
D I P L O M A R B E I T

MAPPING KPN-BASED
APPLICATIONS TO THE NOC-BASED

TOMAHAWK ARCHITECTURE

Christian Menard

24. März 2016

Technische Universität Dresden
Institut für Technische Informatik

Professur Compilerbau

Betreuender Hochschullehrer: Prof. Dr.-Ing. Jeronimo Castrillon
Betreuender Mitarbeiter: M.Sc. Andrés Goens

Christian Menard: Diplomarbeit, Mapping KPN-Based Applications to the
NoC-Based Tomahawk Architecture, © 24. März 2016

Statement of Authorship

I hereby declare that I have written this thesis independently and have listed
all the used sources and means. I understand that attempted fraud will result
in the failing grade “not sufficient” (5.0) and in case of recurrence in exclusion
from completing of any further examinations and assessments.

Selbstständigkeitserklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich reiche
sie erstmals als Prüfungsleistung ein. Mir ist bekannt, dass ein Betrugsversuch
mit derNote „nicht ausreichend“ (5,0) geahndet wird und imWiederholungsfall
zum Ausschluss von der Erbringung weiterer Prüfungsleistungen führen kann.

Dresden, den 24. März 2016

Christian Menard

v

Science is knowledge
which we understand so well

that we can teach it to a computer;
and if we don’t fully understand something,

it is an art to deal with it.

—Donald E. Knuth

Abstract

The efficient creation of software for modern and ever more complex MPSoC
platforms is an ongoing challenge. For example, the Tomahawk2 is a modern
research MPSoC platform but its programming model TaskC lacks portabil-
ity, flexibility, and usability. A promising alternative is the MAPS compiler
framework that provides a complete tool flow for realizing Kahn Process Net-
work (KPN) applications on MPSoC platforms.

This work proposes an extension to the MAPS compiler framework that
allows for execution of KPN applications on the Tomahawk2. The work fur-
ther investigates the mapping of KPN applications to NoC-based architectures
using the Tomahawk2 as an example platform. In the process, this work de-
fines a new communication model for MAPS. Benchmarks illustrate that the
proposed approach can outperform TaskC applications in certain scenarios.
Evaluation further shows that the proposed communication model provides
accurate predictions for network traversal times. However, it is also shown
that NoC communication only has a small influence on the performance of the
average KPN application.

vii

The essence of all beautiful art,
all great art, is gratitude.

— Friedrich Nietzsche

Acknowledgements

First and foremost, I would like to thank Prof. Jeronimo Castrillon not only for
giving me the opportunity for writing this thesis but also for coming to Dresden
and establishing the Chair for Compiler Construction at TU Dresden. Besides
his expertise, I think his warm and positive nature is a welcome addition to the
Computer Science Department.

I am also grateful to my supervisor Andrés Goens who accompanied me
along the journey of writing this thesis. I appreciate his advice and help that was
available whenever needed. Also many thanks goes to Silexica for their interest
in my work and for the providence of access to the SLX tool suite (Former
MAPS). Without their support, this work would not have been possible.

My gratitude also goes to the Vodafone Chair for providing access to the
Tomahawk2 as well as to all the required tools. In particular, my thanks go to
Benedikt Nöthen and Mattis Hasler who provided insight on the Tomahawk2
architecture and who where available for questions whenever needed. Also
many thanks to Nils Asmussen for maintaining the Tomahawk2 board that I
used during my work.

I also want to use this opportunity to thank my dear friends who accom-
panied me through the beautiful, yet not always easy time of being a student.
And even more I want to thank those friends who know and support me for
much longer times. I believe its beautiful to have friends with whom you can
share everything, take steps in life together, and help each other to grow along
the path.

Last but not least, I want to express my deep gratitude to my family who
always supported me and my decisions despite all the obstacles that life put in
the ways of their own.

ix

Contents

1 Introduction 1

2 State of the Art and Motivation 3
2.1 Multi Processor System on Chip (MPSoC) 3
2.2 Kahn Process Network (KPN) 5
2.3 MPsoC Application Programming Studio (MAPS) 7

2.3.1 C for Process Networks (CPN) 8
2.3.2 Process Traces 11
2.3.3 KPNMapping 12
2.3.4 Code Generation: cpn-cc 13

2.4 Tomahawk MPSoC 14
2.4.1 Tomahawk2 Architecture 15
2.4.2 Intra-Chip Communication 16
2.4.3 The TaskC Programming Model 17

2.5 Motivation 20

3 Backend 21
3.1 Tomahawk2: A Simplified View 21
3.2 Limitations 23
3.3 Design 25
3.4 Implementation 27

3.4.1 Setup and File Structure 28
3.4.2 Code Generation 29
3.4.3 Channel Library 30

3.5 Conclusion 35

4 Hardware Model 37
4.1 Communication Model 38

4.1.1 Communication Primitves 38
4.1.2 Cost Model 40

xi

xii Contents

4.2 NoC Model 41
4.3 Measurements 43

4.3.1 Communication Costs 43
4.3.2 NoC Bandwidths 49

4.4 Model Formulation 51
4.5 Network Congestion 55
4.6 Processor Model 58
4.7 Conclusion 60

5 Evaluation 61
5.1 Time Measurement 61
5.2 Communication Model 63

5.2.1 Single Channel Application 63
5.2.2 Pipeline Application 66
5.2.3 Random Applications 69

5.3 Network Congestion 71
5.3.1 PE Link Congestion 72
5.3.2 Router Link Congestion 74

5.4 Performance Comparison of KPN and TaskC 74
5.4.1 Sobel Filter 77
5.4.2 Audio Filter 79

5.5 Mapping 83

6 Future Work and Conclusion 87
6.1 Future Work 88
6.2 Conclusion 91

Bibliography 93

List of Figures

2.1 Luscent Daytona MPSoC architecture 4
2.2 The MAPS compiler framework 8
2.3 KPN example 9
2.4 Code generation in cpn-cc 14
2.5 Task handling in the Tomahawk family 15
2.6 Tomahawk2 architecture 16

3.1 A simplified model for the Tomahawk2 22
3.2 Buffer mirroring 31
3.3 Pointer handling in the channel library 32
3.4 Token padding for write operations 34

4.1 Experimental setup for measuring communication costs 46
4.2 Cost measurement for remote channel access 46
4.3 Cost measurement for RAM channel accesses 49
4.4 Experimental setup for measuring link bandwidths 50
4.5 Measured link bandwidths 51
4.6 NoC model for the Tomahawk2 55
4.7 Router congestion 56
4.8 Congestion due to flows that block each other 58

5.1 Distribution of the systematic error for time measurements 63
5.2 Performance estimation for a single channel application 65
5.3 A pipeline application with two mapping scenarios 67
5.4 Performance estimation for the pipeline application 68
5.5 Box plot of the relative error in performance prediction 71
5.6 Congestion measurement setup 72
5.7 Relation between token size and average data rate 73
5.8 PE link congestion 73
5.9 Router link congestion 75

xiii

5.10 Two KPNs for performance comparison 76
5.11 Performance comparison for a Sobel filter application 78
5.12 Performance comparison for a audio filter application 82
5.13 Comaprison of three mapping algorithms 84
5.14 A possible future Tomahawk architecture 85

List of Tables

5.1 Distribution of the relative error in performance prediction 71
5.2 Computation times for the audio filter processes 80

List of Listings

2.1 CPN example 10
2.2 TaskC example – Task definition 18
2.3 TaskC example – Application with task calls 18

3.1 The FIFO interface of the MAPS backend 25

4.1 XML description of the Tomahawk2 NoC 42

xiv

Acronyms

ADPLL all-digital phase-locked loop
API application programming interface
ASIP application-specific instruction processor
AST abstract syntax tree

CFG control flow graph

DAG directed acyclic graph
DMA direct memory access
DSP digital signal processor

FFT fast Fourier transform
FIFO first in first out
FIR finite impulse response
FPGA field-programmable gate array

GBM group based mapping

ISA instruction set architecture

KPN Kahn process network

MIMD multiple instruction multiple data
MPSoC multiprocessor system on chip

NoC network on chip

xv

xvi Acronyms

PE processing element

RISC reduced instruction set computer

SDF synchronous data flow
SIMD single instruction multiple data

TAP test access port
TI Texas Instruments
TRM trace replay module

UART universal asynchronous receiver/transmitter

VLSI very large scale integration

XML Extensible Markup Language

1
Introduction

The emergence of ever more complex applications that incorporate multiple
algorithms motivated the design of heterogeneous multiprocessor system on
chip (MPSoC) architectures [55]. Such architectures provide improved perfor-
mance by integrating multiple optimized processing elements (PEs) and other
specialized hardware components into a single chip. However, the increasing
complexity of hardware and software designs creates a gap between available
hardware resources and efficient usage of these resource in applications. This
gap is known as the software productivity gap [12].

