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We study multistability in phase locked states in networks of phase oscillators under both

Kuramoto dynamics and swing equation dynamics—a popular model for studying coarse-scale

dynamics of an electrical AC power grid. We first establish the existence of geometrically frus-

trated states in such systems—where although a steady state flow pattern exists, no fixed point

exists in the dynamical variables of phases due to geometrical constraints. We then describe the sta-

ble fixed points of the system with phase differences along each edge not exceeding p=2 in terms

of cycle flows—constant flows along each simple cycle—as opposed to phase angles or flows. The

cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed

points in ring networks. We show that long elementary cycles, strong edge weights, and spatially

homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for

the oscillator model for power grids) cause such networks to have more fixed points. We generalize

some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large

capacity and large cycle lengths, which we show to be quite accurate by numerical computation.

Finally, we present an algorithm to compute all phase locked states—both stable and unstable—for pla-

nar networks. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4994177]

The functions of many networked systems in physics, biol-

ogy, or engineering rely on a coordinated or synchronized

dynamics of their constituents. In power grids for example,

all generators must run at the same frequency and their

phases need to lock to guarantee a steady power flow.

Here, we analyze the existence and multitude of states

exhibiting this phase locking behaviour. Focusing on edge

and cycle flows instead of the nodal phases, we derive rigor-

ous results on the existence and number of such states.

Generally, multiple phase-locked states coexist in networks

with edges capable of carrying high flows, long elementary

cycles, and a homogeneous spatial distribution of natural

frequencies or power injections. Utilizing concepts from

the graph theory, we derive scaling relations for the num-

ber of such states in plane embedded networks. We also

offer an algorithm to systematically compute all phase-

locked states, both stable and unstable.

I. FROM KURAMOTO OSCILLATORS TO POWER
GRIDS

Coupled oscillator models are ubiquitous in science and

technology, describing the collective dynamics of various

systems on micro- to macro-scale. Research on coupled

oscillators dates back to Christian Huygens, who noticed that

two clocks synchronize when they are coupled.1 One of the

most important mathematical models was introduced by

Kuramoto2,3 and successfully applied to describe the collec-

tive dynamics of coupled Josephson junctions,4 neuronal net-

works,5 chemical oscillators,6 and a variety of other

synchronization phenomena.7–10

That model3 describes the dynamics of N coupled limit

cycle oscillators. The equations of motions for the phases

hj; j 2 f1;…;Ng are given by

d

dt
hj ¼ xj þ

XN

‘¼1

Kj;‘ sin h‘ � hj

� �
: (1)

The coupling matrix is assumed to be symmetric, Kj;‘ ¼ K‘;j,

and xj are the natural frequencies of the oscillators.

Throughout this article, we consider systems where all

Kj;‘ � 0, i.e., the units attract each other and do not repel.

A similar model of second-order oscillators describes

the collective phenomena of animal flocks11,12 or human

crowds13 as well as the coarse-scale dynamics of power

grids.14–20

For power grids, for instance, the units j describe syn-

chronous machines, generators, or motors, whose state is

completely described by their phase hj and the phase velocity
_hj relative to the reference frequency of the grid, typically

rotating at 50 Hz or 60 Hz. The acceleration (deceleration) of

the machines is proportional to the sum of the mechanical

power Pj generated (consumed) by the machine including
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damping and electric power exchanged with the grid. The

detailed equations of motion are given by

Mj
d2

dt2
hj þ Dj

d

dt
hj ¼ Pj þ

X
‘¼1

Kj;‘ sin h‘ � hj

� �
; (2)

where Mj is an inertia term and Dj a damping constant. The

coupling constants Kj;‘ ¼ U2Bj;‘ are determined by the volt-

age U of the grid, which is assumed to be constant, and the

admittance Bj;‘ of the electrical transmission line joining

node j and node ‘. The flow of electric real power from node

‘ to node j is

Fj;‘ ¼ Kj;‘ sinðh‘ � hjÞ ¼ Kj;‘Sj;‘: (3)

It is useful to describe the interaction topology of the system

as a weighted graph G(V, E), whose vertex set V is identical

to the set of oscillators and edge set E is given by the set of

all inter-oscillator coupling pairs, i.e., all pairs with K‘;j > 0.

We use the term network21 (rather than the term graph) for

the entire system with given natural frequencies xj or the

powers Pj.

Here, we distinguish two types of synchronization in

oscillator networks. Traditionally, the emergence of partial

synchrony has received the most interest of the physics com-

munity.2,3,7,8 In his seminal work, Kuramoto investigated a

set of oscillators with global coupling, Kj;‘ ¼ K=N, and natu-

ral frequencies drawn at random from a unimodal symmetric

distribution gðxÞ. If the coupling constant K exceeds a criti-

cal value Kc, a fraction of the oscillators start to synchronize

in the sense that they rotate at the same angular velocity

although their natural frequencies differ. In this state of par-
tial frequency locking, commonly referred to in the

Kuramoto oscillator literature as “partial synchrony,”8 the

phases of parts of the oscillators are ordered, but they are not

strictly phase-locked, such that the phase difference of two

synchronized oscillators ðhj � h‘Þ is generally small but not

constant.

In this article, we analyze the properties of globally
phase-locked states, where all oscillators synchronize and

the phase differences ðhj � h‘Þ are constant for all pairs

ðj; ‘Þ. These states are especially important for power grids,

as they describe the regular synchronous operation of the

grid.14–18 If this state is lost due to local outages or accidents,

the grid will fragment into asynchronous islands which can

no longer exchange electric energy.22 For instance, the

European power grid fragmented into three asynchronous

areas on November 4th 2006 after the shutdown of one trans-

mission line in Northern Germany. As a result, south-

western Europe suffered an under-supply on the order of

10 GW and approximately 10 million households were

disconnected.23

Without loss of generality, we take
P

jxj ¼ 0 orP
jPj ¼ 0, respectively, by invoking a transformation to a

co-rotating frame of reference. The globally phase-

locked states are then the fixed points of the system. For

both the Kuramoto model and the power grid model,

these states are given by the solutions of the transcenden-

tal equations

Pj þ
XN

‘¼1

Kj;‘ sin ðh‘ � hjÞ ¼ 0 for all j 2 f1;…;Ng; (4)

replacing Pj by xj for the Kuramoto model. In the following, we

analyze the influence of the network topology given by the cou-

pling matrix Kj;‘ on the existence of a fixed point. All results

below hold for both models; nevertheless, our intuition heavily

relies on the interpretation of Fj;‘ ¼ Kj;‘ sin ðh‘ � hjÞ as a flow

which is inspired from the power grid model. The results can be

generalized to arbitrary coupling functions f instead of the sine

(see, e.g., Refs. 24 and 25). In the following, we mostly restrict

ourselves to the common sine coupling for the sake of clarity.

We note that the second order power grid model (2) evi-

dently describes a different system from the first order

Kuramoto model (1). Nevertheless, there are deep underlying

connections between these two. In the context of power

grids, in the overdamped limit, one recovers the first order

Kuramoto model. The relation of first and second order mod-

els in the context of coupled Josephson Junctions was dis-

cussed in detail in Refs. 26 and 27. Partial synchronization in

first and second order models was reviewed in Ref. 28.

II. THE NATURE AND BIFURCATIONS OF FIXED
POINTS

Both the Kuramoto system and the oscillator model of

power grids share the same set of fixed points (4). It has been

shown that the similarity between these two systems runs

deeper, namely, the linear stability properties of those fixed

points are identical.29,30 In this section, we briefly review

some basic results on the stability of the fixed points.

We analyze the dynamical stability of a certain fixed

point h� ¼ ðh�1;…; h�NÞ by defining the potential function

V h1; h2;…; hNð Þ ¼ �
X

j

Pjhj �
1

2

X
i;j

Kij cos hi � hj

� �
: (5)

The fixed points correspond to the local extrema of this

potential, where @V
@hj
¼ 0 for all j. A fixed point h� is asymptot-

ically stable if the Hesse matrix H of the potential function

Hðh�Þ ¼

X
‘

Kred
1;‘ �Kred

1;2 � � �

�Kred
2;1

X
l

Kred
2;‘ � � �

..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA (6)

with the residual capacity

Kred
j;‘ ¼ Kj;‘ cosðh�j � h�‘ Þ (7)

has positive eigenvalues only. It is worth noting that H has

one eigenvector v1 ¼ ð1; 1;…; 1Þ with eigenvalue l1 ¼ 0

because any fixed point h� is arbitrary up to an additive con-

stant c. As such a global phase shift does not affect the lock-

ing of the phases, we can discard it in the following and

concentrate on the stability transversely to the solution space

fh� þ cð1; 1;…; 1Þjc 2 Rg.
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Lemma 1. Let the eigenvalues of H be ordered such that
l1 ¼ 0 and l2 � � � � � lN. If for a given network topology
and a given fixed point,

lk > 0; for all k 2 f2; 3;…;Ng; (8)

then this fixed point is transversally asymptotically stable for
both the Kuramoto system and the power grid model system.
If one of the lk < 0, then the dynamical system is linearly
unstable (this lemma and its proof have been presented in
Ref. 29).

Using some results from the bifurcation theory, it has

been shown in Ref. 29 that a stable fixed point can only be

lost by an inverse saddle-node bifurcation when one of the

eigenvalues becomes zero, l2 ¼ 0. At this point, linear

stability analysis is not sufficient to predict the stability of

the fixed point, but it is expected that the fixed point is

unstable.31

More insights into the loss of a fixed point when the

phase differences across all edges in the network are suffi-

ciently small can be gained:

Corollary 1. Consider a connected network. It is suffi-
cient (but not necessary) for a fixed point h� to be transver-
sally asymptotically stable; if the condition

cosðh�i � h�j Þ > 0 (9)

holds for all edges (i, j) in the network, then the network is
said to be in “normal operation.”

