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Swarmalators constitute a paradigmatic model for understanding the collective dynamics of coupled moving
agents, integrating both internal and spatial degrees of freedom. Empirical evidence from systems such as
bird flocks and living matter highlights the relevance of topological, metric-free coupling, but their impact on
swarmalator dynamics remains largely unknown to date. Here, we present and analyze a topological swarmalator
model in which the units interact topologically, on Delaunay networks. We find intriguing self-organized
collective dynamics, including patterns with local vortices and unprecedented spatiotemporal patterns absent
in metric-based models. Identifying three order parameters to quantify synchrony, spatial order, and vortex
formation, we map the phase diagram that classifies these diverse patterns. Notably, we uncover a first-order
transition even if the phases of all units are frozen, a dynamics inverted relative to the classical Kuramoto model.
These insights not only advance our theoretical understanding of locally coupled systems of moving agents, but

also offer key guidelines for their control.
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I. INTRODUCTION

The collective dynamics of systems of units with simple
local interactions often exhibits striking large-scale pat-
terns [1-7]. Paradigmatic models by Kuramoto [8] and
Vicsek et al. [9] have inspired extensive research on their
nonlinear dynamics and statistical physics, particularly to
understand their fundamental temporal and spatial ordering
phenomena—synchronization and flocking. More recently,
systems combining spatial and phase dynamics [10-13]—
termed ‘“swarmalators” [12]—have attracted attention for
their rich self-organized behavior [14—-17] and potential
applications in decentralized robotics [18-21]. Interesting pat-
terns have since been found in swarmalator systems within
one-dimensional (1D) space [22-28], with time-varying or
delayed couplings [29-33], and heterogeneous parameters or
higher-dimensional dynamics [34-38].

However, most swarmalator studies assumed all-to-all or
metric-based interactions, despite empirical evidence that real
systems—from bird flocks [39] to living matter [40—45]—
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often rely on topological interactions. These interactions
maintain cohesion more robustly and lead to critical properties
different from known universality classes [46], yet their role
in swarmalator dynamics remains largely unexplored.

In this article, we introduce a topological swarmalator
model where interactions are defined via nearest neighbors in
a Delaunay triangulation. Coupling via such Delaunay net-
work coupling yields collective behaviors and qualitatively
different patterns not seen in metric-based models [46,47],
especially the emergence of local vortices. We introduce three
order parameters to map the whole phase diagram by system-
atically classifying the complex behaviors into seven distinct
spatiotemporal patterns. Notably, even when the units’ phases
are frozen—a state inverted relative to the classical Kuramoto
model—the system undergoes a first-order transition.

II. MODEL

Let us consider the collective dynamics of systems of N
swarmalator governed by [12]
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Here, x;(t) = (x;(¢), yi(t))T € R%is the position of the ith unit
at time ¢, and the parameters v;, ; € R are its self-propulsion
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FIG. 1. Phase diagram of two-dimensional (2D) topological swarmalators. (a) Illustration of (a;) the Voronoi tessellation constructed from
the current positions of all units, with (a,) the associated Delaunay network defining each unit’s nearest neighbors. (b) Seven collective patterns
(by)—(b;) discovered in the 2D topological swarmalators, composed of 500 units evolving according to Eq. (1) in the (K, J) plane (see Video
in the Supplemental Material [48] for dynamic evolution). The boundaries are denoted by the vertical line at K = 0 and the three black dashed
lines that indicate abrupt changes in the correlation length £ and the total vortex number n,. As initial states, swarmalators are randomly and
uniformly distributed within a square, with their phases drawn from a uniform distribution over [0, 27).

velocity and natural frequency, respectively. The position dif-
ference vector x;; =x; —x; for two units i and j yields
their Euclidean distance x|l := /(x; — x:)2 + (y; — yi)*
The key distinction from metric-based models lies in the topo-
logical definition of interactions (ij) between swarmalators
i and j, where neighbors are determined by the Delaunay
network constructed from the instantaneous positions of all
units [Figs. 1(a;) and 1(ay)]. We fix A = B = 1 by rescaling
time and space. To understand the impact of the interplay be-
tween position and phase, we focus on homogeneous systems
with w; = v; = 0 for all units such that state heterogeneities
emerge from the (random) initial conditions. The system is
then governed by only two parameters: J, controlling how
phase differences affect spatial motion x;, and K, control-
ling how strongly topological proximity influences phase
dynamics 9;. Generalizations, e.g., to distributed frequencies,
exhibit similar collective dynamics as well as additional states
such as partially phase-locked states (see the Supplemental
Material [48]).

II1. PHASE DIAGRAM

The topological interactions between swarmalators yield
a variety of collective dynamics [see Figs. 1(b;)-1(b7) and
the Video in the Supplemental Material [48]], including
emergent patterns exhibiting local vortices, several of which

have not been observed in fully connected or metric-based
swarmalators.