Closing the software productivity gap is an ongoing challenge. Commonly
parallel models of computation such as synchronous data flow (SDF) and Kahn
process network (KPN) are believed to be the key for efficient MPSoC program-
ming [36]. Their executional semantics and structure of parallel tasks match
the semantics and structure of MPSoC platforms. However, often there is a
mismatch between the communicational semantics of a parallel model of com-
putation and the available communication resources in an MPSoC platform.
Bridging this mismatch can be challenging [37].

TheMPSoC Application Programming Studio (MAPS) is a compiler frame-
work that provides a complete tool flow from the definition of KPN applications
to the automatic creation of executable implementations for supported target
platforms [10]. The framework contains hardware models and implementa-
tions of the communicational semantics of KPN for all supported platforms.
Based on the hardware model, MAPS automatically assigns KPN components
to the available hardware resources of a target platform and generates code for
all target cores in order to implement the computational and communicational
semantics of an input KPN application.

1

2 1 Introduction

The Tomahawk2 is a research MPSoC platform designed for signal pro-
cessing in communications, e.g. 4G [38]. It features eight processing elements,
multiple specialized cores, and a network on chip (NoC) communication layer.
Currently, developers use the TaskC programming model for creation of ap-
plications [4]. TaskC allows for efficient utilization of hardware resources on
the Tomahawk2. However, it is not portable and various limitations hinder
practical usage. Therefore, this work proposes to use KPN as an alternative
model of computation and the MAPS tool flow for automatic implementation
of KPN applications on the Tomahawk2 (Chapter 3).

The current hardware model of MAPS does not consider NoC commu-
nications. This leads to imprecise predictions of communication times for
NoC-based target platforms like the Tomahawk2. Therefore, this work further
proposes a NoC-aware communicationmodel in order to improve performance
estimation for NoC-based platforms (Chapter 4).

Before Chapter 3 and Chapter 4 discuss the contributions of this work,
Chapter 2 gives an overview on MPSoC architectures in general and introduces
the tools and concepts that this work builds upon. The solutions that this work
proposes are evaluated in Chapter 5 by discussing a set of experiments and
their results. Chapter 6 discuses remaining questions as well as ideas beyond
the scope of this work and concludes the thesis.

2
State of the Art and Motivation

This chapter discusses the concepts and tools that form the foundation for
this work. Section 2.1 gives a brief overview of multiprocessor system on chip
(MPSoC) platforms as well as network on chip (NoC) architectures and thereby
introduces the software productivity gap. Before Section 2.3 discusses the rel-
evant components of the MAPS compiler framework, Section 2.2 introduces
Kahn process network (KPN), which is MAPS’ underlying model of compu-
tation. The characteristics of the Tomahawk2 architecture are discussed in
Section 2.4. Section 2.5 concludes the chapter by motivating the aims of this
work.

2.1 Multi Processor System on Chip (MPSoC)

MPSoCs are an important class of very large scale integration (VLSI) sys-
tems. They integrate multiple processing elements (PEs), scratchpad memories,
caches, memory controllers, I/O devices, and communication layers on a sin-
gle chip. By using specialized hardware elements, MPSoCs architectures can
provide high performance for multimedia and telecommunication applications
while keeping energy consumption low. Important applications for MPSoCs
include but are not limited to: signal processing in wireless base stations, packet
processing in networks, multimedia processing, and cell phone processors [55].

The first known MPSoC is the Lucent Daytona [1] shown in Figure 2.1
on the following page. It was designed for signal-processing on multiple data
channels in wireless base stations. The Lucent Daytona is a multiple instruction
multiple data (MIMD) architecture consisting of four PEs. A split-transaction
bus connects the PEs to I/O devices and the memory interface. Each PE con-

3

4 2 State of the Art and Motivation

RISC + SIMD

L1 Cache

I/O and Memory
Interfcae

RISC + SIMD

L1 Cache

L1 Cache

RISC + SIMD

L1 Cache

RISC + SIMD

Figure 2.1: The Lucent Daytona is the first known MPSoC architecture [1].

sists of a high performance CPU and a reconfigurable level one cache. The
CPU architecture is an extended version of SPARC V8 that features a vector
coprocessor and additional arithmetic units.

Shortly after the presentation of the Lucent Daytona in early 2000, several
other MPSoC designs for a wide range of applications appeared. Early examples
include the C-5 Network Processor [16], the Phillips Viper Nexperia multi-
media processor [24], the Texas Instruments (TI) OMAP architecture [19] for
cell phone processors, and the STMicroelectronics Nomadik cell phone proces-
sor [40].

With the highly integrated design of modern MPSoC architectures, an effi-
cient interconnect with high throughput becomes crucial. While early MPSoC
designs use crossbar connections and bus hierarchies, modern designs often use
a network on chip (NoC) for communication. NoC designs applymethods from
networking to the on-chip communication layer. In a NoC addressable end-
points connect to network nodes. Multiple network nodes are interconnected
via links and thereby form the network topology. In comparison to conven-
tional bus-based interconnect architectures, NoC architectures provide higher
bandwidth, lower latency, better scalability, and more power efficiency [5].

The NoC design space is extensive. It includes design choices like net-
work topology, switching technique, and routing algorithm. Conventional
NoC designs often use simple mesh [29] or torus [20] topologies. For large
scale networks the hypercube topology or variations like dual cube [32] and
metacube [33] are considered to be more efficient.

The switching technique specifies when a node may send messages com-
ponents to the next node. Common techniques are circuit switching, packet

2.2 Kahn Process Network (KPN) 5

switching, and wormhole switching [41]. In circuit switched networks, a mes-
sage transmission locks the whole path until the transmission is complete. This
ensures a guaranteed bandwidth but may block other transmissions and, there-
fore, increases latency. Packet switched networks split messages in fixed size
packets. Nodes store incoming packets in buffers and forward them when the
desired link is free. Wormhole switched networks further split packets into flits
and thereby reduce the required buffer sizes.

NoC routing algorithms are divided into two categories: oblivious and
adaptive algorithms [45]. Oblivious algorithms base routing decisions on sim-
ple rules that do not depend on the network state. A prominent example is
xy-routing in a mesh or torus network, where packets first are forwarded in
x-direction until the right y-coordinate is reached and then are forwarded to
the destination node in y-direction. Adaptive algorithms base their decisions
on the current network state or on its history. As this requires complex network
nodes, adaptive algorithms are not commonly used in practical designs.

The development of ever more complex MPSoC architectures with an
increasing amount of processing elements of various architectures, with highly
specialized components, and various interconnect architectures makes it nearly
impossible for software engineers to keep track with new techniques. As also
the software complexity rises, a gap between available hardware resources and
efficient usage of these resources in software arises. Closing this so called
software productivity gap is an ongoing challenge [12].

2.2 Kahn Process Network (KPN)

KPN is the underlyingmodel of computation for this work. A model of compu-
tation is a fundamental mathematical model that specifies how a computation
can progress. A KPN describes a network of concurrent processes that commu-
nicate data streams via first in first out (FIFO) channels. Thereby, KPN provides
abstraction for communication and task-level parallelism. This makes KPN
well suited for modeling streaming applications on MPSoC platforms and a
promising tool for closing the software productivity gap.

A KPN is a directed graph in which nodes correspond to processes and
edges correspond to communication channels. KPN processes are determin-
istic and may have an arbitrary control flow (i.e. are Turing complete). Pro-
cesses communicate by reading/writing atomic data elements (tokens) from/to

6 2 State of the Art and Motivation

channels. KPN channels are unbounded FIFO queues that allow a producing
process to send tokens to a consuming process. [27]

A well known characteristic of KPN is its determinism. The behaviour of
an application modelled as a KPN is independent of scheduling and timing of
communication. In other words, a KPN application always generates the same
output pattern for the same input pattern.

At any time, a KPN process either computes or waits for data on one of
its input channels [27]. In the best known implementation, a read operation
returns a token if there is a sufficient amount of data available. Otherwise, the
process that performs the read operation blocks until the data is available [28].
A process may not check if there is data available before performing a read
operation. Therefore, process control flow cannot depend on the timing of
communication. As KPN channels are unbounded, write operations always
succeed.

While KPNs are convenient for modeling signal processing applications,
they are hard to analyze because of their use of Turing complete processes.
It is well known that the problem of termination is undecidable for Turing
machines. In consequence, it is not possible to statically analyze KPNs. Notably,
the problems of finding upper bounds for channel capacities and of finding a
schedule for a given KPN are undecidable [42].