Proof. To this end, we first define a metagraph as

follows.

Definition 1 (Metagraph). Given a graph G(V, E) and a
set of flows Fuv across each edge e(u, v), its metagraph ~G is
an undirected graph with vertex set V and edge set E0 defined
as follows. For all edges eðu; vÞ 2 E, with weight Kuv; 9, an
edge eðu; vÞ 2 E0 with weight Kred

uv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

uv � F2
uv

p
, as per (7).

Then, the matrix H as defined in (6) is seen to be the

Laplacian matrix of the metagraph ~G. The eigenvalues of a

Laplacian of a connected undirected graph with positive

edge weights are always non-negative21 such that we obtain

the result. �

We note that this sufficient condition for stability has

been shown in Ref. 32 using the Gershgorin circle theorem.

During normal operation, an eigenvalue of the Hesse

matrix H, as defined in (6), can become 0 only when ~G
disconnects into two (or more) components. Such a split-

up occurs only when Kred
j;‘ ¼ 0 for all the transmission

lines connecting two certain parts (denoted by G1 and G2)

of the network, meaning that these lines are completely

saturated

sinðh�j � h�‘ Þ ¼ 61 ) jFj;‘j ¼ Kj;‘

for all ðj; ‘Þ 2 E; j 2 G1; ‘ 2 G2: (10)

Another scenario for the loss of stability is that one or more

transmission lines leave normal operation. Then, the edge

weights become effectively negative, such that a simple

graph-theoretic interpretation of the bifurcation is no longer

possible.29,58

III. CYCLE FLOWS AND GEOMETRIC FRUSTRATION

A. Flow conservation and the dynamics condition

It is instructive to divide the defining equation (4) of a

fixed point into two parts. First, every fixed point has to sat-

isfy a dynamic condition which is nothing but the conserva-

tion of the flow at every node of the network

Pj þ
XN

‘¼1

Kj;‘Sj;‘ ¼ 0 for all j 2 f1;…;Ng; (11a)

jSj;‘j � 1 for all edges ðj; ‘Þ: (11b)

Here,
P

‘Kj;‘Sj;‘ is the sum of all flows from the neighboring

nodes to the node j, while Pj is a source or sink term. The

second part of this condition reflects the fact that the trans-

mission capacity of each link is bound, such that the magni-

tude of the flow jFj;‘j cannot exceed the capacity Kj;‘. The

dynamic condition (11) holds for all flow networks also

including DC networks (i.e., Kirchhoff’s rules) and biologi-

cal network models.33,34

To obtain a better understanding of the possible solu-

tions, we slightly rephrase the dynamic condition (11). In

particular, we label all the L edges in the network with

e 2 f1;…; Lg. As the flows are directed, we have to keep

track of the ordering of the vertices connected by the edge e.

That is, each e corresponds to a directed link ðj; ‘Þ in the fol-

lowing. The ordering is arbitrary but must be kept fixed.

Then, we write Se ¼ Sj;‘ and Fe ¼ Fj;‘ for the flow over a

link e ¼̂ ðj; ‘Þ. Furthermore, we define the unweighted edge

incidence matrix I 2 RN�L (Ref. 21) via

Ij;e ¼
þ1 if node j is the head of edge e ¼̂ ðj; ‘Þ;
�1 if node j is the tail of edge e ¼̂ ðj; ‘Þ;
0 otherwise;

8><
>: (12)

and the weighted edge incidence matrix ~K 2 RN�L with the

components ~Kje ¼ KeIje.

The dynamic condition (11) then reads

Pj þ
XL

e¼1

Ij;eFe ¼ 0 for all j ¼ 1;…;N; (13a)

jFej � Ke for all e ¼ 1;…; L (13b)

in terms of the flows or

Pj þ
XL

e¼1

~Kj;eSe ¼ 0 for all j ¼ 1;…;N; (14a)

jSej � 1 for all e ¼ 1;…; L (14b)

in terms of the sine factors. Here, F ¼ ðF1;…;FLÞT and S

¼ ðS1;…; SLÞT are vectors in RL. The matrix ~K has N rows,

but its rank is only ðN � 1Þ. This is due to the fact that the

sum of all rows is zero as
P

j
~Kj;e ¼ 0 since each edge has

exactly one head and one tail. Hence, the solutions of the lin-

ear set of Eq. (14a) span an affine subspace of RL whose

dimension is ðL� N þ 1Þ. This statement will later be
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rigorously proved in Lemma 2. In many important applica-

tions, L is much larger than the number of nodes N, such that

we have a high dimensional submanifold B of RL with every

S 2 B being a solution of (14) and hence a candidate for a

fixed point of (1) and (2). However, the set of solutions of

the dynamical equations can also be empty if the capacities

Kj;‘ are too small. In fact, the condition (14b) defines a bound

convex polytope in RL. The solution of the full dynamical

conditions (14) is given by the intersection of this polytope

and the ðL� N þ1Þ dimensional affine subspace.

We can further characterize the solution of the dynamic

conditions by establishing that the homogeneous solutions of

the system (14a) are just the cycle flows which do not affect

flow conservation. As the number of fundamental cycles in a

network is ðL� N þ 1Þ, the dimension of the solution space

is also given by ðL� N þ 1Þ. The derivation of these results

is as follows.

Definition 2 (Simple cycle). Given an undirected graph
G(V, E), a closed path c ¼ ðv1; v2;…; vl; v1Þ where no vertex
apart from v1 occurs twice is called a simple cycle (Ref. 36,
p. 21).

Definition 3 (Cycle basis). Given a connected graph
G(V, E) with L edges and N vertices, the set of all simple
cycles C forms a vector space over the two element field
GFð2Þ ¼ f0; 1g, with the set symmetric difference being the
addition operator. This vector space has dimension
L� N þ 1. A basis BC of this vector space is called a cycle
basis of the graph G.

Definition 4 (Signed characteristic vector of a cycle).
An arbitrary assignment of a direction to each edge of an
undirected graph G, which results in a directed graph, is
called an orientation Gr.36 Given a graph G with L edges
and N vertices and one such orientation, there exists an
injective mapping from the set C of all simple cycles of G to
RL as follows:

C! RL;

c 7! zc;

zc
e ¼

0; if e is not in c;

1; if e ¼ ðvi; viþ1Þ and viþ1 is the head of e;

�1; if e ¼ ðvi; viþ1Þ and viþ1 is the tail of e:

8><
>:

zc is called the signed characteristic vector of each cycle.
Now, we show that any fixed point of the system can be

uniquely specified by a cycle flow along each cycle belong-

ing to a cycle basis of the underlying graph, along with an

arbitrary solution of (13).

Definition 5 (Cycle flow). Given a simple cycle c ¼
ðv1; v2;…; vl; v1Þ belonging to an undirected graph G(V, E),
a flow F is called a cycle flow if

Fj;k¼
fc if ðj;kÞ2fðv1;v2Þ;ðv2;v3Þ;…;ðvl�1;vlÞ;ðvl;v1Þg;
0 otherwise;

�
(15)

i.e., it is a constant nonzero flow along the cycle.
Lemma 2. Let SG be the set of all fixed points of a net-

work G satisfying the normal operation criteria (9). Then,

there exists a one-to-one function f c : SG 7!RL�Nþ1 that
maps each fixed point to a cycle flow vector.

Proof. Let hð0Þ be one (arbitrarily chosen) fixed point.

Let h be another. Then, we construct the mapping fc by prov-

ing that the flows for these two fixed point differ only by

cycle flows along each cycle.

Let Fð0Þ ¼ ðFð0Þe1
;Fð0Þe2

;…;Fð0ÞeL
Þ and F ¼ ðFe1;Fe2;…;

FeLÞ be the flows for the fixed points hð0Þ and h, respectively.

Then,

F� Fð0Þ ¼
X
c2BC

fczc; (16)

due to the result from the graph theory that the flow space of

an oriented graph Gr is spanned by the signed characteristic

vectors (Definition 4) of its cycles (Ref. 37, p. 311). Since by

definition the cycles in BC form a basis of the cycle space,

the coefficients fc are guaranteed to be unique. This con-

cludes the proof. �

We note that this mapping between fixed points and

cycle flows has previously been presented in slightly differ-

ent ways in Refs. 18 (supplementary material) and 38.

B. The winding number and the geometric condition

In addition to the dynamic condition, there is a geomet-

ric condition for the existence of a fixed point: a fixed point

exists if the flows Fj;‘ ¼ Kj;‘Sj;‘ satisfy the dynamic condition

(14) and if

for all edgesð‘;jÞ : 9ðh1;…;hNÞ such that Sj;‘¼ sinðh‘�hjÞ:
(17)

We now rephrase this condition in a more instructive

way. To this end, we assume that we have already obtained a

solution of the dynamic condition (14). Then, we can try to

successively assign a phase hj to every node j in the network.

Starting at a node j0 with an arbitrary phase hj0 , we assign

the phases of all neighboring nodes j1 such that sin ðhj1 � hj0Þ
¼ Sj0;j1 . We then proceed in this way through the complete

network to assign the phase of an arbitrary node jn,

hjn ¼ hj0 þ
Xn�1

s¼0

Djs;jsþ1
; (18)

where ðj0; j1;…; jnÞ is an arbitrary path from j0 to jn and we

have used a solution of the equation

Sj;‘ ¼ sinðDj;‘Þ (19)

for every edge ðj; ‘Þ.
In general, a given node jn can be reached from j0 via a

multitude of different paths. To define a unique set of phases

that satisfy the geometric condition (17), we must ensure that

Eq. (18) yields a unique phase regardless of which path is

taken from j0 to jn. This is equivalent to the condition that

the phase differences over every simple cycle (as defined in

Definition 2) in the network must add up to an integer multi-

ple of 2p.
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X
ðj;‘Þ2 cycle c

Dj;‘ ¼ 2mp; for some m 2 Z; (20)

where Dj;‘ is a solution of Eq. (19). Furthermore, it is suffi-

cient if (20) is satisfied by the cycles in the cycle basis of the

network defined in Definition 3: it will then automatically be

satisfied for all simple cycles of the network since the simple

cycles form a vector space.

