not include the tilting introduced by the damping α. The change of energy
is thus

dE

dt
= ẍẋ+ 2K sin(x)ẋ. (75)

Inserting Eqs. (67) into (75) yields

dE

dt
= (ΔP − 2K sin(x)− αẋ) ẋ+ 2K sin(x)ẋ (76)

= ΔP ẋ− α(ẋ)2. (77)
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If the average energy over one full period T decreases for all initial conditions for
all time, the system is in the globally stable regime. The condition for the border
between the globally stable and the coexistence regime is therefore described by:

dE

dt

T

= 0. (78)

Hence

ΔPẋ
T − αẋ2T = 0 (79)

is the condition for the border between the globally stable and the coexistence regime.
We can now calculate

ẋ
T
=
1

T

∫ T

0

ẋdt =
1

T

∫ π

−π
dx =

2π

T
(80)

and

ẋ2
T
=
1

T

∫ T

0

ẋ2dt =
1

T

∫ π

−π
ẋdx (81)

=
1

T

∫ π

−π

√
2E(x, ẋ) + 4K cos(x)dx. (82)

Inserting Eq. (79), we get

ΔP
2π

T
=
α

T

∫ π

−π

√
2E(x, ẋ) + 4K cos(x)dx. (83)

At the parameters where a globally stable fixed point loses global stability, there
will exist a trajectory of x which will satisfy ẋ = 0 at each successive peak of the
potential landscape (cf. Fig. 1). Therefore we have Epeak = 2K. At the low friction
approximation, we can neglect energy dissipation and hence assume E to be constant
throughout the period. So we substitute E(x, ẋ) = 2K in (83):

∫ π

−π

√
4K + 4K cos(x)dx = 8

√
2K. (84)

We thus find for the low-friction approximation the following border between the
globally stable and the coexistence regime (cf. (83))

ΔP = 4
√
2
π
· α√K. (85)

The excellent agreement of the low-friction approximation (red line) for α/
√
K < 0.6

with the numerically calculated border (blue curve) separating the two regimes is
illustrated in Fig. 2.

6 Instabilities with and without overload

The regular operation of a power grid is described by a stable fixed point of the
oscillator model (20). When a parameter, such as the power Pj or the transmission
capacity Kjk, is varied smoothly, in some cases this fixed point can be lost, which
signals an eventual desynchonization of the grid. If the local frequency deviates from
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the reference Ω by more than a fixed security margin (typically 200mHz, cf. [36]), an
emergency shutdown is carried out which can lead to a large-scale power outage (see,
e.g., [37–39]). In this section we discuss the physical aspects of this instability.
We first note that a stable fixed point can be lost only via a saddle-node bifurcation

as described by Lemma 3. The fixed point is stable iff the real part of all eigenvalues
of the Jacobian is smaller than or equal to zero. The bifurcation thus occurs when

�(λ�±)→ 0 ⇔ μ� → 0. (86)

for any 
 ∈ {2, . . . , N}. We recall that μ1 = 0, which corresponds to a global shift of
the phases θj , has no physical significance.
Interestingly, the loss of a stable fixed point is generally not equivalent to an

overload of one or more transmission lines. In particular, we can distinguish two
different scenarios.

6.1 In normal operation, instability implies overload

When a power grid is only weakly loaded, the phase differences along each edge remain
small. The power flow over the transmission line (j, k) increases monotonically with
the phase difference as long as |θj − θk| ≤ π/2 (cf. Eq. (15)). If this condition holds
for all edges in the network, the grid is dynamically stable, as proved in Corollary 2
below, and we can find a direct graph theoretic interpretation of any bifurcation. We
call this normal operation.

Corollary 2. A fixed point is stable if |θ∗i − θ∗j | ≤ π/2 holds for all edges (i, j) of the
network.