Models of computation that are more restrictive than KPN are simpler
to analyze. The synchronous data flow (SDF) [31] model of computation is
a widely used restriction of KPN. SDF processes may only access a known
fixed amount of tokens per channel and per iteration. With this restriction it is
possible to analyze SDFs statically . A schedule and upper channel bounds can
be derived for any given SDF application. However, SDF only models data flow.
SDF cannot directly model control flow but can only emulate it using data flow
elements. As this is expensive, SDF is only suitable for modeling pure data flow
applications. In contrast, the KPN model of computation applies to a broad
range of applications and is better suited for scenarios where control flowmight
be required.

When executing KPN applications on hardware, the limited availability of
memory and computational resources needs to be respected. Channels need to
be bounded and processes need to share computational resources. As upper
channel bounds and a schedule for a givenKPNcannot be derived statically, they
need to be derived dynamically. For this, Parks proposed an extended model
of computation that uses a runtime scheduler [42]. In his extended model of

2.3 MPsoC Application Programming Studio (MAPS) 7

execution, channels have a fixed capacity. A process that writes to a full channel
blocks until there is enough free capacity. As fixed upper channel bounds may
introduce artificial deadlocks, the runtime scheduler detects deadlocks and
resizes channel buffers as needed. The MAPS compiler framework is based on
this extended KPN model.

2.3 MPsoC Application Programming Studio (MAPS)

MAPS is a compiler framework that aims to close the software productivity
gap [13]. It provides a complete tool flow for programming MPSoC platforms
based on the KPN model of computation. MAPS was first developed as a
research project at RWTH Aachen. Now Silexica1 continues the development
of the framework.

The MAPS compiler framework supports a variety of MPSoC platforms
including TI (Texas Instruments) OMAP [19], TI Keystone [53], and Adapteva
Parallela [3]. The framework provides a method for defining KPN applications,
tools for analyzing KPN, hardware descriptions for all supported platforms,
implementations of KPN FIFO channels, and tools for the automatic generation
of realizations of KPN applications for all supported target platforms. For code
generation, MAPS implements a source-to-source compiler that creates C-code.
MAPS cannot directly generate machine code for the target platform but relies
on the existence of an external C-compiler for machine code generation.

In order to create a realization of a KPN application, MAPS needs to find
an assignment of all KPN components (processes and channels) to the available
hardware resources (processing elements and memories) of a target platform.
Thereby, MAPS distinguishes spatial and temporal assignment. The spatial
assignment is called mapping and is derived by the mapper. The temporal
assignment is called schedule and is derived by the scheduler.

Figure 2.2 on the next page gives an overview of the MAPS compiler frame-
work. Input to the framework are a set of KPN applications with application
constraints, an XML description of the target platform, and tool configurations.
MAPS analyzes the applications, finds a mapping, and generates code for the
target platform. By using a platform description file as input, the framework can
easily be configured and can generate mappings for a wide range of platforms.
The user provides KPN applications written in a C extension called CPN [47].
1 https://www.silexica.com/

https://www.silexica.com/

8 2 State of the Art and Motivation

KPN
Application

.cpn

Constraints Platform
Description Configuration

Trace Generation

Mapping and Scheduling

Code Generation

.c .c.c

Simulation - Trace Replay Module

Figure 2.2: The MAPS compiler framework provides a complete tool flow for
programming MPsoC platforms. It automatically analyzes KPN
applications written in CPN, maps them to the target architecture,
and generates C code for each target core.

The following sections discuss relevant components of the MAPS compiler
framework in more detail. Section 2.3.1 introduces concepts of the CPN pro-
gramming language, and Section 2.3.2 gives an insight on trace-based analysis
of KPNs applications. Section 2.3.3 discusses selected mapping strategies and,
finally, Section 2.3.4 introduces code generation.

2.3.1 C for Process Networks (CPN)

CPN is the input language of MAPS and allows for portable, structured, and
readable description of process networks [47]. It is a C language extension that
describes process networks as a set of process templates, channel declarations,
and process declarations. For this purpose, CPN introduces a few new keywords
which are prefixed by __PN.

2.3 MPsoC Application Programming Studio (MAPS) 9

add delay1 delay2 pack print
z

z1

z2 az1

z2

Figure 2.3: This KPN represents the CPN application defined in Listing 2.1.

In order to illustrate CPN language features, Listing 2.1 on the following
page shows a simple example application written in CPN.2 This application
calculates Fibonacci numbers and prints them in groups of six. Figure 2.3
visualizes the Fibonacci application by showing the corresponding KPN.

The example application is composed of five processes: add, delay1, delay2,
pack, and print. The process add consumes one token from each of its two
input channels, calculates the sum, and writes the result to its output channel.
The processes delay1 and delay2 both create a delay by reading one token from
the input channel and writing it directly to the output channel. The process
pack reads three successive tokens from its input channel, packs them into one
large token, and writes the resulting token to the output channel. Finally, print
consumes two of these packs and prints a total of six numbers to the screen.

In CPN, process templates describe the functionality of processes. CPN
provides keywords for the definition of KPN process templates (__PNkpn) and
SDF process templates (__PNsdf). The example code defines two KPN process
templates Delay and Print as well as two SDF process templates Add and Pack.
The keywords __PNin and __PNout define the input and output channels of
a process template. CPN also provides an additional keyword __PNparam
for process parameterization. Within the body of a KPN process template,
__PNin or __PNout statements initiate channel accesses. Code within the
body of such statements can access channels as if they were local variables. For
SDF process templates the __PNloop statement initiates an infinite loop that
implicitly accesses all channels.

The declaration of channels in CPN is similar to the declaration of variables
in C but requires the additional keyword __PNchannel. Valid channel types
are all valid C types including structures, unions, and arrays. The assignment
operator may be used to place initial tokens on the channel. In the example
code in Listing 2.1, line 31 declares three integer channels and line 32 declares
a channel where a token is an array of three integers.

2 The example code in Listing 2.1 is part of SLX as provided by Silexica.

10 2 State of the Art and Motivation

1 __PNsdf Add __PNin(int a, int b) __PNout(int sum) {
2 __PNloop { sum = a + b; }
3 }
4

5 __PNkpn Delay __PNin(int i) __PNout(int o) __PNparam(int first) {
6 __PNout(o) { o = first; }
7 while (1) {
8 __PNin(i) __PNout(o) { o = i; }
9 }
10 }
11

12 __PNsdf Pack __PNin(int multi:3) __PNout(int array[3]) {
13 __PNloop {
14 for (int i = 0; i < 3; ++i)
15 array[i] = multi[i];
16 }
17 }
18

19 __PNkpn Print __PNin(int array[3]) {
20 int k = 0;
21 while (1) {
22 __PNin(array:2) {
23 for (int i = 0; i < 2; ++i)
24 for (int j = 0; j < 3; ++j)
25 printf("%8d ", array[i][j]);
26 printf("\n");
27 }
28 }
29 }
30

31 __PNchannel int z, z1, z2;
32 __PNchannel int a[3];
33

34 __PNprocess add = Add __PNin(z1, z2) __PNout(z);
35 __PNprocess delay1 = Delay __PNin(z) __PNout(z1) __PNparam(1);
36 __PNprocess delay2 = Delay __PNin(z1) __PNout(z2) __PNparam(0);
37 __PNprocess pack = Pack __PNin(z2) __PNout(a);
38 __PNprocess print = Print __PNin(a);

Listing 2.1: This example code illustrates features of the CPN programming
language. It defines an application that calculates and prints Fi-
bonacci numbers. Figure 2.3 displays the corresponding KPN.

2.3 MPsoC Application Programming Studio (MAPS) 11

In order to define the actual process network, process declarations initiate
previously defined process templates and connect them to previously defined
channels. CPN provides the keyword __PNprocess for process declaration.
Alongside with an identifier, a process declaration states the process template,
all input and output channels, as well as all parameters. The example code in
Listing 2.1 declares processes within the lines 34 to 38.

CPN is not a one-to-one representation of the KPN programming model
but extends it in various ways. One extension is the support of channels with
multiple reader processes. In the example, channels z1 and z2 are multiple
reader channels as they are read by delay2 and add or pack and add, respectively.
Another extension of CPN over KPN is the support for sliding access windows.
Access windows provide access to multiple tokens at the same time without
removing them from or writing them to the channel. For instance, line 22 in
Listing 2.1 opens an access window of the size of two tokens. The keyword
__PNmovemay be used to advance an access window by a specified number of
tokens. Using this keyword, the access window can slide over a series of channel
tokens. This feature is especially useful when implementing finite impulse
response (FIR) filters.

2.3.2 Process Traces

A process of a general KPNmay have an arbitrary control flow. Therefore, there
is no information on when a process accesses its channels and howmany tokens
it reads or writes. In contrast, for an SDF graph it is always known how many
tokens are produced for each firing and also under which conditions the process
fires. As we need information on the occurrence of channel accesses in order to
find efficient mappings, analysis of KPN applications is required. MAPS bases
its KPN analysis on the evaluation of execution traces derived by profiling the
input application using a specific input stimulus.