However, there are two distinct solutions

Dþj;‘ ¼ arcsinðSj;‘Þ; (21a)

D�j;‘ ¼ p� arcsinðSj;‘Þ (21b)

of Eq. (19) which satisfy D6
j;l 2 ½�p; pÞ. To consider both,

we define a partition of the edge set

E ¼ Eþ [ E�; (22)

Eþ ¼ fðj; ‘Þ 2 EjDj;‘ ¼ Dþj;‘g; (23)

E� ¼ fðj; ‘Þ 2 EjDj;‘ ¼ D�j;‘g: (24)

Alternatively, we can define the two sets in terms of the

nodal phases as

Eþ ¼ fði; jÞ 2 Ej cosðhi � hjÞ > 0g; (25)

E� ¼ fði; jÞ 2 Ej cosðhi � hjÞ � 0g: (26)

We note that a fixed point where the plus sign is realized for

all edges (E� ¼ fg) is guaranteed to be linearly stable

according to corollary 1. We refer to it as normal operation.

To operationalize the geometric condition, we now

define the winding number (27) following the terminology

used by Ochab and Gora38 and Wiley et al.39

Definition 6 (Winding vector). Consider a connected
network with flows F. For every fundamental cycle c, the
winding number with respect to a partition E ¼ Eþ þ E� is
defined as

-c ¼
1

2p

X
e2E

zc
eDeðFeÞ (27)

with

DeðFeÞ ¼
arcsinðFe=KeÞ for e 2 Eþ
p� arcsinðFe=KeÞ e 2 E�:

�
(28)

The winding vector is defined as

- ¼ ð-1;…;-L�Nþ1ÞT : (29)

Using the winding number, we can reformulate the con-

ditions for the existence of a fixed point and establish a cor-

respondence between the description of fixed points in terms

of nodal phases of edge flows.

Theorem 7. Consider a connected network with power
injections P 2 RN and coupling matrix K 2 RN�N. Then,
the following two statements are equivalent:

1. h� is a fixed point, i.e., a real solution of Eq. (4).

2. F 2 RL satisfies the dynamic condition (13) and - 2
ZL�Nþ1 for some partition E ¼ Eþ þ E�.

Proof. We prove the theorem in two parts.

(1)) (2): If h� is a fixed point, then the flows F satisfy-

ing the dynamical condition (13) as given by (3) are

Fj;k ¼ Kj;k sin ðhk � hjÞ: (30)

Let us partition the edge set into Eþ and E– by

e ¼ ðj; kÞ 2 Eþ if cos ðhk � hjÞ > 0

E� if cos ðhk � hjÞ � 0:

�
(31)

We note the identity that

arcsinðsin ðxÞÞ

¼
�xþ ð2mx þ 1Þp if cos ðxÞ � 0

xþ 2mxp if cos ðxÞ > 0; for some mx 2 Z:

(

(32)

Combining this identity with the definition of De in (28) and

our chosen set partition (31) results in

for all ðj; kÞ 2 Eþ; Dj;k ¼ arcsinðFjk=KjkÞ;
¼ arcsinðsin ðhk � hjÞÞ;
¼ 2mjkpþ ðhk � hjÞ; (33)

for all ðj; kÞ 2 E�; Dj;k ¼ p� arcsinðFjk=KjkÞ;
¼ p� arcsinðsin ðhk � hjÞÞ;
¼ �2mjkpþ ðhk � hjÞ: (34)

Combining (33) and (34), we obtain Djk ¼ 2mjkpþ ðhk � hjÞ;
mjk 2 Z (choosing theþ sign for 2mjkp without loss of

generality).

Then, for any simple cycle c ¼ ðv1; v2;…; vl; v1Þ in the

cycle basis BC, the winding number is

-c ¼
1

2p

X
e2E

zc
eDeðFeÞ; (35)

¼ ðm12 þ m23;…;ml1Þ 2 Z; (36)

thus completing the first part of the proof.

(2) ) (1): Given a set of flows satisfying the dynamic

condition (13) and having integral winding numbers,

the fixed point h� can be constructed following Eqs. (17)

and (18).

This concludes the proof. �

C. Geometric frustration

The previous reasoning shows that we can face the fol-

lowing situation: given an oscillator network characterized

by the frequencies Pj and the capacity matrix Kj;‘, we can

find a solution of the dynamical conditions, such that the

flow is conserved at all nodes of the network. Nevertheless,

no fixed point exists as these solutions are incompatible with

the geometric conditions. In this case, we say that phase

locking is inhibited due to geometric frustration. We
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summarize this in a formal definition before giving some

examples for the importance of this phenomenon.

Definition 8. An oscillator network is said to be geomet-
rically frustrated if a solution of the dynamic conditions (11)
exists, but all solutions are incompatible with the geometric
conditions (20) such that no fixed point exists.

This definition builds on a generalized notion of geomet-

ric frustration introduced in mathematical physics.40 In that

context, a system with multiple state variables ðx1; x2;…; xnÞ
is called geometrically frustrated if for certain pair-wise cor-

relations between those variables, no steady state exist satis-

fying all these correlations simultaneously.

IV. EXAMPLES AND APPLICATIONS

In this section, we discuss the importance of geometric

aspects for the fixed points of an oscillator network with

different topologies. In particular, we analyze the number

of fixed points and show that geometric frustration can inhibit

phase locking, which may lead to counter-intuitive phenomena.

A. Trees do not suffer from frustration

By definition, a tree does not contain any cycle such that

the geometric condition (20) does not apply. Therefore, the

calculation of a fixed point of the power grid oscillator

model and the Kuramoto model as defined by Eq. (4) on a

tree reduces to the solution of the dynamic condition (11),

which is a linear set of equations. Moreover, we can find a

strong result on the number of stable and unstable fixed

points—see Corollary 2.

B. Multiple solutions in the cycle

We now consider the simplest nontrivial topology of a

cyclic network with only three nodes and three links with

equal strength K. The dynamical condition for the existence

of a fixed point then reads

K

0 1 �1

�1 0 1

1 �1 0

0
B@

1
CA S1;2

S2;3

S3;1

0
B@

1
CA ¼ P3

P1

P2

0
B@

1
CA (37)

and jSj;‘j � 1. In particular, for Pj¼ 0, any solution is a cycle

flow ðS1;2; S2;3; S3;1Þ ¼ S� ð1; 1; 1Þ.

Taking into account that there are two possible solutions

for the phase difference along each edge as per (21) and

since in order to satisfy the geometric condition (20), the

sum of phase differences along the cycle must equal 2mp for

some integer m 2 Z, we see that all fixed points must satisfy

D6
12 þ D6

23 þ D6
31 ¼ 2mp: (38)

Taking all combinations of either Dþ or D� and correspond-

ing possible values of m, we see that there are three intersec-

tions corresponding to three fixed points. These fixed points

are illustrated in Fig. 1. This shows that stationary states are

generally not unique, not even for the simplest cycle net-

work. In the present case, only one of the solutions is dynam-

ically stable, but this is generally not true in larger cycles as

we will show in the following.

C. Frustration induces discreteness

We now extend the above example to a single cycle

with an arbitrary number of nodes with the same power

Pj � 0. All links have an equal strength K as above. For the

sake of notational convenience, we label the nodes as

1; 2;…;N along the cycle and identify node 1 with Nþ 1

and 0 with N. In order to have a non-trivial closed cycle, we

need N � 3. The dynamic conditions for fixed points are

then given by

Fjþ1;j ¼ Fj;j�1 � F for all j ¼ 1;…;N; (39)

jFj � K: (40)

We stress that the dynamic conditions have a continuum of

solutions, i.e., all F values in the interval ½�K;K	 are

allowed.

The phase difference along the edges ðjþ 1; jÞ is given

by Eq. (21), leaving two possible solutions Dþj;‘ and D�j;‘.

Choosing the minus sign for at least one edge ð‘þ 1; ‘Þ
yields ~K

red

‘þ1;‘ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � F2
p

< 0. In this case, one can show

that the Hesse matrix H is not positive semi-definite such

that the fixed point must be unstable. Restricting ourselves to

the dynamically stable states, we find that the phase differ-

ences are all equal and given by

hjþ1 � hj ¼ arcsinðF=KÞ: (41)

FIG. 1. Illustration of geometric frustration and multistability in the simplest cyclic network with 3 nodes with Pj¼ 0 and three links with equal strength K.

Subplots show different branches of (38) obtained by choosingþ or � sign for D12;D23, and D31. The black lines denote the solution space of the dynamical

condition (37), S1;2 ¼ S2;3 ¼ S3;1 ¼ S. (a) Branch ðþ þþÞ with m¼ 0. (b) Branch ð� � þÞ with m¼ 1. The branches ðþ ��Þ and ð� þ�Þ yield solutions at

S ¼ ð0; 0; 0Þ in an analogous way. (c) Branch ð� � �Þ with m¼ 1 (upper part) and m¼ 2 (lower part). The branches ðþ þ �Þ; ðþ � þÞ, and ð� þ þÞ do not

yield a solution.
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The geometric condition now yields

N arcsinðF=KÞ ¼ 0 ðmod 2pÞ; (42)

which can be satisfied only for certain discrete values of F.

