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Multitimescale diffusion in ridepooling dynamics
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Diffusion processes and random walks describe the dynamics of systems subject to many unpredictable ex-
ternal influences. Here, we show how trajectories of individual ridepooling vehicles are characterized by a novel
type of persistent random walk with a preplanned future route. We find three distinct timescales that reflect short-
and long-term alignment and medium-term detours emerging in the routing dynamics, together inducing ballistic,
subdiffusive, and diffusive motions of the vehicles. The diffusion constant links the timescales underlying the
microscopic dynamics of the routes to macroscopic system parameters such as fleet size and effective demand.
Observables quantifying the service quality of ridepooling collapse to a single scaling function of the diffusion
constant, directly connecting microscopic timescales to macroscopic properties of system operations.
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On-demand ridepooling has recently gathered increasing
attention from physics and complex systems’ sciences, first,
because it may offer an efficient transportation mode, and
second, because of its intricate dynamics emerging from the
interactions between requests and vehicle routes [1–7]. In
ridepooling services, customers request door-to-door trans-
port. In response, the system modifies or extends the planned
vehicle routes to serve all requests [Fig. 1(a)], similar to
conventional taxi services. Unlike in taxi services, however,
vehicles may serve several customers at the same time, re-
sulting in a higher vehicle occupancy and ideally facilitating
more efficient transportation compared to individual mobility
[8–10].

In contrast to public transport line services, the routes of
ridepooling vehicles change dynamically [11–14]. Each re-
quest adds two new stop locations to the route of one vehicle,
one for pickup and one for dropoff. The resulting dynam-
ics of ridepooling systems have so far been computationally
evaluated by microscopic agent-based simulations [9,15], em-
pirically analyzed in case studies based on historical data
[1,3,16], or theoretically described with the help of macro-
scopic mean-field models [2,4,17,18]. However, none of these
approaches mechanistically links the microscopic dynamics
to macroscopically relevant observables.

In this Letter, we change the perspective and show how the
microscopic routing dynamics connects to the macroscopic
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service quality of ridepooling fleets by identifying vehicle
trajectories [Fig. 1(b)] as realizations of multitimescale per-
sistent random walks with preplanned future routes.

Consider a fleet of B ridepooling vehicles j ∈ {1, . . . , B}.
At any given time t , the state of the ridepooling system is
given by the current positions x j (t ) of all vehicles j and their
planned future routes Rj (t ).

These preplanned routes represent an essential difference
between ridepooling vehicle trajectories and common, mem-
oryless random walks [19,20]. The routes consist of future
stops x( jk )

p and x( jk )
d to pick up (p) and drop off (d) assigned

customers jk . For example, the planned route

Rj (t ) = (
x( j1 )

p , x( j2 )
p , x( j1 )

d , x( j2 )
d

)
(1)

indicates that customer j1 is to be picked up first at location
x( j1 )

p , followed by the pickup of customer j2. Subsequently,
the two customers will be dropped off in the same order at
their respective dropoff locations x( j1 )

d and x( j2 )
d . These planned

routes evolve in two ways [compare Fig. 1(a)]. First, vehicle
j may pass its next scheduled stop, shortening its planned
route. For instance, the state change (underlined to highlight
differences)(

x( j1 )
p , x( j2 )

p , x( j1 )
d , x( j2 )

d

) �→ (
x( j2 )

p , x( j1 )
d , x( j2 )

d

)
(2)

represents the vehicle reaching its next planned stop x( j1 )
p and

picking up customer j1. Second, a new request by a customer r
may be assigned to vehicle j, adding both pickup and dropoff
locations to its planned route,(

x( j2 )
p , x( j1 )

d , x( j2 )
d

) �→ (
x( j2 )

p , x( j1 )
d , x(r)

p , x( j2 )
d , x(r)

d

)
. (3)

To understand the fundamental properties of the routing
dynamics and to be able to compare them to standard diffusion
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FIG. 1. Ridepooling vehicle trajectories evolve as persistent ran-
dom walks. (a) Two basic mechanisms change the driven trajectories
(solid) and preplanned routes (dotted) of a ridepooling vehicle. First,
the vehicle drives along its planned route, picking up or dropping
off customers on the way [Eq. (2)]. Second, a new customer (red) is
assigned to the vehicle, modifying the planned route by adding two
stops [Eq. (3)]. New stops may be inserted into the planned route
or appended at the end, causing detours or extending the planned
route further into the future, respectively. (b) Typical ridepooling
trajectories driven by a single vehicle for different fleet sizes B and
normalized demand (load) q [Eq. (4)]. For larger fleets, trajectories
expand. Requests are likely assigned to vehicles with a more similar
route, extending routes in the same direction with fewer detours.
Conversely, with higher demand q, trajectories contract as more
detours are required to pick up and deliver all assigned customers.