A process trace is a sequence of segments, where a segment is a path through
a process’ control flow graph (CFG) [10]. A segment starts and ends with
a synchronization event, which is a read access on an input channel, a write
access to an output channel, or a time checkpoint. Time checkpoints are needed
for applications with timing constraints but are not further discussed in this
work.

12 2 State of the Art and Motivation

Based on the information learned from traces, MAPS can derive a schedule
and a mapping. However, the behaviour of an application may vary drastically
for different input stimuli. Therefore, the input stimuli should represent the
average case. In order to derive efficientmappings formultiple scenarios, MAPS
could analyze multiple traces and identify regular patterns. However, this is not
yet supported.

Based on execution traces and a hardware model, MAPS can estimate the
execution time of a specific application using a specific mapping. MAPS pro-
vides a performance estimator called trace replay module (TRM) that imple-
ments a discrete event simulator. As its name implies, the simulator replays a
previously recorded trace. It simulates the timing of resources on the target
platform and thereby creates a performance estimation.

2.3.3 KPNMapping

Themapper spatially assigns KPNprocesses and channels to hardware resources
like processing elements and memories. It also applies a bounding algorithm
in order to derive upper channel bounds. For both tasks, the mapper uses
information gained from trace analysis.

MAPS implements various mapping algorithms. All algorithms generate
static mappings that assign all resources at compile time. In contrast, a dynamic
mapping postpones decisions to runtime in order to base mapping decisions
on the system state.

A simple mapping algorithm is the Load Balancer. It assigns processes to
processing elements so that the workload is evenly distributed. When a process
mapping is found, the algorithm generates a greedy channel mapping by simply
selecting the fastest available resource for each KPN channel.

RandomWalk is another simple heuristic. The RandomWalk algorithm
assigns processing elements randomly and evaluates the result using the TRM.
This process is repeated for a configurable number of times and then the best
observed mapping is selected.

Castrillon, Tretter, Leupers, et al. proposed a communication-aware map-
ping algorithm that operates on groups of similar resources [11]. The group
based mapping (GBM) algorithm operates in two phases. The heterogeneous
phase assigns KPN components to groups of similar hardware components and
the homogeneous phase assigns KPN components to specific resources of a pre-

2.3 MPsoC Application Programming Studio (MAPS) 13

assigned group. The algorithm assigns processes and channels simultaneously
without any predefined order.

The set of all possible assignments is called assignment set. The initial
assignment set allows all KPN components to be mapped to any of the available
hardware resources. In each iteration, GBM creates a directed acyclic graph
(DAG) from process traces and analyzes this DAG to find the critical path.
Here, the critical path is the path with longest total execution time. For DAG
analysis, the algorithm always assumes the worst possible mapping for the
current assignment set.

GBM creates assignment proposals for all nodes in the critical path. A
proposal assigns a KPN component to a specific group of hardware components.
The algorithm selects the proposal that promises the highest speedup and checks
this proposal for feasibility. GBM rejects infeasible proposals until a feasible
proposal is found. Then the algorithm reduces the assignment set according to
the proposal and recalculates the DAG using the new assignment set. Using
the newly formed DAG, the GBM algorithm starts anew by searching for the
critical path and creating new proposals. This algorithm is repeated until no
further reduction of the assignment set is possible. A more detailed description
of GBM can be found in [11].

2.3.4 Code Generation: cpn-cc

Code generation in MAPS is handled by cpn-cc. cpn-cc is a retargetable source-
to-source compiler that takes a CPN-application as well as mapping informa-
tion as input and generates C-code for a target architecture [47]. The compiler
is based on Clang [15], which is the C fronted of the LLVM compiler infras-
tructure [30]. cpn-cc provides a CPN-aware frontend that creates an extended
abstract syntax tree (AST) and transforms this AST until it only contains stan-
dard C statements. Figure 2.4 on the following page illustrates the process of
code generation in cpn-cc.

Before cpn-cc can operate, a preprocessor removes all C macros and in-
cludes all header files. Then the cpn-cc frontend tokenizes and parses the code.
Both the tokenizer and the parser are inherited from clang but extended by
additional CPN keywords and grammar rules. CPN-aware semantic analysis
creates the extended AST from parsed CPN-code. At this point the AST is a

14 2 State of the Art and Motivation

CPN

Program

Frontend

CPN AST

_PN

Generic

Transformations

Platform-specific

Transformations

C AST

API

AST Printer &

Code Generator
AST Printer &

Code Generator
C Code

Generator

C Code

+ APIs

cpn-cc

Mapping

Info

5

Figure 2.4: The code generator creates C code
for all target cores. It implements
a CPN aware frontend that creates
a CPN AST and transforms this
AST in order to derive a plain C
AST. (Reprinted from [47], © 2013
ACM)

one-to-one representation of the source code and contains all CPN language
elements.

In order to generate C code, cpn-cc transforms the CPN AST in several
steps until a plain C AST is reached. The AST transformations can be cate-
gorized in generic and platform-specific transformations. Generic transfor-
mations include for example the transformation of SDF process templates to
KPN process templates in order to unify further transformations. Platform-
specific transformations replace CPN constructs with C constructs like calls to
an application programming interface (API). When the AST transformation is
complete, cpn-cc generates C code using Clang’s built-in code generator.

2.4 Tomahawk MPSoC

Tomahawk is a research MPSoC family, actively developed at Vodafone Chair
for Mobile Communication Systems at TU-Dresden. The first version was
presented in 2009 [34]. Currently the second iteration (Tomahawk2) is available
in hardware [38] and a new version is in active development.

Besides processing elements of various architectures, the Tomahawk fam-
ily features two special cores: Core Manager (CM) and Application Proces-
sor (App). The Core Manager is responsible for runtime scheduling and map-

2.4 Tomahawk MPSoC 15

App
Task queue

CM PE

PE

PE

Figure 2.5: In the Tomahawk family,
the Application Proces-
sor (App) issues tasks and
the Core Manager (CM)
schedules and maps task
at runtime.

ping of atomic tasks. The Application Processor executes the application’s main
thread and issues atomic tasks for execution by sending task descriptors to the
Core Manager. The Core Manager reads the descriptors from a queue, checks
inter task dependencies, and loads ready tasks to free PEs. Figure 2.5 illustrates
this process. By implementing the Core Manager as an application-specific
instruction processor (ASIP), the overhead for dependency checks and task
initialization can be kept low while maintaining programmability [4].

2.4.1 Tomahawk2 Architecture

The Tomahawk2 MPSoC is designed for signal processing applications in com-
munications, most prominently 4G [38]. Figure 2.6 on the following page illus-
trates the top-level design. The Tomahawk2 features 20 heterogeneous cores
connected by a star-mesh NoC. The cores include Application Processor, Core
Manager, eight processing elements (PEs) that comprise two cores each, and
two programmable application-specific cores: a sphere detection (SD) core and
a forward error correction (FEC) core. An I/O-interface connects the Toma-
hawk2 to a field-programmable gate array (FPGA) and a DDR2 memory inter-
face connects to two 128MiB memory banks. Each component implements its
own all-digital phase-locked loop (ADPLL) and thus the operating frequency of
all components can be adjusted individually within a range from 83 to 666MHz.

The Tomahawk’s processing elements are implemented as Duo-PEs. Each
Duo-PE comprises two cores of different instruction set architectures (ISAs): a
vector digital signal processor (DSP) core and a reduced instruction set com-
puter (RISC) core. The vector DSP provides high-performance 16 bit single
instruction multiple data (SIMD) operations. The RISC core is a Tensilica LX4
core [51] and implements a floating-point unit. Both cores share 64 kiB of
scratchpad memory—32 kiB for instructions and 32 kiB for data. The two cores

16 2 State of the Art and Motivation

hs-serial

hs-serial

hs-serial

hs-serial

hs-serial

parallel
Router
(1,0)

FPGA-
Interface

Router
(1,1)

Router
(0,1)

Router
(0,0)

Duo-PE0

Duo-PE1

FEC

Duo-PE2

SD
Duo-PE6

Duo-PE7

Duo-PE5

Duo-PE3 CM

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

AVS
Contr.

UART-
GPIO

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

A
D

P
LL,

P
M

G
T

ADPLL,
PMGT

ADPLL,
PMGT

ADPLL,
PMGT

ADPLL

A
D

P
LL

DDR-
SDRAM-
Interface

Tomahawk2_core

APP

Duo-PE4

ADPLL,
PMGT

VDSP
RISC

VDSP
RISC

VDSP
RISC

VDSP
RISC

VDSP
RISC

VDSP
RISC

VDSP
RISC

ADPLL,
PMGT

VDSP
RISC

Figure 2.6: Tomahawk2 architecture (Reprinted from [38], © 2014 IEEE)

of one Duo-PE cannot operate simultaneously. However, it is possible to switch
between cores at all time.