The geometric condition thus induces a “quantization” of the

phase differences as previously reported in Refs. 37 and 39

hjþ1 � hj ¼
n

N
2p;

with n 2 � N � 1

4

� �
;� N � 1

4

� �
þ 1;…;þ N � 1

4

� �� �
;

(43)

where b�c denotes the floor function. We note that solutions

with ðhjþ1 � hjÞ ¼ 6p=2 have Jacobian eigenvalues lk ¼ 0

for all k 2 f1;…;Ng. In this case, linear stability analysis

fails to determine dynamical stability properties (see the

study by Khazin und Shnol31 for details). For two coupled

oscillators, it is rather easy to see that the fixed point is nonli-

nearly unstable. In total, we thus find 2� bðN � 1Þ=4c þ 1

different stable stationary states.

This example is very simple but illustrates three impor-

tant general results. First, there can be multiple stable fixed

points in cyclic networks as previously noticed in Refs. 38

and 41–43. This fact has been discussed in power engineer-

ing in Ref. 44, but rigorous results on conditions on the exis-

tence of multistability and the number of fixed points are

rare probably because most authors in this community con-

centrate on fully connected networks which arise after a

Kron reduction.17,41 Second, the oscillator model (2) allows

for stable fixed points with a persistent current around a

cycle. Interestingly, these states are phase locked but not
phase ordered in the sense that the phase order parameter7

reiw :¼ 1

N

X
j

eihj (44)

vanishes exactly for K> 0. Third, the geometric condition

induces the discreteness of the phase differences although

the dynamic condition allows for continuous values of cycle

flows.

D. Braess’ paradox

Here, we introduce a special example which illustrates

the paradoxical effects of geometric frustration most clearly.

We consider the oscillator network depicted in Fig. 2(a) con-

sisting of N¼ 4 nodes placed on a cyclic network, where

nodes 1 and 3 have power injection �P and nodes 2 and 4

have power injections P. In particular, we analyze what hap-

pens if the capacity of the upper edge (1, 2) is increased

from K to K0 ¼ K þ j.

The dynamic condition for this network reads

0 ¼ Pj þ ðKjþ1;jSjþ1;j � Kj;j�1Sj;j�1Þ; (45)

and jSjþ1;jj � 1, identifying node j¼ 5 with j¼ 1. For nota-

tional convenience, we define the vector

S ¼ ðS4;1; S1;2; S2;3; S3;4Þ: (46)

The solutions of the linear system of Eq. (45) span a one-

dimensional affine space parametrized by a real number �,

S ¼ P

K
Sa � � Sbð Þ: (47)

The vector Sa ¼ ð�1; 0;�K=K0; 0Þ is an inhomogeneous

solution of the linear system (45), and the vector Sb ¼ ð1; 1;
K=K0; 1Þ is a homogeneous solution corresponding to a cycle

flow. Evaluating the condition jSjþ1;jj � 1 yields a necessary

condition for the existence of a fixed point

2K � P: (48)

For j¼ 0, this condition is also sufficient for the exis-

tence of a stable fixed point. If the capacity of the upper link

increases, j > 0, geometric frustration inhibits phase lock-

ing. A solution of the dynamical conditions always exists for

2K � P, but this can become incompatible with the geomet-

ric condition. We illustrate this in the stability diagram in

Fig. 2(b). A stable fixed point exists only in the parameter

region above the white line. As we see in Fig. 2(b), the mini-

mum K required to maintain steady operation, the critical
coupling Kc, increases when j is increased.

To further characterize the long-time behavior of the

oscillator network, we define _h1 as the average phase veloc-

ities of all the nodes in the limit of large time

_h1 ¼ lim
T!1

1

s

ðTþs

T

1

N

XN

j¼1

j _hj tð Þjdt: (49)

Therefore, _h1 must be zero for steady operation to take

place. As expected, we find _h1 ¼ 0 in the stable parameter

region above the white line K > Kc and _h1 > 0 in the

unstable parameter region below the white line K < Kc.

Remarkably, _h1 is the largest for small values of j and, of

course, K < KcðjÞ.
This leads to the paradoxical effect that an increase in

local transmission capacity reduces the ability of the network

to support a phase locked fixed point. This behavior can also

be seen as an example of Braess’ paradox45,46 which has

been first predicted for traffic networks.47

FIG. 2. Geometric frustration induces Braess’ paradox. (a) Topology of the

network under consideration. (b) Average phase velocities _h1 defined in

(49) for different values of K and j. For fixed points, _h1 ¼ 0. The white

line shows the critical coupling Kc. The fixed point can be lost when the

local transmission capacity j increases.
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It is noted that the existence of cycles is a necessary con-

dition for this paradoxical behavior in oscillator networks. A

fundamental example of Braess’ paradox was investigated in

Ref. 30, starting from a chain network which has no cycles

and thus shows no frustration and Braess behavior. Then, a

single line is added creating a single cycle and necessary

conditions being established under which conditions the

closing of the cycles induced Braess’ paradox.

V. MULTISTABILITY AND THE NUMBER OF FIXED
POINTS

The previous examples show that there can be a large

number of stable fixed points in a cyclic network. In the fol-

lowing, we derive conditions for the existence and bounds

for the number of stable fixed points depending on the

network structure. We start with a deeper analysis of the

dynamic condition for arbitrary networks, which is a neces-

sary prerequisite for the existence of a stable fixed point.

Then, we turn to the geometric condition and derive bounds

for the number of fixed points. The arguments depend

heavily on the network structure such that we will start with

trees and simple cycles before we turn to more complex

topologies.

A. The dynamic condition

We first analyze whether the dynamic condition (13)

admits a solution. The problem reduces to the Multi-source

multi-sink maximum flow problem, which can be solved by

a variety of different algorithms.48,49

So, let G ¼ ðV;EÞ be a connected graph with N nodes

and L edges. Each edge is assigned a capacity given by

K1;…;KL, and each node has an in- or outflux given by

P1;…;PN . We define an extended graph G0 ¼ ðV0;E0Þ, illus-

trated in Fig. 3, by adding two vertices s and t to the vertex

set,

V0 ¼ V [ fs; tg; (50)

and adding directed links connecting s(t) to all nodes with

positive (negative) power injection

E ¼ E [ fðs! jÞjj 2 V;Pj � 0g [ fðj! tÞjj 2 V;Pj < 0g:
(51)

The capacity of the newly added links is infinite. Then, one

finds the theorem:

Theorem 9. A solution of the dynamic condition (13)
exists if and only if the value of the maximum s-t-flow F st in
the network G0 is larger than or equal to the cumulated input
power

F st �
X

j2V;Pj �0

Pj: (52)

Alternatively, a sufficient condition for the existence of a

solution can be found by dividing the graph into parts: let

(V1, V2) be an arbitrary partition of V and EðV1;V2Þ the cut-

set induced by this partition (see Fig. 4). Then, we define

�P1 ¼
X
vj 2V1

Pvj
; �P2 ¼

X
vj 2V2

Pvj
; �K12 ¼

X
e2EðV1;V2Þ

Ke: (53)

We note that have assumed that
P

jPj ¼ 0, without loss of

generality, such that we always have �P1 þ �P2 ¼ 0.

Theorem 10. If for all partitions (V1, V2) we have

j �P1j ¼ j �P2j � �K12; (54)

then there exists a solution of the dynamic condition (13).
Proof. The idea is to prove the following:

(@ a solution of the dynamic condition (13a) and (13b).

() All solutions of (13a) violate (13b)).

) 9 a partition (V1, V2) with j �P1j � �K12.

Reversing arguments then yields the theorem. It remains

to show that the statement “)” is true.

Let F be a solution of (13a). According to our assump-

tion, the set of overloaded edges

Eov ¼ fe 2 EjjFej > Keg (55)

is not empty. Now, consider one overloaded edge e0 ¼ ðu; vÞ
2 Eov. We assume without loss of generality that the flow is

from u to v, i.e., Fv;u > Kv;u > 0. We define the weighted

directed network ~GðV; ~EÞ with ~E ¼ Ene0 and coupling

constants

Wj;i ¼ maxf0;Kj;i � Fj;ig: (56)

We determine the maximum flow pattern DFe; e 2 ~E with the

value DFmax from u to v in the network ~G. According to the

max-flow min-cut theorem, there is a partition (V1, V2) with u 2
V1 and v 2 V2 and the associated cutset ~EðV1;V2Þ such that

DFe ¼ We for all e 2 ~EðV1;V2Þ: (57)

Now, consider the flow pattern F0 defined by

FIG. 3. Illustration of Theorem 9. The original network G (smaller nodes

and solid edges) admits solution to the dynamic condition if and only if the

extended graph G0 with a super source s (big blue node) and a super sink t
(big red node) admits an s-t flow larger than the sum of all positive input

powers in G.

FIG. 4. Illustration of Theorem 10. For each partition of the node set of a graph

into V1 (shaded grey) and V2, the induced cutset (edges coloured red) must

have capacity not less than the absolute value of input power in V1 or V2.
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F0e ¼ Fe þ DFe e 2 ~E; (58)

F0e0
¼ Fe0

� DFmax: (59)

This is a new solution of the condition (13a). Basically, we

have rerouted the maximum possible flow from the edge

e0 ¼ ðu; vÞ to alternative paths from u to v. Furthermore, we

define the edge set EðV1;V2Þ ¼ e0 [ ~EðV1;V2Þ, which is a

cut of the original graph G.

We now have to distinguish two cases:

Case 1: The maximum flow value DFmax < Fe0
� Ke0

.

Then, the edge e0 is still overloaded, i.e., we have

F0e0 > Ke0
. Summing up Eq. (13a) over the nodes in V1 and

V2 yields

�P1 ¼ � �P2 ¼
X

e2EðV1;V2Þ
F0e: (60)

However, we know that F0e0 > Ke0
and F0e ¼ Ke for all other

e 2 EðV1;V2Þ such thatX
e2EðV1;V2Þ

F0e > �K12 (61)

and the statement “)” follows.