processes, we simulate the ridepooling system in a simpli-
fied setting. B vehicles with unlimited passenger capacity
drive with constant velocity v = 1 on the unit square with
periodic boundaries. We then unfold their trajectories onto
the Euclidean plane [compare Fig. 1(b)]. Requests follow a
Poisson process with rate λ in time, with origins distributed
uniformly in the unit square and destinations chosen uni-
formly and isotropically from a disk with radius 1/2 around
the origin of the request, resulting in an average request
distance 〈�〉 = 1/3. We assign each new request r to a ve-
hicle j∗ following a greedy heuristic for the solution of the
many-vehicle-routing problem [21]: For each vehicle j and
its respective planned route Rj , we identify those positions
to insert the pickup and dropoff stops that minimize the ve-
hicle’s planned route completion time. The request r is then
assigned to that vehicle j∗ with the shortest route completion
time.

Generalized settings, such as ridepooling on real street
topologies [22], yield qualitatively the same results as those
presented here for this simplified model.

Two parameters characterize the macroscopic mean-field
dynamics of ridepooling [4]. The load

q = λ〈�〉
vB

(4)

is an intensive parameter capturing the relative balance of
supply and demand. The load compares the total requested
distance per unit time λ〈�〉 to the total distance Bv all ride-
pooling vehicles drive per unit time. It thus represents a lower
bound on the average occupancy of vehicles necessary to
serve all requests [4,10]. If q � 1, all requests could, in prin-
ciple, be served individually. If q > 1, pooling rides becomes
necessary.

The fleet size B describes the extensive size of the ridepool-
ing system, necessary to capture the intrinsic nonlinearity of
ridepooling dynamics. For instance, in a system with twice as
many vehicles and twice as many requests per time (i.e., at the
same load q), a request is more likely to be aligned with the
current route of a vehicle. Requests thus are typically assigned
with smaller detours, meaning that larger ridepooling systems
operate more efficiently [2,5,23].

This effect is also visible in the microscopic vehicle tra-
jectories [Fig. 1(b)]. The larger the load q, the more requests
per time are assigned to each vehicle and the more stops are
inserted into the planned routes. Individual segments between
two stops become shorter and routes become less straight
(more random), covering less ground over time. In contrast,
the larger the fleet size B (at fixed q), the more vehicles are
available to assign requests to, reducing the detours required
to insert them into existing routes. The routes deviate less
from the directions of the requested trips and therefore remain
straighter, covering more ground over time.

How can we link such microscopic routing dynamics to
macroscopic properties of a ridepooling system? In the fol-
lowing, we report three core findings that jointly enable such
a connection: (1) Ridepooling vehicle trajectories constitute
persistent random walks with directional autocorrelation that
exhibits three distinct timescales characteristic for the micro-
scopic dynamics of the individual vehicles; (2) the diffusion
constant links the microscopic routing dynamics to macro-
scopic parameters of the ridepooling system; and (3) this
connection yields scaling relations for macroscopic observ-
ables of service quality that inherently depend on the routing
dynamics.

(1) Persistent random walks. The autocorrelation

ρ(τ ) = 〈∂̂x(t + τ ) · ∂̂x(t )〉

= lim
T →∞

1

T

∫ T

0
∂̂x(t + τ ) · ∂̂x(t ) dt (5)

of the direction ∂̂x(t ) (i.e., the normalized tangent vector) of
the driven trajectories quantifies their qualitative differences.
The correlation function is approximately

ρ(τ ) = w1 e−τ/τ1 + w2 e−τ/τ2 + w3 e−τ/τ3 , (6)

with τ > 0 and weights wn such that w1 + w2 + w3 = 1, ex-
hibiting three distinct timescales τ1 � τ2 � τ3 (Fig. 2).