Similar to the PEs, the Core Manager is also based on a Tensilica LX4
core and has 64 kiB of scratchpad memory. However, the Core Manager’s
instruction set is extended by optimized instructions for task scheduling [4].
The Application Processor is implemented as a Tensilica 570T RISC core and
has two 16 kiB caches for instructions and data.

2.4.2 Intra-Chip Communication

On the Tomahawk2, all components communicate via a hierarchical xy-routed
star-mesh NoC [4]. The star-mesh topology combines characteristics of the
classicmesh and star topologies. In a classicmesh network, each router connects
exactly one node to the network. In contrast, the Tomahawk’s star-mesh network
connects multiple nodes to one router. This minimizes the distance between

2.4 Tomahawk MPSoC 17

nodes that are connected to the same router and reduces the total number of
routers as well as the maximum number of hops between two nodes compared
to a standard mesh topology.

The Tomahawk’s routers are packet switched at a fixed packet size of eight
bytes. Each one of the four routers has six bidirectional ports. In each cycle,
an input port can forward a complete packet to an output port. As all ports
operate in parallel, a router can handle up to six packets in one cycle. However,
if packets on multiple input ports need to be forwarded to the same output
port, the router cannot forward the packets simultaneously but selects one
packet at a time using a round-robin strategy. On the Tomahawk2, all routers
operate asynchronously. Therefore, data transferred between routers needs to
be synchronized, which leads to a delay of two to three cycles for the transfer of
one packet between routers.

Each PE has a direct memory access (DMA) controller that handles all
NoC communication. It allows for bidirectional accesses to all other modules.
In order to issue a transaction, the DMA controller needs to be configured via
memory mapped I/O. The direction of communication, local address, remote
module ID, remote address, and message size need to be specified. As the NoC
can only transport eight byte packets, the message size is restricted to multiples
of eight bytes. Furthermore, both local and remote address need to be eight-
byte aligned.

2.4.3 The TaskC Programming Model

The programming model that is currently used for the Tomahawk architecture
is called TaskC. It uses a concept of atomic kernels of computation (tasks) that
may read andwrite data to and from predefinedmemory areas. As the tasksmay
be compiled for various architectures, TaskC supports heterogeneous platforms.

In TaskC a task definition specifies the behavior of a task similar to a
function definition in C. A custom compiler can derive task descriptors from
the task definition. The main thread of each TaskC application runs on the
Tomahawk’s Application Processor and issues tasks by sending task descriptors
to the Core Manager. The Core Manager checks dependencies between tasks
and maps ready tasks to free PEs. Figure 2.5 on page 15 illustrates this process
of task issuing and mapping.

18 2 State of the Art and Motivation

1 #pragma TASK_BEGIN add_task
2 #pragma TASK_TYPE some_core
3 void add_task (int* in1, int* in2, int* out) {
4 *out = *in1 + *in2;
5 }
6 #pragma TASK_END

Listing 2.2: This example code illustrates a task definition in TaskC. The task
task_add simply adds two integers.

1 #include <task.h>
2

3 uint64_t fibonacci[256];
4

5 int main() {
6 // data initialization
7 fibonacci[0] = 1;
8 fibonacci[1] = 1;
9

10 for (int i=2; i < 256; i++) {
11 task(add_task, IN (&fibonacci[i-2], 8),
12 IN (&fibonacci[i-1], 8),
13 OUT(&fibonacci[i] , 8));
14 }
15

16 taskSync(); // wait for all tasks to terminate
17

18 /* print data */
19 }

Listing 2.3: This example code shows an application written in TaskC. The
application performs task calls (task) in order to issue parallel
computations. This code calculates a sequence of 256 Fibonacci
numbers using the task task_add.

2.4 Tomahawk MPSoC 19

Listing 2.2 and Listing 2.3 on the facing page illustrate the usage of TaskC
by implementing a simple example application. Listing 2.2 defines a task add_-
task that calculates the sum of two integers. Listing 2.3 defines the main
function that runs on the Application Processor. It uses the add_task to
calculate Fibonacci numbers.

The structure of the TaskC Fibonacci application is simpler than the struc-
ture of the CPN application in Listing 2.1 on page 10. However, this difference
in complexity is not due to a general difference between both programming
models. The CPN application is designed to illustrate various features of the
CPN language but it could also be implemented just using a single process.

In TaskC, the main thread performs a task call by calling the function task
with a task definition identifier and a series of IN and OUTmacros as arguments.
Themacros specify address and size of memory blocks used as input and output
for the task. The main thread is responsible for allocating these memory blocks
and for providing valid input data.

The Core Manager detects dependencies by comparing input and output
memory areas of issued tasks. If the input area of a task TA overlaps with the
output area of a task TB, TA depends on TB. In consequence, TA may only be
executed after TB finishes computation and all data is written back to RAM.
Therefore, in TaskC all dependencies are implicitly defined through overlapping
areas of input and outputmemory. In the example in Listing 2.3 this mechanism
ensures that all tasks are processed in sequential order.

TaskC does not allow for explicit definition of dependencies. This has a
negative influence on the programmability and on the effort required for per-
forming dependency checks in the Core Manager. The Core Manager always
has to perform runtime dependency checks even if the dependencies are static
and already known at compile time. In order to avoid the detection of unin-
tended dependencies, the programmer has to handle memory management
carefully. Moreover, the programmer has to keep track of intended dependen-
cies manually as they may not be directly visible from the source code. For
instance in Listing 2.3, the dependency of all tasks to their predecessor is only
visible after inspecting the array indexes.

A further disadvantage of TaskC, is the introduction of two potential bottle-
necks. As the Core Manager has to perform dependency checks for each issued
task, its performance becomes crucial, especially when using fine grained tasks.
For applications with a high communication volume, the memory controller
becomes a potential bottleneck. As TaskC does not allow for direct communica-

20 2 State of the Art and Motivation

tion between two tasks via local memory, all communication in an application
has to traverse the memory controller.

On the whole, TaskC incorporates special architecture features of the Tom-
ahawk2 (Core Manager and Application Core) and allows for low-level applica-
tion design. However, there is a lack of abstraction that limits maintainability
and portability of TaskC applications. The practicability of TaskC is further lim-
ited by the prohibition of global variables and function calls in task definitions.

2.5 Motivation

The limitations of TaskC make this programming model hardly suitable for
practical usage. Therefore, the evaluation of alternative programming models
for the Tomahawk2 is eligible. One promising alternative is the KPN model of
computation. The aim of this work is to provide and evaluate an infrastructure
that is capable of executing KPN applications on the Tomahawk2. As theMAPS
compiler framework provides most of the required tools, it is chosen as the
foundation for this work.

The extension of the MAPS compiler framework for support of the Tom-
ahawk2 as a target platform has a twofold benefit. Besides the benefit from
introducing and evaluating an alternative programming model for the Tom-
ahawk2, incorporation of the Tomahawk2 architecture is of interest for the
MAPS project. As currently MAPS does not support modelling of NoC-based
architectures, this work gives insight on how to model NoCs in MAPS and how
NoC architectures influence the execution of KPN applications.

3
Backend

One goal of this work is the extension of the MAPS compiler framework to gen-
erate realizations of KPN applications for the Tomahawk2. In order to achieve
this goal, a new compiler backend as well as an architectural model need to
be created. This chapter introduces a simple backend for code generation for
the Tomahawk2. While a platform model that describes the available hardware
components is mandatory for code generation, communication costs and inter-
connect model do not need to be precise. Therefore, Chapter 4 discusses the
hardware model separately.

Section 3.1 introduces a simplified model of the Tomahawk2 platform
that is used throughout this work. Section 3.2 discusses restrictions of the
Tomahawk2 platform as well as early design choices and their influence on the
backend. Based on that, Section 3.3 discusses the general design of the new
backend. Finally, Section 3.4 points out details of the backend implementation.

3.1 Tomahawk2: A Simplified View

The Tomahawk2 architecture, as discussed in Section 2.4.1 on page 15, has a
wide range of hardware components and features. However, the MAPS frame-
work cannot use all hardware components of the Tomahawk2 and consideration
of some features would go beyond the scope of this work. Therefore, this section
introduces a simplified model of the Tomahawk2 platform as a basis for this
work. Figure 3.1 on the next page illustrates this simplified platform model.

TheMAPS compiler framework is a source-to-source compiler. It generates
C code and relies on a C cross-compiler for machine code generation. However,
there is no C compiler for the Tomahawk’s vector DSP cores. Therefore, MAPS

21

22 3 Backend

Router
(0,0)

Router
(0,1)

Router
(1,0)

Router
(1,1)

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

Figure 3.1: This simplified model of the Tomahawk2 is used throughout this
work. It excludes various features of the Tomahawk2 that are not
required for execution of KPN applications.

cannot use the vector DSPs as target cores. A C compiler only exists for the RISC
cores of a Duo-PE. Consequently, the simplified model treats the Tomahawk’s
Duo-PEs as single PEs that implement a Tensilica LX4 core.