Case 2: The maximum flow value DFmax � Fe0
� Ke0

. e0 is

no longer overloaded with respect to the flow pattern F0.
The set of edges which is still overloaded

E0ov ¼ fe 2 EjjF0ej > Keg (62)

does no longer contain e0, i.e., E0ov 2 Eovne0. However, this

set cannot be empty as we have assumed that there is no

solution of (13a) satisfying (13b). Then, we can just restart

the procedure, by selecting an edge e1 2 E0ov and finding a

max. flow between its adjacent vectors. Finally, we must

arrive at case 1 for which the statement “)” follows. �

These two theorems have a straightforward energetic inter-

pretation. In Theorem 10, we assume that the grid is decom-

posed into two parts and calculate the cumulated power in

the two parts V1 and V2. A steady state can only exist if it is

possible to transmit the cumulated power from one part to

the other one. This condition must hold for all partitionings

of the networks. Theorem 9 is basically a reformulation of

this task in the sense of the max-flow min-cut theorem from

the graph theory. We accumulate all sources in a super

source and all sinks in a super-sink. A steady state can only

exist if there is a valid flow from the super-source to the

super-sink.

B. Tree network

In Sec. IV we have argued that multistability arises due

to the possibility of cycle flows. In a tree, there are no cycles

and thus no multistability, and we obtain the following

result.

Corollary 2 In a tree network, either there is no fixed
point or there are 2N�1 fixed points of which one is stable
and 2N�1 � 1 are unstable.

Whether the fixed points exist or not can then be decided

solely on the basis of the dynamical condition (11), respec-

tively, using Theorem 9.

Proof. By definition, a tree has L ¼ N � 1 edges such

that the space of solutions of the linear system (14a) has

dimension L� N þ 1 ¼ 0. That is, there is either zero or

exactly one unique solution for the flows Fj;‘. In the first

case, no fixed point exists. In the latter case, there are 2 pos-

sible values for the phase difference for each of the edges

given by Eq. (21). Hence, there are 2L ¼ 2N�1 fixed points.

Choosing theþ-sign in Eq. (21) yields one stable fixed point

as shown in corollary 1.

It remains to show that all other fixed points are unsta-

ble. So, consider a fixed point with one edge where the

cosine of the phase difference is smaller than zero. The net-

work is a tree such that it is decomposed into two parts

which are only connected by this edge. We label the nodes

by 1;…; ‘ in one part and by ‘þ 1;…;N in the other part.

Then, the Hesse matrix H (see Sec. II) has the form

H¼ H1 0

0 H2

	 

þ

. .
.

0 0 0 0

0 Kred
‘;‘þ1 �Kred

‘;‘þ1 0

0 �Kred
‘;‘þ1 Kred

‘;‘þ1 0

0 0 0 0

. .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(63)

where Kred
‘;‘þ1 < 0 and H1 and H2 are defined as in Eq. (6) for

the two parts of the network. Now define the vector

v ¼ ð1;…; 1|fflfflffl{zfflfflffl}
‘ times

; 0;…; 0|fflfflffl{zfflfflffl}
ðN�‘Þ times

ÞT: (64)

Due to the structure of the matrix H1, we have H1ð1;…; 1ÞT
¼ 0 such that

vTHv ¼ Kred
‘;‘þ1 < 0: (65)

Thus, the Hesse matrix H is not positive semi-definite, i.e., it

has at least one negative eigenvalue and the fixed point is

unstable (cf. Lemma 1). �

We note that this can also be seen as a consequence of

Taylor’s lemma in Ref. 41, showing that for stable fixed

points, there cannot be a partition of a graph so that the sum

of cosines of the phase differences across all edges in the

induced cutset is less than zero.

C. Cycle flows and winding vector

In the following, we want to operationalize theorem (7),

which characterizes fixed points in terms of the flows and

winding numbers, to derive strict bounds for the number of

fixed points in a network. Restricting ourselves to normal

operation (E� ¼ fg) and using the decomposition (16), the

definition of the winding numbers (27) reads
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-c ¼
1

2p

XL

e¼1

zc
earcsin

Fe

Ke

	 


¼ 1

2p

XL

e¼1

zc
earcsin

F 0ð Þ
e þ

P
c02BC

fc0z
c0
e

Ke

 !
; (66)

using Eq. (16). The concept of winding numbers is particu-

larly useful when they are unique. If we can find upper and

lower bounds for -c, then we can simply count the number

of solutions - 2 ZL�Nþ1 to obtain the number of fixed

points. Uniqueness is rigorously shown for planar graphs in

the following lemma.

A graph is called planar if it can be drawn in the plane

without any edge crossings. Such a drawing is called a

plane graph or a planar embedding of the graph, and any

cycle that surrounds a region without any edges is called a

face of the graph.35 For the sake of simplicity, we adopt

the convention that for plane graphs, the cycle basis BC is

built up from the faces in the following. Notably, many

power grids and other supply networks are actually planar.

Crossing of power lines is not forbidden a priori but is

rare.

Lemma 3. For a planar network, let h and h0 be two
fixed points satisfying the “normal operation” criterion (9).
If -ðhÞ ¼ -ðh0Þ, then both fixed points are the same, i.e., the
phases differ only by an additive constant

h ¼ h0 þ cð1; 1;…; 1ÞT : (67)

In other words, no two different fixed points in planar net-
works can have an identical winding vector.

Proof. Choose as the cycle basis BC the faces of the

plane embedding. The two fixed points can differ only via

cycle flows such that the flows can be written as

fixed point h : Fe ¼ Fð0Þe þ
X
c2BC

fczc
e; (68)

fixed point h0 : F0e ¼ Fð0Þe þ
X
c2BC

fc
0zc

e; (69)

defining two cycle flow vectors f and f 0. We write -ðf 0Þ and

-ðf Þ in short-hand notation for the corresponding winding

vectors. We show that -ðf 0Þ ¼ -ðf Þ implies f 0 ¼ f and thus

F0 ¼ F. As we are assuming normal operation, we can

reconstruct the phases via (18) and thus find h ¼ h0

þcð1; 1;…; 1ÞT as we need to show.

So, assume that -ðf 0Þ ¼ -ðf Þ and f 0c 6¼ fc for at least

one cycle c. We show that this leads to a contradiction such

that the lemma follows. First, consider the case that f
0
c � fc is

the same for all cycles: f 0c � fc ¼ Df 6¼ 0 for all c 2 BC.

Then, choose a cycle k at the boundary. If Df > 0, we find

-kðf 0Þ > -kðf Þ, and if Df < 0, we find -kðf 0Þ < -kðf Þ. This

contradicts the assumption and the lemma follows.

Otherwise, choose a cycle for which the quantity f
0
c � fc

is the largest. We can find a cycle k such that

f 0k � fk � f 0‘ � f‘ for all ‘ 6¼ k; (70)

f 0k � fk > f 0n � fn for at least one cycle n adjacent to k: (71)

or, equivalently,

f 0k � f 0‘ � fk � f‘ for all ‘ 6¼ k; (72)

f 0k � f 0n > fk � fn for at least one cycle n adjacent to k: (73)

We now exploit that any edge belongs to at most two

cycles, according to Mac Lane’s planarity criterion.50

Choosing an edge e which is part of both the cycles k and n,

we have zk
ezk

e ¼ 1 and zk
ezn

e ¼ �1. For all other cycles

‘ 6¼ k; n, we have z‘e ¼ 0. Thus, we find [using (73)]

zk
eFð0Þe þ zk

ezk
e|{z}

¼þ1

f 0k þ zk
ezn

e|{z}
¼�1

f 0n þ
X
‘6¼k;n

zk
ez‘e|{z}
¼0

f 0‘ > zk
eFð0Þe

þ zk
ezk

e|{z}
¼þ1

fk þ zk
ezn

e|{z}
¼�1

fn þ
X
‘ 6¼k;n

zk
ez‘e|{z}
¼0

f‘; (74)

! zk
eFð0Þe þ

X
c

zk
ezc

e f 0c > zk
eFð0Þe þ

X
c

zk
ezc

efc: (75)

For every other edge e0 in cycle k, we find by the same proce-

dure [using (72)] that

zk
e0F

0
eð0Þ þ

X
c

zk
e0z

c
e0 f
0
c � zk

e0F
ð0Þ
e0 þ

X
c

zk
e0z

c
e0 fc: (76)

Substituting these two inequalities in the definition (66) and

using that arcsin is monotonically increasing and point-

symmetric about the origin such that arcsinðzk
exÞ ¼ zk

earcsinðxÞ,
we find

-kðf 0Þ > -kðf Þ: (77)

This contradicts our contrary assumption, which concludes

the proof. �

We note that Delabays et al. have proved this lemma

using completely different techniques in Ref. 51.

D. Simple cycles

For networks containing a single cycle (a ring network),

tight upper and lower bounds can be obtained for the number

of fixed points satisfying cos ðh�i � h�j Þ > 0 for all edges (i,
j). These states correspond to the normal operation of a

power grid and are guaranteed to be stable by corollary 1.

Other stable steady states can exist in particular at the border

of the stable parameter region.29 We label the nodes as

1; 2;…;N along the cycle, fixing the direction of counting in

the counter-clockwise direction and identify node 1 with

Nþ 1 and 0 with N. Likewise, we fix the orientation of the

edges e 2 f1;…; Lg such that Fe > 0 describes a counter-

clockwise flow and Fe < 0 a clockwise flow.

We will first calculate the exact number of fixed points

counting the number of different allowed winding numbers.

However, this result depends on one particular solution of

the dynamic conditions (11), thereby limiting its applicabil-

ity. We therefore also derive lower and upper bounds for the

number of fixed points in terms of a few simple characteris-

tics of the grid, in particular, the maximum partial net power.