Initially, the directional correlation decays quickly on a
timescale τshort = ( w1

τ1
+ w2

τ2
+ w3

τ3
)−1. This shortest timescale

reflects the time a vehicle spends on individual straight route
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FIG. 2. Correlation functions reveal three timescales in mi-
croscopic ridepooling routes. (a) Schematic illustration of the
mechanisms underlying the three timescales emerging in the direc-
tional correlations of ridepooling trajectories. On short timescales
τ , vehicles travel in a straight line between two consecutive stops
(green). On intermediate timescales, insertions of new stops induce
detours (zigzag patterns) from the original route (blue). On long
timescales, new requests preferentially extend the planned route in
a direction similar to the overall route (red). (b) Directional correla-
tions of the trajectories of ridepooling vehicles for B = 128 vehicles
and variable load q reveal three timescales [compare panel (a)]. On
short timescales, the correlation decays quickly with a correlation
time τshort (gray dotted line). On long timescales, the correlation
decays slowly with a correlation time τlong (gray dashed line). As
the load q increases (yellow lines compared to blue lines), a third,
intermediate timescale emerges where the correlation becomes small
or negative. The correlation functions are well described by a sum of
three exponentials [Eq. (6)], illustrated by the black dotted line for
q = 4.0.

segments between two consecutive stops, analogous to stan-
dard random walks with discrete segments [19,20], and is
modified by small directional correlations between consecu-
tive segments (see the Supplemental Material [22] for details).

For large delays τ , the correlation decays on a much
slower timescale τlong = τ3. New requests are preferentially
assigned to vehicles with planned routes that already align
with the requested trip direction to avoid detours. Planned
routes thus often extend into the same overall direction [com-
pare Fig. 2(a)]. Consequently, the routes remain directed over
a long time, similar to persistent random walks [19,20], de-
spite the small directional correlation of consecutive segments
captured by τshort (see also the Supplemental Material [22]).

At low loads q, the two timescales τshort and τlong dominate
the correlation function. Intriguingly, at higher loads q, a third,
intermediate timescale τmid creates a local minimum in the
correlation function [Fig. 2(b)]. With increasing load, more
stops are inserted, repeatedly dividing previously existing seg-
ments of the route. As the route segments become shorter,
the directions of the route to and from the inserted stops

FIG. 3. Diffusion constant connects microscopic dynamics and
macroscopic system parameters. (a) The mean squared displacement
of ridepooling vehicles (at q = 3) is ballistic on short timescales on
individual segments of the trajectory, subdiffusive on intermediate
timescales due to negative directional correlations (compare Fig. 2),
and diffusive with diffusion constant D for long times. The diffusion
constant follows power law scaling (b) with the load q and (c) with
the fleet size B for sufficiently large load q.

tend to become more antiparallel (i.e., the routes exhibit a
stronger zigzag pattern), resulting in small or even negative
correlations [see Fig. 2(a) and the Supplemental Material [22]
for more details]. The same qualitative mechanisms of stop
insertion and vehicle routing apply to ridepooling independent
of the topology and request distribution, illustrated also for
real street networks in the Supplemental Material [22].

(2) Diffusion constant connects micro- and macroscales.
These directional correlations essentially capture the influence
of the microscopic routing dynamics on the average move-
ment of the vehicles [Fig. 3(a)]. On short timescales, along
individual segments, the motion of the vehicles is ballistic.
On intermediate timescales, the motion may be subdiffusive
for high loads q due to the negative correlations [Fig. 2; see
the Supplemental Material [22] for details]. For large times,
when directional correlations decay, the trajectory becomes
diffusive. Notably, with 	x(t ) ∈ R2, the diffusion constant

D = lim
t→∞

1

4t
〈(	x(t ) − 	x(0))2〉

= lim
t→∞

1

4t

∫ t

0

∫ t

0
v2ρ(|s − s′|) ds ds′

= v2

2
(ω1 τ1 + ω2 τ2 + ω3 τ3) (7)

does not only depend on the longest timescale of the cor-
relation function but includes information on all timescales
underlying the microscopic dynamics [22].
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The diffusion constant D simultaneously directly relates
to macroscopic system parameters. From extensive direct
simulations, we find that for constant fleet size B, the diffu-
sion constant scales as a power law D ∝ q−α , with α ≈ 3/2
[Fig. 3(b)]. Similarly, for constant load q, we find that D ∝ Bβ ,
with β ≈ 1/3 [Fig. 3(c)]. We thus obtain the combined scaling
relation

D ∝ q−αBβ, (8)

which holds asymptotically for high loads, resulting in rela-
tively small diffusion constants [Figs. 3(b) and 3(c)]. At low
loads, q < 1, vehicles become idle intermittently and may not
have a planned route, qualitatively changing their dynamics
(see the Supplemental Material [22]). The scaling relation in
Eq. (8) explicitly connects the macroscopic description of the
ridepooling dynamics in terms of the load q and the fleet
size B with the microscopic routing dynamics captured by the
diffusion constant D.