The Tomahawk’s special purpose cores for sphere detection (SD) and for-
ward error correction (FEC) are not freely programmable. Therefore, they are
also excluded in this work. However, one could think of an extension for CPN,
which introduces special process templates that are not freely programmable
but use special purpose cores.

The simplified model in Figure 3.1 also neglects the Application Proces-
sor (App). The Application Processor is only required for execution of TaskC
applications and a dedicated core for running the main thread is not required
for execution of KPN applications. However, the MAPS backend could con-
sider the Application Processor as a general purpose PE. This is possible as the
Application Processor is freely programmable and a C compiler exists. How-
ever, the communication capabilities of the Application Processor are limited.
It solely operates on global RAM which it caches locally. The Application Core
cannot directly access the scratchpad memories of the PEs. The usage of caches
makes prediction of NoC communication and execution times difficult. Also
cache coherence needs to be considered when communicating via global RAM.

3.2 Limitations 23

On the whole, utilization of the Application Processor is not required for exe-
cution of KPN applications and would introduce additional design challenges.
Therefore, this work excludes the Application Processor from the architectural
model.

Similar to the Application Processor, the Core Manager is only required
for execution of TaskC applications but not needed for execution of KPN ap-
plications. However, the Core Manager is used for various tasks throughout
this work. As the Core Manager is the only component on the Tomahawk2
that implements a hardware timer, evaluation in Chapter 5 uses the Core Man-
ager for time measurements. Also the Tomahawk2 backend for MAPS uses
the Core Manager for allocation of buffers in global memory on startup (see
Section 3.4.3). Therefore, the platform model in Figure 3.1 includes the Core
Manager.

On the Tomahawk2, ADPLLs allow for individual adjustment of the op-
erating frequency for all components. Incorporation of static or dynamic fre-
quency scaling in order to optimize energy consumption into MAPS would
be an interesting problem. However, this would go beyond the scope of this
work. Therefore, the simplified platform model neglects ADPLLs and uses the
Tomahawk’s default ADPLL configuration. In this configuration Core Manager
as well as all PEs operate at a fixed frequency of 200MHz ans the NoC routers
operate at 500MHz.

The resulting model, as shown in Figure 3.1 on the facing page, includes
eight PEs, the Core Manager (CM), and global RAM. Each PE and the Core
Manager have 64 kiB of local scratchpad memory—32 kiB for instructions and
32 kiB for data. A star-mesh NoC with full duplex links connects all compo-
nents. All other components, including the FPGA and universal asynchronous
receiver/transmitter (UART) interface, are not required for this work and are
not included in the platform model.

3.2 Limitations

Currently, the availability of libraries for the Tomahawk2 apart from TaskC is
poor. Notably there is no implementation of mechanisms for synchronization
and mutual exclusion like locks and semaphores, no multithreading library, no
runtime scheduler, and no memory allocator.

24 3 Backend

The lack of a comprehensive runtime environment puts several restrictions
on the mapping of KPNs to the Tomahawk2 and on possible FIFO channel
implementations. Most importantly, because of the lack of a runtime scheduler
and a multithreading library, it is not possible to map multiple processes to
the same PE. The design and implementation of a custom scheduler would go
beyond the scope of this work. Therefore, the Tomahawk2 backend presented
here only supports one process per PE. Due to the eight PEs of the Tomahawk2,
this limits the maximum number of KPN processes to eight.

The usage of Protothreads could be a good alternative to a runtime sched-
uler. Protothreads are lightweight stackless non-preemptive threads especially
designed for systems with limited computational resources [23]. However,
Protothreads require all state to be global. This needs to be respected when
programming a KPN process and may lead to increased memory usage, as vari-
ables with a local scope need to become global and, therefore, take up space
constantly.

The Xtensa ISA provides hardware support for mutual exclusion by an op-
tional synchronization feature and an optional read-conditional-write instruc-
tion [52]. However, the Tomahawk2 PEs do not implement any of these features.
Therefore, mechanisms for mutual exclusion can only be implemented using
software solutions like Dekker’s algorithm [22] or Peterson’s algorithm [43].
Implementations of these algorithms are hard to maintain and introduce an
additional overhead. Therefore, the backend design should avoid the need for
mutual exclusion when possible.

As there is no run-time allocator for the Tomahawk2, all resources should be
allocated at compile time. This can be done by adding global and local variable
declaration to the code that MAPS generates. However, on the Tomahawk2 this
is only possible for resources stored in a scratchpad memory, as the PEs cannot
directly access the global RAM.Therefore, global resources are allocated during
initialization at runtime. As this is only required once during startup, a simple
greedy allocator is sufficient.

CPN extends the KPN model of computation by support for multi-reader
channels and sliding windows. However, these extensions are not required for
execution of KPN applications. Therefore, the backend presented here does not
support these CPN features in order to keep the implementation overhead low.

3.3 Design 25

1 typedef /* channel structure */ channel_t;
2

3 channel_t* create(/* parameters */);
4 channel_t* open(/* parameters */);
5 void destroy(channel_t* channel);
6

7 void read_begin(channel_t* channel, /* parameters */, void** elem);
8 void read_move(channel_t* channel, /* paramters */, void** elem);
9 void read_end(channel_t* channel, /* parameters */);
10

11 void write_begin(channel_t* channel, /* parameters */,void** elem);
12 void write_move(channel_t* channel, /* paramters */, void** elem);
13 void write_end(channel_t* channel, /* parameters */);

Listing 3.1: MAPS internally uses a standard API as an interface between
channel library and code generator.

3.3 Design

A MAPS backend for a specific target platform consists of two parts. Firstly,
each backend provides a channel library that implements FIFO buffers as well
as communication directives and provides abstraction through a standard
interface. Secondly, the code generator is part of the backend and provides
specific code transformations for each target platform. Basically, the code
generator transforms CPN statements to function calls to the channel library.

Listing 3.1 displays the library interface that MAPS uses internally. All
functions operate on a data structure that represents the channel state. There
are functions for creation and destruction of channels as well as a function for
opening an existing channel. The channel library provides three functions each
for read and write operations. The begin functions initiate a transaction and
open a read or write window. The elem parameter is used to return a pointer
to this window so that the user can read data from or write data to it. The
end functions close the read or write window. Finally, move functions may
be used to advance a currently open access window. This is necessary for the
sliding window feature of CPN. However, the Tomahawk2 backend presented
here does not support this feature and, therefore, does not implement themove
functions.

26 3 Backend

The channel library interface as presented in Listing 3.1 is not mandatory
and may be adapted as needed. As both the code generator and the channel
library need to be newly created for each new target platform, the interface
between the two components can be adopted for each platform. However, usage
of the standard interface allows for code reuse in the code generator and easy
exchange of channel libraries.

According to the limitations discussed in Section 3.2 on page 23, the back-
end does not support multiple reader channels. Therefore, each channel has
exactly one producer and one consumer process. Each process is mapped stat-
ically to one PE and each PE can only execute one process. The process and
channel mapping is known at compile time. As the Tomahawk2 does not pro-
vide any hardware support for locks, the design should be lock-free. Moreover,
the Tomahawk2 has limited resources and therefore a good design should keep
both the memory footprint and the processing overhead as low as possible.

The mapping specifies the assignment of processes to PEs as well as the
assignment of channels to memory resources. In the Tomahawk2 backend,
each channel uses a circular buffer to store tokens in FIFO fashion. This buffer
may be stored in global RAM or in the scratchpad memory of one PE. When
stored in a scratchpad, the buffer can either reside in the consumer’s or in the
producer’s scratchpad.

If the channel buffer is stored in a scratchpad, the process that runs local to
the scratchpad can directly access the channel data. However, if the channel
data is stored in global memory or in a remote scratchpad, data needs to be
transferred via DMA.These transfers require an additional, local, temporary
storage that operates as the source for write transfers or as the target for read
transfers. This local buffer has to be large enough to hold one token.

Each process keeps a data structure for each channel it uses. This structure
stores channel ID, token size, channel size, read pointer, write pointer, and a base
pointer that points to the circular buffer. Here a pointer identifies the memory
address as well as the module ID of the component that stores the buffer. If
the ring buffer is not stored locally, the structure also stores the address of the
channel’s temporary storage.

Both the read and the write pointer identify the channel state. As both
the consumer and the producer process may change the channel state, both
processes need to exchange their read and write pointers. In order to do so,
each process needs to know where the communication partner stores its read

3.4 Implementation 27

and write pointers. The location of these pointers is also stored in the channel
structure.

The only resources that producer process and consumer process share
are read pointer, write pointer, and the actual ring buffer. As consumer and
producer operate in parallel, we need to ensure that there are no race conditions
when operating on these resources.