Proof. We define the residual capacity of each transmission line as

Kredij = Kij cos(θj − θi). (87)

If |θ∗i − θ∗j | ≤ π/2 holds for all edges, then ∀i, j ∈ ZN
0 ≥ Kij cos(θ∗i − θ∗j ) (88)

= Kij

√
1− sin2(θj − θi)

=
√
K2ij − F 2ij (89)

where Fij = Kij sin (θj − θi) is the power flow from node j to node i. Let us define a
meta-graph G̃ with the same set of vertices and edges as the original power grid, but
with edge weights wij = K

red
ij . The Hesse matrix M as defined in (48) then becomes

the Laplacian matrix of the meta-graph (details in Appendix 7). It is a well known
result [29] that the eigenvalues of the Laplacian of a graph with non-negative edge
weights satisfy:

0 = μ1 ≤ μ2 ≤ · · · ≤ μN . (90)

Stability of the fixed point directly follows from theorem 1. �	

Corollary 3. If |θ∗i − θ∗j | ≤ π/2 holds for all edges (i, j), then whenever a fixed
point undergoes a bifurcation, all connections between two components of the grid will
become fully loaded.
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Fig. 4. Bifurcation due to an isolated overload. At the bifurcation the marked edge becomes
overloaded and the meta-graph ˜G decomposes into two fragments. (a) Model network based
on the topology of the British high-voltage transmission grid [11,40]. Ten out of 120 nodes are
randomly chosen to be generators with Pj = +11s

−1 (�), all others have Pj = −1s−1 (◦). All
edges have the same transmission capacity K. The color code shows Kred defined in (87) at
the bifurcation K = Kc. (b) The second eigenvalue μ2 of the matrix M , the phase difference
θj − θk and the load sin(θj − θk) for all edges as a function of the transmission capacity K.
At the bifurcation exactly one edge (marked in panel (a)) is fully loaded, θj − θk = π/2.
(c) The Fiedler vector v2 at the bifurcation. (d) Dynamical instability after reducing the
transmission capacity to K = 0.98 × Kc. The color coding of the nodes is the same as in
panel (c).

Proof. As shown in Corollary 2, if |θ∗i − θ∗j | ≤ π/2 holds for all edges (i, j), then M is
the Laplacian of the meta graph G̃. It is shown in Corollary 4 that the multiplicity of
the eigenvalue 0 in a graph’s Laplacian equals the number of connected components
of the graph [41,42].
Theorem 1 tells us that any bifurcation of a fixed point will be accompanied by

one more eigenvalue of the Hesse matrix M becoming 0, which implies G̃ splitting
into one more component. This is equivalent to all edges between the components
becoming fully loaded:

|Fij | = Kij ⇐⇒ Kredij = 0. (91)

�	
An example for such a bifurcation is shown in Fig. 4 for a model grid based on the
topology of the British high-voltage transmission grid [11]. The second eigenvalue
μ2 indicating dynamical stability is decreasing with decreasing transmission capacity
K and vanishes at the bifurcation point K = Kc. At the bifurcation a single edge
connecting the north of Scotland to the rest of the grid is fully loaded, θj − θk = π/2,
such that the meta-graph G̃ gets disconnected. Physically speaking, the fixed point
is lost because of transmission line overload.
When the fixed point is lost for K < Kc, the disconnected components lose syn-

chrony with each other. The components may remain synchronous internally, as de-
picted in Fig. 4c, where the two components, colored green and red, diverge from each
other with time, but the frequencies within each component remain close.
The two components are readily identified by the eigenvector v2 associated with

μ2, the so-called Fiedler vector [29,43,44]:

Mv2 = μ2v2. (92)
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Fig. 5. Bifurcation without overload. At the bifurcation the marked edge is operating “be-
yond” an overload. (a) Model network based on the topology of the British high-voltage
transmission grid [11,40]. Ten out of 120 nodes are randomly chosen to be generators with
Pj = +11s

−1 (�), all others have Pj = −1s−1 (◦). All edges have the same transmission
capacity K. The color code shows Kred defined in (87) at the bifurcation K = Kc. (b) The
second eigenvalue μ2 of the matrixM , the phase difference φj−φk and the load sin(φj−φk)
for all edges as a function of the transmission capacity K. At the bifurcation one edge
(marked by an arrow in panel (a)) is operating beyond overload |φj − φk| > π/2. (c) The
Fiedler vector v2 at the bifurcation. (d) Dynamical instability after reducing the transmis-
sion capacity to K = 0.98 × Kc. The color coding of the nodes is the same as in panel
(c).