These bounds do not depend on any particular solution of the

dynamical condition.
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Remark 11. For any ring network RN with N nodes, the
cycle flow vector defined in (2) and the winding vector
defined in (29) naturally reduce into single numbers. We
refer to them as cycle flow fc and winding number -c, follow-
ing Ref. 39. These two quantities will be crucial in establish-
ing the results in the rest of this section.

Theorem 12. For a ring network RN, the number of
normal operation fixed points (denoted by N ) is given by

N ¼ 1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ f max
c

Kjþ1;j

 !& ’

� 1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ f min
c

Kjþ1;j

 !$ %
� 1; (78)

where b�c denotes the floor function and d�e denotes the ceil-
ing function. F

ð0Þ
ij is one particular solution to the dynamic

condition (11) and

f max
c ¼ min

j
ðKjþ1;j � F

ð0Þ
jþ1;jÞ;

f min
c ¼ max

j
ð�Kjþ1;j � F

ð0Þ
jþ1;jÞ: (79)

Proof. Suppose that we have one fixed point h0 with the

flows F
ð0Þ
ij and analyze (as per Theorem 3) which cycle flow

values fc lead to different valid fixed points. First, the cycle

flow bounds both above and below since the flow Fj;jþ1 along

each edge cannot exceed in absolute value the capacity Kj;jþ1

f min
c < fc < f max

c ; (80)

f max
c ¼ min

j
ðKj;jþ1 � F

ð0Þ
j;jþ1Þ; (81)

f min
c ¼ max

j
ð�Kj;jþ1 � F

ð0Þ
j;jþ1Þ: (82)

We emphasize that fc cannot be equal to f max
c or f min

c because

otherwise one edge would be fully loaded with cos ðhi � hjÞ
¼ 0, contradicting our assumption.

Second, all fixed points have to satisfy the geometric

condition (cf. Theorem 7)

-ðfcÞ 2 Z: (83)

Since we restrict ourselves to normal operation, the

winding number for a single cycle reads

- fcð Þ ¼
1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ fc

Kjþ1;j

 !
: (84)

Using the bound for the cycle flow strength (80) and the fact

that arcsin is a monotonically increasing function, we find

that the winding number is also bound by

-ðf min
c Þ � - � -ðf max

c Þ: (85)

As the winding numbers are unique (see Lemma 3), the dis-

tinct fixed points correspond to the following values of the

winding number:

-fixedpoint ¼ b-ðf min
c Þc þ 1; b-ðf min

c Þc þ 2;…; d-ðf max
c Þe � 1:

(86)

Counting these values and inserting the values of f min
c and

f max
c then yield the number of fixed points N . �

For practical applications, it is desirable to determine

the number of fixed points from the properties of the network

alone, without referring to a particular solution Fð0Þ. To

obtain suitable bounds for the number of fixed points N , we

first define some properties which characterize the network.

Definition 13. For a ring network RN with N 2N

nodes indexed by 1; 2;…;N along the cycle, a fragment F i;j

is defined as the path starting at node i and ending at node j.
For any fragment F i;j, the partial net power �Pij is defined as

�Pij ¼
Xj

k¼i

Pk: (87)

and the maximal partial net power is defined as

�Pmax ¼ max
i;j

�Pi;j: (88)

This concept is illustrated in Fig. 5. Furthermore, we define
the maximum and minimum transmission capacities

Kmax ¼ max
j

Kjþ1;j and Kmin ¼ min
j

Kjþ1;j: (89)

Lemma 4. For any ring fragment F i;j, the partial net
power is equal to the net outward flow

�Pij ¼ Fjþ1;j � Fi�1;i (90)

and �Pmax ¼ max
j

Fjþ1;j �min
i

Fi�1;i : (91)

Lemma 4 is a formalization of energy conservation. The

net outward flow from a segment must equal the cumulated

power injections in the fragment. We then seek the fragment

maximizing the total flow exchanged with the rest of the

ring. We note that the definitions of �Pij and �Pmax appeared

previously in Ref. 51.

Corollary 3. For a ring network RN, the number of nor-
mal operation fixed points (denoted by N ) is bound from
above and below by

0 � N � 2
N

4

� �
þ 1 (92)

FIG. 5. The maximum partial net power �Pmax in different ring networks.
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and by

N

4

2Kmax � �Pmax

Kmin

� 
� N � N

2p
2Kmin � �Pmax

Kmax

� 
� 1: (93)

Proof. According to Lemma 12, the number of fixed

points N is given by

N ¼ d-ðf max
c Þe � b-ðf min

c Þc � 1: (94)

We make use of the fact that the arcsin function is

bound, arcsinðxÞ 2 ½�p=2;þp=2	, such that

- f max
c

� �
¼ 1

2p

XN

j¼1

arcsin
F 0ð Þ

jþ1;j þ f max
c

Kjþ1;j

 !
<

N

4
;

- f min
c

� �
¼ 1

2p

XN

j¼1

arcsin
F 0ð Þ

jþ1;j þ f min
c

Kjþ1;j

 !
> �N

4
: (95)

This proves the first part (92) of the corollary. To prove the

second part, we start from

d-ðf max
c Þ�-ðf min

c Þe�1�N �d-ðf max
c Þ�-ðf min

c Þe: (96)

Now, one can obtain upper and lower bounds for all terms in

the sum using the trigonometric relation

x� y � arcsin xð Þ � arcsin yð Þ �
p
2

x� yð Þ; (97)

which holds for all �1 � y � x � 1. This yields

1

2p

X
j

Dfc

Kjþ1;j
� - f max

c

� �
� - f min

c

� �
� 1

4

X
j

Dfc

Kjþ1;j
; (98)

where we define Dfc ¼ f max
c � f min

c . Furthermore, this quan-

tity can be bound as

Dfc ¼ min
j
ðKjþ1;j � F

ð0Þ
jþ1;jÞ �max

j
ð�Kjþ1;j � F

ð0Þ
jþ1;jÞ

� 2Kmin þmin
j
ð�F

ð0Þ
jþ1;jÞ �max

j
ð�F

ð0Þ
jþ1;jÞ;

¼ 2Kmin þmax
j
ðFð0Þj;jþ1Þ �max

j
ð�F

ð0Þ
jþ1;jÞ;

¼ 2Kmin � �Pmax using ð92Þð Þ; (99)

such that the fraction in Eq. (98) becomes

Dfc

Kjþ1;j
� 2Kmin � �Pmax

Kmax

: (100)

In a similar way, we find

Dfc � 2Kmax � �Pmax: (101)

Substituting these bounds into Eq. (98) yields

- f max
c

� �
� - f min

c

� �
� N

2p
2Kmin � �Pmax

Kmax

;

- f max
c

� �
� - f min

c

� �
� N

4

2Kmax � �Pmax

Kmin

;

(102)

which combined with (96) completes the proof. �

We note that the first part of this bound (92) had previ-

ously been shown by Ochab and Gora38 as well as by

Delabays et al.37

Corollary 4. For homogeneous rings RN, i.e., Ki;iþ1

¼ K, Eq. (93) simplifies to

N

p
� N �Pmax

2Kp

� 
� 1 � N � N

2
� N �Pmax

4K

� 
: (103)

In particular, ring networks RN with N � 4 do not have
multiple stable fixed points. Ring network RN with N � 7

nodes will have multiple stable fixed points ðN � 2Þ if

�Pmax < 2Kmin �
4p
N

Kmax : (104)

These relations can be proven by simply evaluating the

bounds in Corollary 3.

Corollary 5. As K is decreased in a homogeneous ring
network, the fixed points with the largest infinity norm of the
flows

jjFjj1 :¼ max
j
jFj;jþ1j

will be the first ones to vanish.
Proof. We can see from (95) that both -ðf max

c Þ and

-ðf min
c Þ are monotonically increasing functions of f max

c and

f min
c , respectively. According to (80), when K is decreased,

f max
c decreases and f min

c increases. The corollary follows. �

We illustrate how the bounds scale with the connectivity

K and �Pmax for a sample ring of size N¼ 16 in Fig. 6. We see

in Fig. 6(a) that increasing K results in more stable fixed

points. Whereas Fig. 6(b) demonstrates that if the power gen-

erators ðPj � 0Þ are clustered together, then the system has

less fixed points, as opposed to the case where they are more

distributed.

FIG. 6. Upper and lower bounds for

the number of fixed points N for a

sample 16 element ring as a function

of (a) K ¼ Kj;jþ1 for all 1 � j � 16 at
�Pmax ¼ 3 and (b) �Pmax at K¼ 10.
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E. Complex networks

Obtaining bounds for the number of fixed points is hard

in general, as we cannot simply decompose a network into

single cycles, unless no two cycles of a network share an

edge. The difficulty arises because cycle flows in two faces

sharing one or more edges can cancel or enhance each other.

This is why one cannot simply multiply the bounds for a

number of fixed points for each cycle to obtain a bound for

the total number of fixed points for a network. We demon-

strate this using two examples.

1. Two cycle flows destroying each other

First, we show that even if all single cycles support (multi-

ple) fixed points in case they are isolated, the full network may

not have a single fixed point at all. This is illustrated in Fig. 7

for a network consisting of just two cycles. The network motifs

shown in panels (a) and (b) have 3 and 1 stable fixed points,

respectively, whereas the full network shown in panel (c) does

not have a stable fixed point. Isolated cycle 2, i.e., the network

shown in Fig. 7(b), has a stable fixed point, but two edges are

heavily loaded such that there is nearly no security margin and

no available capacity for cycle flows. Fusing the two cycles as

in Fig. 7(c) disturbs the geometric condition for both cycles.