Only the consumer process updates the read pointer and only the producer
process updates the write pointer. The producer never writes the read pointer
and the consumer never writes the write pointer. Therefore, race conditions
caused by two processes writing to the same pointer are impossible. The process
of updating a pointer is split into address calculation and write back. Therefore,
it is not an atomic operation. However, this is not critical as only the process
performing the address calculation may update the corresponding pointer.
The pointer value cannot change during address calculation. The write back
operation itself is atomic as it can use a single NoC packet for writing the pointer.
On the whole, this design does not require any locks for the handling of read
and writer pointers.

Read and write access to tokens stored in a ring buffer needs to be mutual
exclusive. A consumer process must not read partially written tokens and a
producer process must not overwrite a token that the consumer is reading. This
is guaranteed by only updating the channel state at the end of each read or write
operation. This way the consumer only sees tokens that are completely written
and the producer only sees empty slots that do not contain any valid data.
Therefore, this design allows for the implementation of a lock-free channel
library.

3.4 Implementation

The previous section introduced the general design of the Tomahawk2 back-
end. For a more precises understanding, this section discusses the backend’s
implementational details. Firstly, Section 3.4.1 discusses the structure of files
generated by the backend and the setup used for executing application on the
Tomahawk2. Secondly, Section 3.4.2 focuses on code generation in cpn-cc. Fi-
nally, Section 3.4.3 discusses details of the channel library implementation.

28 3 Backend

3.4.1 Setup and File Structure

TheTomahawk2 used for testing and evaluation throughout this work is located
on a specially designed board. This board connects the Tomahawk2 to periphery
like I/O-devices, RAM, and an FPGA interface. It also provides an Ethernet
connection to a host PC. The host PC uses this connection to communicate
with JTAG test access port (TAP) controllers in order to configure and program
the Tomahawk2.

On the host PC, a Python library implements routines for communication
with the Tomahawk2 board and provides a high level interface. This way, it
is possible to interact with the Tomahawk2 from within a Python script or
interactively from within a Python shell. By writing a Python script, chip
configuration and programming can be automated. Such a script is also part of
the Tomahawk2 backend in MAPS.

A Tomahawk2 application consists of a total of ten binaries—one binary
for the Application Processor, one for the Core Manager, and one binary each
for each of the eight PEs. The code generator creates code for each target core
individually. As the backend does not use the Application Processor, it only
generates a placeholder.

The code generated by cpn-cc can be compiled using Tensilica’s XTensa
C compiler [50]. A Makefile automates this process. It links all binaries against
the channel library and incorporates initialization code. The Makefile also
automates the execution of compiled KPN applications on the Tomahawk2. It
uploads all binaries and the Python script to the host PC. The Python script
configures the Tomahawk2 chip, loads binaries to scratchpad memories, and
starts application execution. In order to provide basic debugging functionality,
the script also interprets a set of opcodes that an application can send via the
Tomahawk’s FPGA interface.

To allow for application specific configuration and initialization as well as
for automated evaluation of results, the user may provide an additional Python
script per application that defines two functions. The function pre_run is
called during initialization and, for instance, may be used to initialize certain
memory areas with input stimuli. The function post_run is called after the
application terminates. This can be used to read, evaluate, and print output
data.

3.4 Implementation 29

3.4.2 Code Generation

In MAPS, code generation is handled by cpn-cc. As discussed in Section 2.3.4
on page 13, cpn-cc is based on clang and implements a set of generic and
target specific AST transformations. For code generation, cpn-cc selects AST
transformations according to the target platform and applies them to the source
code. The final transformation, which generates calls to the channel library
interface, is highly target dependent and, therefore, needs to be rewritten for
each new target. To reduce the implementation overhead, cpn-cc provides a set
of configurable classes that handle code generation. However, their flexibility is
limited and therefore a partial rewrite may still be required.

The code generator creates code for a single target core. When generating
code for a Tomahawk2 PE, the code generator only includes code for processes
that are mapped to this PE. As the Tomahawk2 backend only allows one process
per PE, the generated code either implements exactly one process or is empty.

When cpn-cc transforms a process for usage on the Tomahawk2, it adds
variable declarations for all required resources to the output code. For each
channel the process uses, the code generator creates a global declaration for the
channel data structure. The code generator checks if the channel is mapped to
the local scratchpad or to a remote location. If the channel is mapped locally,
the generator adds a declaration for the circular buffer. Otherwise, it adds a
declaration for the temporary storage that is required for DMA transfers.

For each PE that has a process mapped to it, cpn-cc inserts initialization
code before the actual process code. It adds calls to the create and open func-
tions of the channel library. In order to exchange the location of channel data
structures between consumer and producer, create writes channel information
to global RAM and open retrieves this information. If the information in global
RAM is not yet written by a corresponding create operation, open waits until
the data is valid. Section 3.4.3 on the following page explains this mechanism
of the channel library in more detail. It is important for code generation that
the create calls for all channels of one process are placed before the open calls.
Otherwise processes could deadlock.

The code generator transforms CPN channel accesses, by replacing them
with calls to the channel library’s read and write functions. Although, this
mechanism is not different for the Tomahawk2 than for other targets, the specific
function parameters used in the Tomahawk2 backend make it difficult to reuse

30 3 Backend

existing code in cpn-cc. Therefore, parts of the channel access transformations
where rewritten for this work.

3.4.3 Channel Library

Although the backend design as presented in Section 3.3 on page 25 is straight-
forward, the channel library implementation presents a few challenges. These
are the full/empty detection for circular buffers, the initial exchange of infor-
mation between producer and consumer process, the exchange of read and
write pointer during execution, and the data transfer via DMA with eight byte
granularity.

When using a circular buffer, it is impossible to decide whether the buffer
is full or empty just based on the values of read and write pointer. The read
pointer points to the next item that can be read and the write pointer points to
the next free slot. In both cases, when the buffer is empty and when the buffer
is full, the read and write pointer are identical. Without additional information,
it is not possible to determine if the buffer is full or empty. A common solution
to this problem is to always keep one free slot. However, this may waste an
unacceptable amount of memory for large token sizes. Another common
approach is the usage of an additional flag that indicates if the buffer is full or
empty. Nevertheless, this flag needs to be evaluated and updated by both the
consumer process and the producer process. In order to avoid race conditions,
access to this flag needs to be mutual exclusive and, therefore, requires locks.
This makes the approach not suitable for the Tomahawk2.

The implementation presented here uses a mirroring technique to distin-
guish full and empty states [14]. Figure 3.2 on the facing page illustrates this
approach. The physical buffer is extended by a virtual buffer that mirrors the
content of the physical buffer. Read and write pointer store virtual addresses
and need to be translated to physical addresses when accessing tokens. If read
and write pointer point to the same virtual address, the buffer is empty. If both
pointers point to different virtual addresses but both translate to the same phys-
ical address, the buffer is full. As discussed in Section 3.3, address calculation is
an uncritical operation and therefore this solution does not introduce any need
for mutual exclusion. Unlike other solutions, buffer mirroring also avoids the
need for any additional memory. However, this comes at the cost of additional

3.4 Implementation 31

4 5 6 7 1 2 3 4 5 6 7 1 2 3

physical virtual

read write

(a) Buffer is full

4 5 6 7 1 2 3 4 5 6 7 1 2 3

physical virtual

readwrite

(b) Buffer is empty

Figure 3.2: The channel library uses buffer mirroring for full/empty detection.

logic for address translation. Nevertheless, address translation breaks down to
a conditional subtraction.

Channel parameters like channel and token size are already known in the
mapping phase. The code generator respects these parameters when declaring
buffers and passes them as arguments to the generated create and open calls.
Moreover, each process knows the location of all its local channel buffers and
channel information structures at compile time. However, a process neither
knows the location of a buffer that is not stored locally nor does it know where
its partner process stores its read or write pointer. This is because the code is
generated specifically for each PE and compiled separately. In order to derive
the position of buffers that are not stored locally, another linker phase that
considers all binaries would be required. However, the effort for writing such a
linker would be too large for this work. Therefore, the locations of buffers as
well as read and write pointers need to be exchanged at runtime.

In this implementation, a reserved region in global RAM is used for ex-
change of information during initialization. Figure 3.3 on the next page illus-
trates the pointers involved in this mechanism. The create call of the channel
library is responsible for propagating information to the RAM. If the process
executing create is a producer, it announces the address of its read pointer. Oth-
erwise, it announces the address of its write pointer. If the circular buffer is
stored local to the calling process, it also announces the buffer’s base address. If
the buffer is mapped to global RAM, it is the Core Manager’s responsibility to
allocate a memory area and to announce the base pointer. For that, the code

32 3 Backend

base pointer
producer pointer

consumer pointer

RAM

Buffer

read pointer
write pointer

Producer
Scratchpad

read pointer
write pointer

Consumer
Scratchpad

Figure 3.3: During initialization, both producer and consumer setup pointers
at a known location in global RAM. During execution, these point-
ers are used to retrieve the position of the circular buffer and to
update read or write pointer of the communication partner.

generator also adds create calls to the Core Manager’s code. The Core Man-
ager then reserves part of a predefined memory area and sets the base pointer
accordingly.