To distinguish these diverse patterns, we quantify spa-
tial order of phases, temporal order (synchrony), and vortex
formation by three order parameters. First, we quantify the
exponential decay of the radial correlation function

(0(r)0(0)) o exp(—r/§) @

by its correlation length . Here, r = ||x;;|| denotes the spatial
distance between pairs of units and (-) denotes the averaging
over all pairs separated by distance r. Second, we quantify
synchrony among units by the degree of phase coherence
as [49]

R= cos(0; — ). 3
(ij)

Third, we count the total number of vortices in a pattern as

Vo -dr
o= Z f 21

triangles
which evaluates whether each triangle consisting of three
neighboring units forms a vortex or antivortex (see Fig. 2 for
an illustration).
For K > 0, all units become synchronized, sharing the
same phase and distributing uniformly in space—an arrange-
ment we refer to as static synchrony [Fig. 1(be)].
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FIG. 2. Emerging vortices in topological swarmalators. (a) Af-
ter a transient process, several unprecedented steady-state patterns
emerge due to topological interactions, with “multiple phase waves”
shown here. (b) The nearest-neighbor interaction topology among
swarmalators, determined via Delaunay triangulation. A triangle is
identified as a vortex (red) if the swarmalator phases decrease in a
clockwise direction, and as an antivortex (blue) if the phases follow
a counterclockwise arrangement. (c) The dual graph of panel (b),
where nodes correspond to the triangles in panel (b).

In contrast, for K < 0, neighboring units tend to adopt
phases differing by m, forming antiphase relationships. This
antagonistic phase coupling gives rise to diverse collective
patterns, depending on the sign and strength of J. Notably,
vortices can spontaneously emerge, where groups of units
locally self-organize into coherent rotational motion (Fig. 2).
Such collective dynamics resembles experimental observa-
tions in different active matter systems [40—43,45], yet is not
captured by the original swarmalator model [12]. We find
that qualitative changes of the correlation length £ and the
number n, of vortices delineate the boundaries between four
distinct motion patterns (see Fig. 1 as well as Figs. S1—S2
and Sec. I in the Supplemental Material [48]). For J suffi-
ciently close to zero, phase differences exert weak influence
on the collective motion, resulting in a disordered yet evenly
distributed spatial configuration in which swarmalators tend to
have maximally opposite phases from their neighbors [static
mosaic, Fig. 1(b3)].

For strongly negative J, the swarmalators vibrate around
their constant average positions within separate domains.
Within each domain, neighbors maintain fixed phase differ-
ences, but the phase orientations vary across domains due
to the interplay between spatial attraction and the preference
for antiphase alignment [multidomain vibration, Fig. 1(bs)].
Strongly positive J amplifies the attraction among units with
similar phases, inducing two dynamic patterns: For weakly
negative K, swarmalators form stripelike phase clusters [ac-
tive clustering, Fig. 1(by)]; for strongly negative K, units with
similar phases align into lines that move collectively [active
traveling, Fig. 1(by)]. We refer to the latter as active patterns,
as the swarmalators continue to move in the steady state while
preserving the global structure.

Interestingly, two distinct patterns emerge for K = 0,
where the phase dynamics of the swarmalators is governed
solely by their natural frequencies and independent of the
phase differences between neighbors (see also the Supple-
mental Material [48]). If J > 0, swarmalators with similar
phases congregate, constituting multiple phase waves circulat-
ing and forming a ringlike shape [Fig. 1(bs)]. As J decreases
and becomes negative, the ringlike phase waves dissolve and

the swarmalators tend to flip to the opposite phase of the
neighbors yet struggle to find the optimal position, form-
ing a disordered spatial arrangement [irregular asynchrony,
Fig. 1(by)].

IV. PHASE TRANSITION

Most of the boundaries between the seven patterns de-
scribed above are well captured by the abrupt changes in either
of the three order parameters, &, n,, and R (see Fig. S2 in
the Supplemental Material [48]). Yet, one intriguing phase
transition appears to be an exception. Along the vertical line
where K = 0 in the phase diagram (Fig. 1), the topological
swarmalators undergo a phase transition from irregular asyn-
chrony [Fig. 1(b7)] to circulating phase waves [Fig. 1(bs)] at
J =0, where £ diverges while neither n, nor R shows clear
sign of abrupt changes. This transition is analogous to a sce-
nario frequently observed in active matter systems [50] where
the internal states of units are “quenched.” As a prominently
interesting part of the phase diagram, in the following we pay
special attention to the emergent “phase wave-asynchrony”
transition in topological swarmalators.