To restore the geometric condition - 2 Z2, we would have to

add some cycle flows. But this is impossible in cycle 2 such

that there is no stable fixed point in the full network.

2. Two cycle flows getting created

So, we have seen that getting a lower bound for a num-

ber of fixed points of a general network is hard, as multiply-

ing lower bounds for each cycle in a cycle basis does not

yield a valid lower bound. Next, we will show why obtaining

a good upper bound is also hard.

Consider any of the two identical single loop networks in

Fig. 8. It consists of one generator and one consumer, generat-

ing and consuming 2:1K power, respectively. Each edge has

capacity K. None of the two single loop networks have any

fixed point: simply because the network does not have enough

capacity to transport the 2:1K amount of power from the

generator to the consumer. However, when those two are fused

together, two cycle flows emerge and a stable fixed point with

winding vector x ¼ ð1;�1Þ comes into existence. This should

not come as a surprise: fusing two cycles in this case ended up

with an alternate pathway for the powerflow being created.

F. Planar networks

Although obtaining estimates for a number of fixed

points for general topologies is quite difficult, we now show

that for planar topologies, it is possible to obtain some ana-

lytical insights.

1. Upper bound

Theorem 14. Consider a finite planar network. Choose
the faces of the graph as the cycle basis BC. Then, the number
of normal operation fixed points, i.e., fixed points satisfying
cos ðh�i � h�j Þ > 0 for all edges (i, j), is bound from above by

N <
YL�Nþ1

c¼1

2
Nc

4

� �
þ 1; (105)

where Nc is the number of nodes in cycle c.

Proof. In a planar network, no two different fixed points

can have the same winding vector - (see Lemma 3) such

that we can just count the different allowed winding vectors.

For each fundamental cycle c 2 BC, we have

�bNc=4c < -c ¼
1

2p

X
e2 cycle c

De < þbNc=4c (106)

because �p=2 < De < þp=2 in normal operation. Counting

the number of different possible values of the winding num-

bers -1;…;-L�Nþ1 respecting these upper and lower bounds

yields the result. �

Delabays et al. have presented37 this bound in the case

of uniform power injections Pj at all nodes. They have also

determined topological conditions that are sufficient to

ensure that all fixed points are under normal operation, thus

making the upper bound in (105) valid for all fixed points in

a certain class of networks.

FIG. 7. Difficulties in finding bound

for the number of stable fixed points in

the complex network. The network

motifs shown in (a) and (b) have 3 and

1 stable fixed points, respectively,

whereas the fused network shown in

(c) has no stable fixed point at all. The

power injections Pj are given in the

nodes. All edges have transmission

capacity K.

FIG. 8. Two ring networks, each with

no fixed point, when merged by an

edge, gain a fixed point.
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Intriguingly, this upper bound has been demonstrated to

be invalid51 outside normal operation.

2. Asymptotic behaviour

We have shown in Subsection V E that it is not straight-

forward to obtain bounds for the number of fixed points N
in complex networks, unlike simple cycles. However, in the

limit of N 
 1;K 
 1, we can nevertheless derive the scal-

ing behaviour for N .

3. Two-cycle network

For simplicity, we first consider a network with homoge-

neous transmission capacities consisting of two cycles C1 and

C2, as illustrated in Fig. 9. Suppose that there are n1 edges

belonging only to cycle 1, n2 edges belonging only to cycle 2

and n12 edges belonging to both. Let one fixed point be h�

with flows in each cycle and the intersection be bound by

Fmin
1 � Fe � Fmax

1 ; for all e 2 C1 � C2 (107)

Fmin
2 � Fe � Fmax

2 ; for all e 2 C2 � C1 (108)

Fmin
12 � Fe � Fmax

12 ; for all e 2 C2 � C1: (109)

Then, the possible cycle flows in each cycle are bound

inside a convex polygon D described by

�K � Fmin
1 � f1 � K � Fmax

1 ; (110)

�K � Fmin
2 � f2 � K � Fmax

2 ; (111)

�K � Fmin
12 � f1 � f2 � K � Fmax

12 : (112)

Then, for K 
 1; n1 
 1; n2 
 1, the number of fixed

points converges to the area of the image set of D under the

mapping -.

N �
ð

-ðDÞ
d-1d-2; (113)

¼
ð
D

df1df2detJð-Þ; (114)

where the Jacobian Jð-Þ for the change in the variable

can be computed from the expression for - in (66), which

yields

detJ -ð Þ¼
1

4K2p2

�det

X
e2C1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1

K

	 
2
s þ

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s �

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s

�
X

e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s X

e2C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f2

K

	 
2
s þ

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

(115)

Taking the limits
lim

K!1

Fe þ f1

K
¼ f1

K
;

lim
K!1

Fe þ f2

K
¼ f2

K
; (116)

leads to

N � 1

4K2p2

ð
~D

df1df2det

n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1

K

	 
2
s þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2
K

	 
2
s � n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2

K

	 
2
s

� n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2

K

	 
2
s n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
K

	 
2
s þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2

K

	 
2
s

0
BBBBBBBBB@

1
CCCCCCCCCA
:

~D : ¼ f f1; f2ð Þ : f1; f2ð Þ 2 R2; jf1j � K; jf2j � K; jf1 � f2j � Kg: (117)

FIG. 9. A 2-cycle network. We use the convention that cycles are counter-

clockwise. Therefore, we assign positive magnitudes to counter-clockwise

cycle flows and negative magnitudes to clockwise cycle flows.
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Redefining f1 ! f1=K; f2 ! f2=K, we obtain

N � 1

4p2

ð
~D

df1df2det

n1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q � n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q
� n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2ð Þ2
q n2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
2

p þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q
0
BBBB@

1
CCCCA; (118)

¼ 1

4p2
n1n2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2 þ n1n12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

0
@

þ n2n12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

1
CA; (119)

¼ 1

4p2
n1n2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2 þ n1 þ n2ð Þn12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

0
@

1
A: (120)

In the last line, we use the symmetry in f1 and f2, both in the integrand and the domain of integration. We can simplify

even further, by using the following change in variables in the second integral:

ðf1; f2Þ7!ðf2 � f1; f2Þ:
We note that the domain remains the same after this change in the variable and the determinant of the Jacobian

detðJÞ ¼ �1. This allows the simplification

N � n1n2 þ n1 þ n2ð Þn12ð Þ 1

4p2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

;

with

c ¼ 1

4p2

ð0

�1

df1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p ðf1þ1

�1

df2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p þ
ð1

0

df1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p ð1

f1�1

df2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p
( )

;

¼ 1

4p2

ð0

�1

arcsin f1 þ 1ð Þ þ p
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
1

p df1 þ
ð1

0

p
2
� arcsin f1 � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
1

p df1

8<
:

9=
;;

¼ 1

4p2

p2

4
þ
ð0

�1

arcsin f1 þ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1 þ
p2

4
þ
ð1

0

arcsin f1 � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1

( )
;

¼ 1

8
þ 1

2p2

ð0

�1

arcsin f1 þ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1;

� 0:1576;

to finally yield this scaling result

lim
n1;n2!1

N ¼ cðn1n2 þ ðn1 þ n2Þn12Þ; (121)

c � 0:1576:

To evaluate the accuracy of (121), we apply it to two

special cases. First, we consider networks with n ¼ n1 ¼ n2;
n12 ¼ 1, i.e., two identical cycles sharing only one single

edge. In this case, (121) becomes

Nðn; n; 1Þ � ðn2 þ 2nÞc: (122)

Second, we consider networks with n ¼ n1 ¼ n2; n12 ¼ n,

i.e., two identical cycles sharing half of their edges. In this

case, (121) becomes

Nðn; n; nÞ � 3cn2: (123)

We see in Fig. 10 that in both these cases, the scaling

relations are quite accurate even for not very large network

sizes, such as n¼ 50.

4. General planar graphs

The scaling results for two-cycle networks can be

extended to general planar graphs; to this end, we define a

few quantities.

Definition 15 (Loopy dual graph). Given a planar graph
G(V, E) and an embedding, we choose a cycle basis BC con-
sisting of the faces of the embedding. The loopy dual graph
GdualðGÞ is an undirected multigraph whose vertex set is
equal to BC. Its edge set E0 is as follows. For each edge
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e 2 E, if it is shared between two cycles c1 and c2, then an
edge between c and c0 is added to E0. If e is at the boundary
and belongs to only one cycle c, then a self-loop is added at
node c. We illustrate this definition in Fig. 11.

Now, consider a planar graph and an arbitrarily chosen

fixed point with flows Fe. Let us denote by ~L
loopy

the loopy

Laplacian of its metagraph, as defined in Definition 1.

Then, Eq. (117) generalizes to

N � 1

2Kpð ÞL�Nþ1

ð
~D

df1df2 � � � dfL�Nþ1det ~L
loopy

; (124)

~D :¼ fðf1; f2;…fL�Nþ1Þ : jfij � K; jfi � fjj � K

if cycles i; j share an edgeg:

VI. UNSTABLE FIXED POINTS

In principle, we can generalize the cycle flow approach

to find fixed points which do not satisfy the normal operation

condition, too. These fixed points are typically linearly

unstable (cf. the discussion in Ref. 30) However, most of the

results on the number of fixed points cannot be generalized

to this case. As an instructive example, consider again a

homogeneous ring as in Sec. IV C. We label the nodes as

1; 2;…;N along the cycle and assume that N is an integer

multiple of 4. All nodes have a vanishing power injection

Pj � 0, and all links have an equal strength K as before.