(3) Scaling laws of macroscopic observables. In some form,
any observable of a ridepooling system inherently depends on
the underlying microscopic routing dynamics, characterized
by the diffusion constant D on sufficiently long timescales.
We find that several key observables quantifying system oper-
ations vary with q and B, yet only depend on their combination
through the diffusion constant D and thus the combination
q−αBβ . For instance, the average velocity

veff = 〈lr/
tr〉r (9)

quantifies how efficiently customers are moving, given by the
quotient of the direct distance lr and the service time 
tr of
a trip, averaged over all requests r. Although the effective
velocity veff varies with the load q and the fleet size B (Fig. 4,
inset), it collapses to a single scaling function

veff = f
(
q3/2B−1/3) = g(D) (10)

of the diffusion constant (Fig. 4, main panel). This scaling re-
lation links the microscopic routing dynamics to macroscopic
properties of the ridepooling system via the diffusion constant.
We find similar scaling functions for other observables char-
acterizing the long-time dynamics of the ridepooling system,
such as the average occupancy or the average number of
assigned requests per vehicle (see the Supplemental Material
[22]).

Various random walk and diffusion processes have helped
to understand a broad range of physical, biological, and
technical systems by linking microscopic dynamics and
macroscopic observations [20,24,25]. Examples range from
the basic theory of Brownian motion [19,26,27] over the struc-
ture and dynamics of biological systems and self-propelled
particles [20,28–32] to stochastic fluctuations in energy and
financial markets [33,34] and models of human mobility
[25,35,36].

Our results provide first key insights on the explicit con-
nection between the microscopic vehicle trajectories and
macroscopic observables in ridepooling systems and enable
us to understand their features beyond existing mean-field
approaches or case-by-case simulations [2,4,9,15,17]. The
insights, thus, not only open up novel perspectives for the
theory of random walks but may equally help improve our
understanding of ridepooling, for instance, by identifying the

FIG. 4. Scaling law of ridepooling observables characterizes sys-
tem efficiency. (Inset) Macroscopic observables, like the average
effective velocity of customers [Eq. (9)], depend on both the number
of vehicles B and the load q of the system. A transition from fast,
direct trips in a taxilike regime, veff ≈ 1, to shared trips with larger
detours, veff 
 1, occurs at different loads for different fleet sizes.
(Main panel) Plotting the same observable veff as a function of q and
B according to the scaling of the diffusion constant [Eq. (8)] col-
lapses all observations to a single curve, illustrating the connection
of the microscopic routing dynamics to macroscopic observables (see
the Supplemental Material [22] for additional examples). The results
indicate that the transition (gray area) between taxilike services (left)
and true ridepooling (right) is determined by the combination q−αBβ .

fleet size required (Fig. 4) for a given load (4) that follows
from the demand patterns and characteristic vehicle velocities.

We note that, commonly, subdiffusion is due to waiting
events, crowding, or other local physical constraints, such
as system boundaries. Our results indicate that subdiffusion
may also emerge without such physical constraints: Inserting
many new stops into a preplanned route deteriorates its overall
directional alignment, such that sequences of route segments
become increasingly zigzag-shaped. These mechanisms gen-
eralize beyond the basic setting we have focused on above. In
particular, short- and long-term alignment and intermediate-
time detours underlying the three timescales analogously
emerge in systems operating on street networks, systems with
limited passenger capacity, or inhomogeneous demand pat-
terns and vehicle properties, as, for instance, illustrated in
the Supplemental Material [22] for ridepooling simulations on
the street network of Manhattan with empirical demand data
(compare also Refs. [4,22,37,38]).

The rise of digitization and on-demand services may make
random walks with preplanned future trajectories increasingly
relevant for various human-designed sociotechnical systems,
for example, mobility and logistics services with planned and
dynamic deliveries [13,14,39,40] or electricity markets with
scheduled and irregular transactions [41–43]. Further under-
standing the impact of partially predetermined dynamics may
thus not only widen our theoretical concepts about such pro-
cesses but also support a range of novel applications beyond
ridepooling.
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