When G̃ becomes disconnected at the bifurcation, the Fiedler vector is given by

v2 =
1√

N1 +N2
(
√
N2/N1, . . .︸ ︷︷ ︸
N1 times

,−
√
N1/N2, . . .︸ ︷︷ ︸
N2 times

)T , (93)

assuming that the nodes are labeled such that the first component is given by 1, . . . , N1
and the second by N1+1, . . . , N1+N2. The Fiedler vector thus predicts the dynamics
when stability is lost as shown in Fig. 4d.

6.2 Instability without overload

A different scenario can occur when the condition |θ∗i − θ∗j | ≤ π/2 is not satisfied
for one or more edges. This is possible for a stable fixed point in complex networks
at the edge of the stable parameter region. Then we can have Kredjk < 0 such that
the meta-graph is no longer a non-negative graph and the results discussed in the
previous section do not apply.
In this case the bifurcation of a fixed point is generally not associated with any

overload. In particular, the grid is already operating “beyond” an overload at the
bifurcation point. An example of such a bifurcation is shown in Fig. 5. The marked
edge has a phase difference of |θ∗j − θ∗k| > π/2 such that Kredjk < 0. The loss of
stability is a collective effect of the entire grid and in particular there is no simple
graph theoretical interpretation of the bifurcation. Consequently, the Fiedler vector
defined in (92) only gives a limited insight into the desynchronization dynamics when
the fixed point is lost.
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Fig. 6. Statistical analysis of the different bifurcation scenarios based on an ensemble
of 200 different model networks. Shown is a histogram of the maximum phase difference
maxedges(j,k) |θj − θk| at the bifurcation point. In approximately 40% of all realizations the
steady state is lost because of an isolated overload as shown in Fig. 4. In approximately
60% of all realizations the grid is operating beyond an overload at the bifurcation point,
i.e. |θj − θk| > π/2 for at least one edge, as shown in Fig. 5. Results have been obtained for
200 realizations of the model network based on the topology of the British power grid with
random generator positions.

6.3 Relevance of bifurcation scenarios

The two bifurcation scenarios regularly occur in networks with complex topologies.
We have analyzed the bifurcation for 200 realizations of the model network based
on the topology of the British power grid with random generator positions (see
Fig. 6). We find that the loss of the steady state is caused by an isolated over-
load in approximately 40% of the sample networks while the grid is operating beyond
overload in the remaining 60% of all cases.
We note that the loss of a steady state and the following desynchronization gener-

ally leads to a large-scale power outage (cf. [37–39]). In current power grids this can
happen only in periods of extreme loads while the phase difference is generally much
smaller than π/2 in periods of average load. However, extreme loads are expected to
become much more likely in the future if the power grid is not sufficiently adapted to
the energy transition to renewable sources [3].
The two examples shown in Fig. 4 and Fig. 5 capture the essential mathematical

aspects of this bifurcation for two model networks. Hence they are of interest both for
fundamental research and as a guideline for the the analysis of real-world power grids
though being simplified. In the figures we have illustrated the system stability for two
model networks as a function of the parameter K in the very tradition of the physics
literature on oscillator models (cf. [17–19] and references therein). In real world grids,
the connectivity Kij is generally fixed while generation and load can change strongly.
As an essential parameter affecting stability is the transported power P relative to the
connectivity Kij , we vary Kij to study qualitative changes in the collective dynamics
of the network.

6.4 Braess’ paradox

We finally note that a variety of parameter changes can induce a bifurcation. Stability
can be lost due to an increase of the power load or the damage of a transmission line,
but surprisingly also by increasing the transmission capacity or even by putting a new
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Fig. 7. Loss of stability due to the increase of local transmission capacity in a circular
network. A stable (—) and an unstable (−−−) fixed point vanish in a saddle-node bifurcation
at the critical point κc = 17.15. The stable fixed point (blue) is lost. (a) Topology of the
network. The capacity of the upper edge (3, 4) is increased by an amount κ. (b) Phase
differences along the edges of the cycle. Close to the bifurcation, the phase difference |θ5−θ4|
exceeds π/2 for the stable fixed point (see inset). (c) Eigenvalues of the Hesse matrix M ,
which yield the eigenvalues of the Jacobian via (62). Parameters are K = 50 and P0 = 49.

line into operation. Figure 7 shows an example of this effect called Braess’ paradox
[45]. A detailed discussion of Braess’ paradox in supply networks is presented in
[12,46].
In this example (Fig. 7) the stable fixed point ceases to exist after a saddle node

bifurcation when the capacity of the upper transmission line is increased to a critical
value κ > κc = 17.15. Again, we find that the grid is no longer in normal operation
in the vicinity of the bifurcation as the phase difference θ∗5 − θ∗4 exceeds π/2 already
for κ > 15.2. This constitutes a clear example that adding lines or improving line
capacities may also induce instabilities without overloads via Braess’ paradox [12,46].