Then, it is easy to see that

h� ¼ ð0; d; p; pþ d; 2p; 2pþ d; 3p;…ÞT (125)

is a fixed point of the dynamics for each value of d 2 ½0; pÞ.
This class of fixed points represents a pure cycle flow

Fj;jþ1 ¼ K sin ðhjþ1 � hjÞ ¼ K sin ðdÞ (126)

for all edges ðj; jþ 1Þ. The winding number is - ¼ N=4

independent of the value of d and the edges belong alter-

nately to Eþ and E�

Eþ ¼ fð1; 2Þ; ð3; 4Þ; ð5; 6Þ; …g;
E� ¼ fð2; 3Þ; ð4; 5Þ; ð6; 7Þ; …g: (127)

This simple example shows that two main assumptions

made for the normal operation fixed points (where E� ¼ fg)
do not longer hold: first, the set of fixed points is no longer dis-

crete. Instead, we find a continuum of solutions parametrized

by the real number d. Second, different fixed points yield the

same winding number. Thus, we cannot obtain the number of

fixed points by counting winding numbers in general.

VII. CALCULATING ALL FIXED POINTS

The cycle flow approach yields a convenient method to

calculate multiple fixed points for oscillator networks.

FIG. 10. (a) Scaling of the number of fixed points for two-cycle networks at zero power injection and infinite edge capacity limit. (a) Each cycle has nþ 1

edges, and they share one edge between them. (Left y-axis) The dots show the exact number of fixed points computed numerically. The solid line shows the

predicted number as per scaling relation (121). The dashed line shows the upper bound (105). (Right y-axis) The dotted line shows the number of fixed points

divided by n2 þ 2n converging to a constant value, that is close to the analytically predicted value c ¼ 0:1576, as per equation (121). (b) The same as (a), but

for networks where each cycle has 2n edges, they share n edges between them.

FIG. 11. A planar graph (solid edges, unfilled circular nodes) and its loopy

dual (dashed edges, filled circular nodes) corresponding to this specific

embedding.
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Generally, it is hard to make sure that a numerical algorithm

yields all solutions for a nonlinear algebraic equation.

However, we have shown that the winding numbers are

unique at least for normal operation fixed points in planar

networks. Thus, we can scan the allowed values of the wind-

ing numbers and try to find a corresponding solution. This

can be done by starting from an arbitrary solution of the

dynamical condition and adding cycle flows until we obtain

the desired winding numbers.

In particular, we can calculate all fixed points in normal

operation for a planar network using the following algorithm:

1. Find a solution Fð0Þ of the dynamic condition.

2. Fix a plane embedding and a cycle basis.

3. Vary the number zc in the interval ½� Nc

4
; Nc

4
	, for all cycles

c ¼ 1;…; L� N þ 1.

4. Try to solve the set of equations

-cðf Þ ¼ zc for all c ¼ 1;…; L� N þ 1; (128)

where the winding numbers are given by Eq. (27).

Dropping the assumption of a normal operation, we lose the

guarantee of uniqueness as discussed in Sec. VI.

Nevertheless, the method can be readily adapted to find most

of the unstable fixed points, at least if the number jE�j is

small. This can be very useful, as a systematic calculation of

such fixed points is generally not straightforward. The results

can be applied, among other things, to assess the global sta-

bility of a stable fixed point by analyzing the stability bound-

ary52,53 or the stability in the presence of stochastic

fluctuations.54 In particular, we must add another step to the

algorithm to loop over all possible sets E�:

3a. Vary k ¼ 0;…; L. Then, sample all k-tuples from the

edge set E to define the set E�.

3b. Vary the number zc in the interval ½� Nc

4
; Nc

4
	, for all

cycles c ¼ 1;…; L� N þ 1.

The output of this algorithm is shown in Fig. 12 for a

small test network and jE�j � 2. For this small network, we

have only L� N þ 1 ¼ 3 fundamental cycles of which one

is decoupled. Hence, we can graphically check that we have

obtained all fixed points.

VIII. DISCUSSION

Oscillator networks are ubiquitous in nature and tech-

nology. A lot of research in statistical physics starting from

FIG. 12. All fixed points with jE�j � 2

in a network with three cycles calcu-

lated using the algorithm described in

the main text. The winding number of

each cycle is displayed. Squares repre-

sent the generators with P ¼ þ2P0 and

circles the consumers with P ¼ �P0.

All links have a coupling strength of

K ¼ 24=19� P0.
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Kuramoto’s seminal work2 has been devoted to the onset of

partial synchronization in large networks. However, in some

applications, global synchronization is required. In particu-

lar, in electrical power grids, all generators have to run with

exactly the same frequency and have to be strictly phase-

locked to enable stable power flows to the customers. A

desynchronization generally has catastrophic consequences.

An example is provided by the European power blackout in

November 2006. Following a shutdown of one transmission

line and unsuccessful attempts to restore stable operation,

the European grid fragmented in three mutually asynchro-

nous clusters.23 In the end, more than 10 million customers

were cut from the power supply.

In this article, we have analyzed the existence of stable

fixed points in finite oscillator networks. The main methodo-

logical advancement is to split the calculation into two parts:

first, we calculate the flows which satisfy the continuity

equation at all nodes. Then, we single out the specific solu-

tion which leads to consistent phases of the oscillators. We

thus move the focus of the calculation from the nodes

(phases) to the edges (flows) and cycles. An immediate con-

sequence is that several fixed points can co-exist, which dif-

fer by cycle flows. Thus, oscillator networks are in general

multistable.

For networks containing a single cycle, we have

obtained upper and lower bounds for the number of fixed

points in terms of three structural quantities: the maximal

partial net power �Pmax, which measures the homogeneity of

the power injections or natural frequencies and the maximum

and minimum edge strength along the cycle. We find that

generally the number of stable fixed points is particularly

large if (a) the cycle is long, (b) the edge strength is large,

and (c) the power sources are distributed homogeneously.

However, the example discussed in Sec. IV D shows that

extreme care has to be taken for special network topologies.

Increasing the strength of the wrong edge can also decrease

the number of fixed points. Finding bounds for the number

of stable fixed points in general network topologies is much

more involved. The results have been obtained for planar

networks, but the bounds are much weaker as for networks

with single cycles. Interestingly, both tree networks and fully

connected networks have at most one stable fixed point.

However, networks with intermediate sparsity, which is

most realistic for electrical power grids, may exhibit

multistability.

Several aspects of multistability have been previously

discussed in the literature. Multistability in isolated rings

was discussed in Ref. 38. The limits (92) were derived, and

the basins of attraction of the different fixed points were

studied numerically. The case of a densely connected graph

was analyzed by Taylor in Ref. 41. He was able to show that

there is at most one stable fixed point if the node degree is at

least 0:9395� ðN � 1Þ. Mehta et al. investigate multistabil-

ity in complex networks numerically using a similar

approach to the present paper.43 They argue that the number

of fixed points scales with the number of cycles as each cycle

can accommodate cycle flows. While this is valid for many

graphs, there are counterexamples (Fig. 7). Delabays et al.37

have recently reported their treatment of multistability using

cycle flows. They have extended the upper bounds for fixed

points in single rings in Ref. 38 to also include those stable

fixed points with phase differences along edges >p=2. They

have also derived upper bounds51 for a number of fixed

points for planar graphs in the case of uniform power injec-

tions at all nodes. Xi et al.55 have numerically shown that the

spatial heterogeneity of power injections Pj reduces the num-

ber of fixed points, which fits with our analytical result in

Corollary 3. Intriguingly, they have also found that in hetero-

geneous ring topologies, the nonlinear stability of fixed

points decreases with the ring size N.

In this work, we have obtained a lower bound for the

number of fixed points and thereby provided a sufficient condi-
tion for the existence of multistability. Furthermore, we have

shown that the length of the cycles Nc and the homogeneity
�Pmax are equally important for multistability and thereby

arrived at tighter bounds for the number of fixed points than

Ochab and Gora38 and Delabays et al.37 Moreover, we have

derived scaling laws at the limit of infinite transmission

strengths that are much tighter than the upper bound results

previously reported. We have shown the derived scaling

behaviour to match numerically computed exact results for

moderately sized networks.

Interestingly, our results show that a previous highly rec-

ognized result presented by Jadbabaie et al. in Ref. 57 is incor-

rect. The authors claim that for any network of Kuramoto

oscillators with different natural frequencies, there exists a Ku

such that for K > Ku there is only one stable fixed point. This

claim is disproven by the examples presented in Sec. IV C as

well as by the rigorous results on the existence of multiple

fixed points in Corollary 3. The error in the proof of Ref. 57 is

rather technical. The authors define a function L such that the

defining equation of a fixed point (4) can be rewritten in the

form

h� ¼ Lðh�Þ: (129)

Jadbabaie et al. then claim that L is a contraction on the sub-

set of h such that jhi � hjj < p=2 for all edges (i, j), which

we called normal operation. Banach’s contraction theorem

then yields that the algebraic equation (129) has a unique

fixed point. The problem is that the range of LðhÞ is gener-

ally not a subset of subspace of normal operation, even if the

domain is. After applying L, some phase differences can get

out of the interval ½�p=2; p=2	. Thus, Banach’s contraction

theorem cannot be applied, which spoils the proof.

IX. CONCLUSION

In summary, taking cycle flows as a basis of flow pat-

terns, we analyzed the existence and stability of phase locked

states in networks of Kuramoto oscillators and second order

phase oscillators modeling the phase dynamics of electric

power grids. We demonstrated that such systems exhibit

multistability. Intriguingly, multistability prevails even under

conditions where unique stable operating points were

believed to exist in both a power engineering textbook and a

major complex network reference on Kuramoto oscilla-

tors.56,57 For classes of network topologies, we have estab-

lished necessary and sufficient conditions for multistability
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and derived lower and upper bounds for the number of fixed

points. We explained why generalizing those bounds for

arbitrary topologies is hard. Nevertheless, we have derived

asymptotic scaling laws at a large loop limit that has been

found to match closely numerically obtained exact results.
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