At K = 0, the swarmalators’ phases are frozen (constant
in time), such that changes in their collective state result
exclusively from their motion according to

. Xji Xji
X = Z L (1 + T cos(8; — 6;) — ——. (5)
T [l sl lle i l

In their equilibrium locations, we approximate the discrete
phase values of the swarmalators by a continuous phase field
and interpret resulting vortices as particles in analogy with
a 2D Coulomb gas such that a subsequent renormalization
group analysis (see Refs. [51-53] and in particular the Sup-
plemental Material [48]) yields

!
g~ el ©)

on both sides of the sole fixed point J* in phase space, i.e.,
for J — J* both from below and from above, where c; is a
constant coefficient. Numerically simulating the system (5)
confirms that the correlation length & indeed decays toward
zero on both sides of the fixed point as Eq. (6) indicates [see
Figs. 3(a) and 3(b)]. The excellent agreement between the
simulation data and the exponential fits in Fig. 3 provides
strong evidence for the self-consistency of the theoretical
framework developed [48].

Following the thread of the analogy, the high resemblance
between the Hamiltonian of the 2D Coulomb gas in a square
lattice and that of our system suggests that a similar first-order
transition is present here as in the 2D Coulomb gas system
[48]. In addition, the presence of a first-order transition is
further substantiated by numerical simulations. Both order
parameters R, quantifying local phase synchrony, and n,, the
total number of vortices, exhibit clear hysteresis and state
coexistence as J is gradually increased or decreased [see
Figs. 3(c) and 3(d)].

How do vortices evolve? And how does this evolution
depend on the strength J of the impact of phase differences
on swarmalator location? In a given system of swarmalators,
vortex numbers may increase or decrease by two different
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FIG. 3. Discontinuous phase transition: correlation length decay
and hysteresis. Order parameters as estimated (points with error bars)
from numerical simulations of a system of N = 1000 swarmalators,
averaged over five realization with randomly varying initial condi-
tions (error bars show standard deviation as a guide). Correlation
length for both (a) J < 0 and (b) J > 0 decays according to the
analytical estimates (6), red lines indicate best fits. Both order pa-
rameters, (c) phase coherence R and (d) vortex number n,, indicate
hysteresis near J = 0, where red and blue lines represent increasing
and decreasing J within a single run, respectively. Different system
sizes do not alter the correlation length decay and hysteresis (Figs. S5
and S6 in the Supplemental Material [48]). The simulation parame-
ters are listed in Table S1 of the Supplemental Material [48].

processes [Fig. 4(a)]. First, vortices may leave or enter the
system at the boundary of the collection of swarmalators,
changing the total vortex number n, one by one. Second,
vortex-antivortex pairs may annihilate or emerge in the bulk
of the system, changing n, by integer multiples of 2. Thus,
the total winding number ¢ = ny —n_, where ny and n_
denote the number of vortices and antivortices, respectively,
is not topological invariant, an important distinction from
common models of statistical physics such as the XY model
[54] and rather similar to processes in biological systems
such as pinwheel annihilation in the visual cortex [55] and
other active systems [56]. From random initial conditions, our
swarmalator systems tend to generate more vortices if J < 0
and suppress them if J > 0 [Figs. 4(b)—4(d)]. Moreover, for
J > 0, we observe that remaining vortices evolve into spatial
holes (without swarmalators) over time, suggesting that vor-
tices have a tangible spatial manifestation beyond being mere
features of the dynamical or phase fields.

V. CONCLUSIONS

Inspired by recent observations across various active sys-
tems, we have introduced a topological swarmalator model
where units are coupled topologically on a Delaunay network.
Such network-based interactions yield patterns with local vor-
tices indicating phase defects as well as several collective
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FIG. 4. Dynamics of vortices. (a) Number of vortices changes
by two mechanisms: the generation or disappearance of vortices as
they enter or leave the system boundary (orange box) and the cre-
ation or annihilation of vortex-antivortex pairs in the system’s bulk
(green box). (b)—(d) Evolution of the vortex numbers in a topological
swarmalator system with N = 200 units. (b) For J < 0, both vortex
and antivortex numbers grow and saturate at large values, exhibiting
stochastic fluctuations in steady state. (c) For J = 0, the vortex num-
bers stabilize to intermediate-size constants. (d) For J > 0, the vortex
numbers decay with time. Red and blue lines indicate the number n.
of vortices and the number n_ of antivortices, respectively.

patterns not observed before. These phenomena are qualita-
tively different from those observed in models with purely
distance-based coupling [46,47]. Although the model class of
topological swarmalators introduced here does not describe
the details of biological or physical active matter systems, the
observed patterns qualitatively resemble those seen in active
matter experiments [42,43,45], suggesting a potentially shared
underlying mechanism.

We have mapped the phase diagram with three order
parameters and analytically identified a first-order phase tran-
sition in a regime with active motion but static phase relations,
orthogonal to the celebrated Kuramoto model, constituting a
core piece of jigsaw puzzle in the whole picture of the physics
of topologically interacting active swarmalators and other
agents. Furthermore, the theoretical framework developed and
employed in this work abandoned conventional Ott-Antonsen
ansatz and its variants (2D) as well as the self-consistency
equations (1D ring) and instead has extended renormalization
group analysis from static lattices to systems with dynamic,
state-dependent couplings. These advances may open avenues
for the analytical study of a broader class of active matter
systems.
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