7 Conclusions and discussion

How can supply networks become unstable? In simple systems where the loads are
the only relevant variables, the answer is simple: instabilities emerge if and only if
one or more elements overload, cf. also [47].
As we intended, we have demonstrated in this article how instability can also

emerge in the absence of any overloads. We have explicated stability conditions for
fixed points (steady operation) of oscillatory power grid models [9,11,13], where
in addition to the pure flows, phase variables play a crucial role. We linked a
Hamiltonian description to existence and bifurcation types of fixed points. In partic-
ular, we demonstrated that instabilities may emerge with and without transmission
line overloads and that – through Braess’ paradox [12,46] – adding new lines may
also create collective instabilities without line overloads.
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Like the coupled phase oscillator model described here in the context of power
grids, the function of many physical and biological supply networks depends on and
involves quantities other than the network load. A notable example from biology is leaf
vasculature and stomatal patchiness. Stomatal patchiness is the oscillatory dynamics
of the opening and closing of patches of leaf stomata, which is believed to be the result
of hydraulic and elastic coupling between neighbouring stomata. This dynamics can
arise in a self organised manner in situations where a uniform stomatal aperture
should be expected. Although recent progress has been made, stomatal patchiness
is still not completely understood [48], especially in the context of the underlying
hydraulic coupling of the stomata to the vascular system.
Similarly, the plant phloem is a dynamical transport system involving a number

of interdependent quantities. The phloem vascular elements transfer sap (a sugar
rich water solution) from and between the photo-synthesising tissues to the rest of
the plant. Sugars are being loaded in the phloem actively or passively at the sites
of photosynthesis and the rate of sugar production and loading (determining the
vascular network operation) can vary from site to site. The sugar concentration is a
field of independent variables coupled to the network load (phloem fluid flow), and
depending on the loading regime, the system has a potential of a rich dynamical
behaviour [49,50]. The plant phloem might thus constitute a biological candidate
system where instabilities of normal supply function may emerge without overloads.

We acknowledge support from the Bundesministerium für Bildung und Forschung and by a
grant of the Max Planck Society to M.T.

Appendix: A Properties of graph Laplacian

Definition 1. Let G be a weighted graph with n nodes with all the edge weights
wij ≥ 0. The Laplacian M is an N ×N matrix given by:

Mij = −wij + δij
N∑
k=1

wik. (94)

Theorem 2. In a fully connected graph G, the Laplacian L has exactly one zero
eigenvalue.

Proof. The Laplacian M obviously has one zero eigenvalue: the corresponding eigen-
vector being v0 = (1, 1, · · · , 1):

(Mv0)i =
∑
j

Mijv0j

=
∑
j

Mij

=
∑
j

[∑
k

δijwik − wij
]

= 0.

(95)
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Suppose there is another eigenvector v′ with eigenvalue 0. Then:

0 = v′TMv′

=
∑
ij

v′iMijv
′
j

=
∑
ij

v′i

(∑
k

δijwik − wij
)
v′j

=
∑
j

(∑
k

wjk

)
v′2j −

∑
ij

wijv
′
iv
′
j

=
∑
i<j

[√
wij

(
v′i − v′j

)]2
.

(96)

Therefore it follows that
√
wij(v

′
i − v′j) = 0 for all i, j ∈ ZN . This implies whenever

two nodes are connected by an edge (wij �= 0), vi = vj . Now, by virtue of G be-
ing connected, v′i = v′j must hold for all (i, j). But that implies v′ = v0, up to a
multiplicative constant. �	
Corollary 4. The multiplicity of 0 eigenvalue in the Laplacian of a graph equals its
number of connected components.

Proof. For a graph with c connected components, if the node indices are chosen prop-
erly, the Laplacian L will be in a block diagonal form with c blocks. Then following
the same reasoning as in Theorem 2, the result follows. �	
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