A call to the open function of the channel library retrieves the information
that was previously propagated by a corresponding create call. When the open
function terminates, the process has all information that it requires for handling
the opened channel.

In order to keep a consistent state, the two processes using a channel do not
only need to exchange data during initialization, they also need to synchronize
both read and write pointer during program execution. For that, this imple-
mentation uses a simple push strategy. A producer always updates the write
pointer of the corresponding consumer after a write operation and a consumer
always updates the read pointer of the corresponding producer after a read
operation.

An earlier implementation used a lazy pull strategy. A process that wants
to check the ring buffer state updates its read or write pointer by reading the
corresponding pointer from its communication partner. The pointers do not
need to be updated on every operation. For example, if a consumer knows

3.4 Implementation 33

that there are three tokens in the buffer, it can safely consume the three tokens
before updating its write pointer. If a consumer finds the buffer to be empty
or a producer finds the buffer to be full, it blocks and permanently pulls the
corresponding pointer until its value changes.

The lazy pull strategy has two disadvantages. Firstly, the strategy creates
traffic in the NoC when a process blocks on an empty or full buffer. Secondly,
the laziness of the strategy makes it difficult to predict execution time of a
channel operation. It is not easily predictable when and how often a pointer
gets updated. This depends on the buffer size as well as the read and write rates.
Therefore, the implementation discussed here uses the pull strategy.

TheDMAunits on the Tomahawk2 operate with a granularity of eight bytes.
Consequently, all data blocks accessed via DMA need to be eight byte aligned.
This is uncritical when reading a token from a remote location. The library
can simply transfer a properly aligned data block that contains the requested
token. However, writing tokens of sizes that are not a multiple of eight bytes
leads to problems. Firstly, transfer sizes need to be adjusted to the next multiple
of eight bytes. Thereby, we need to ensure that the inserted padding bytes do
not overwrite data in the circular buffer. Secondly, it is not easily possible to
directly write tokens via DMA as for token sizes that are not a multiple of eight
bytes not all tokens are properly aligned.

A simple solution could be to adjust the token size to the next greater
multiple of eight. In MAPS, this could be done in an early phase, e.g. before
mapping. However, this would require to change the channel type itself in the
generated code, which is not easily possible with the current implementation of
cpn-cc. Another solution could be to group multiple tokens in packets so that
the packet size is a multiple of eight. However, this could introduce artificial
deadlocks and, therefore, is not suitable as a general solution.

Figure 3.4 on the following page illustrates the paddingmechanism used for
this work. Thismechanism fits tokens into frames. The frame size is the smallest
multiple of eight bytes that is larger than or equal to the token size. When
writing a token to a remote buffer, the whole frame gets transferred. Thereby,
the frame is written to an eight byte aligned address and the token needs to
be properly aligned within the frame. For instance, when the write pointer is
0x14 the frame needs to be written to the address 0x10 and the token has a
four byte offset within the frame. According to the position and the size of the
token, the frame needs to be filled with padding bytes.

34 3 Backend

FIFO

Token

Local Buffer

Padding Bytes

Token (26 bytes)
Word (8 bytes)

Figure 3.4: Due to the eight byte granularity of the Tomahawk2 NoC, writing
tokens that have a size that is not a multiple of eight bytes requires
padding bytes. The library writes a larger frame and has to fill in
the correct padding bytes in order to avoid overwriting valid data.

To ensure that no valid data is overwritten when writing a frame to a buffer,
the padding bytes need to be identical with the surrounding bytes in the ring
buffer. When a process opens a write window on a channel that is not stored
locally, the library calculates the position of the new token in the ring buffer
and creates an empty frame in the local temporary storage. If padding bytes in
front of the new token are required, the library reads the corresponding word
from the ring buffer to the local temporary storage. The same holds for padding
bytes that fill in the frame after a token. This ensures, that the bytes surrounding
the new token in the temporary storage are equal to the bytes in the actual ring
buffer.

In order to fill the new token with data, the producer process gets a pointer
to the token in the local storage. As the process operates on local memory,
addresses do not need to be aligned. The process only overwrites the token, but
leaves the padding bytes untouched. When the process finishes writing the new
token, it closes the write window. Then the channel library transfers the whole
frame to the proper location within the ring buffer. Thereby, only the actual
token changes although the whole frame is overwritten.

Padding a token with data from the buffer comes with a large overhead.
Besides the computational overhead, a write operation requires up to two
additional data transfers. Therefore, token sizes that are not a multiple of eight
bytes should be avoided on the Tomahawk2.

3.5 Conclusion 35

3.5 Conclusion

This chapter introduced a Tomahawk2 backend for the MAPS compiler frame-
work. Both the presented design and implementation respect characteristics of
the Tomahawk2 architecture and keep the required memory and processing
overhead low. The presented backend allows the MAPS compiler framework to
generate realizations of arbitrary KPN applications for the Tomahawk2. How-
ever, input application are restricted to a maximum of eight processes. In order
to achieve efficient realizations, it is recommended to only use channels with
token sizes that are a multiple of eight bytes.

4
Hardware Model

Theprevious chapter introduced a Tomahawk2 backend for theMAPS compiler
framework. This backend is capable of creating realizations of CPN applications
for the Tomahawk2 platform. The resulting Tomahawk2 applications can be
compiled and executed. However, so far MAPS has no understanding of the
characteristics of the platform.

In MAPS, an accurate hardware model is the basis for determination of
efficient mappings and for performance estimation. Only with a good un-
derstanding of the characteristics of all available hardware components, the
mapper can estimate the influence of a mapping decision on the resulting appli-
cation performance. Therefore, this chapter introduces a hardware model for
the Tomahawk2.

MAPS’ hardwaremodel comprises a processormodel and a communication
model. The processor model represents an ISA and is used for prediction
of execution times of code segments. The communication model represents
the interconnection of all hardware resources and incorporates a cost model
for estimation of communication times via a certain connection. With the
current interconnect model of MAPS it is not possible to accurately represent
NoC architectures. Therefore, an important part of this work is the introduction
of a NoC model for MAPS.

Section 4.1 discusses the current communication model of MAPS in de-
tail and introduces changes to the cost model that are required for accurate
modelling of the Tomahawk2 architecture. Section 4.2 introduces the new NoC
model. In order to create a communication model specifically for the Toma-
hawk2, we need an understanding of the platform’s characteristics. Therefore,
Section 4.3 presents a set of benchmarks that measure bandwidth limitations of
the platform and communication costs of the channel library. Based on these

37

38 4 Hardware Model

measurements, Section 4.4 formulates a Tomahawk2 communication model.
Section 4.5 proposes an extension to this model that also considers network
congestion. Section 4.6 discusses the processor model of MAPS and its limita-
tions with regard to the Tomahawk2. Finally, Section 4.7 concludes the chapter.

4.1 Communication Model

The communication model of MAPS comprises an interconnect model and
a cost model. The interconnect model defines communication resources like
local and shared memories. The cost model uses so called communication
primitives to abstract KPN channel accesses. Communication primitives model
a software API that implements the semantics of KPN channels on the target
platform. In the case of the Tomahawk2, this is the channel library as described
in Section 3.4.3.

4.1.1 Communication Primitves

Castrillón defines a communication primitive as a four-tuple CP [12].

CP =
(
PEi, PEj, S ⊆ CR,CMCP

)
(4.1)

This tuple expresses how a process running on PEi can communicate with a
process running on PEj via a set of communication resources S. This set is a
subset of CR, the set of all communication resources that a platform provides.
The cost model CMCP is a set of functions that map communication volume to
a cost value.

InMAPS, the set of communication resources S is called a hardware channel
and the interconnect model defines the set of all communication resources CR.
All possible hardware channels can be derived from the interconnect model.
For a certain hardware channel, multiple communication primitives may exist.
This allows for usage of multiple channel libraries on the same platform (e.g.
one library using programmed I/O and one using DMA). The mapper may
choose the communication primitive that fits best in a certain scenario.

In order to create a complete communication model, we need to define
communication primitives for every possible combination of PEi, PEj, and S.
As the number of required definitions may become large easily, MAPS provides

4.1 Communication Model 39

a shortcut in its architecture description. Instead of single communication prim-
itives the architecture description defines groups of communication primitives
of a certain type. Thereby, the type is predefined by MAPS and implicitly speci-
fies which communication primitives of all possible communication primitives
are included in the group. The cost model is only defined once per group and is
identical for all communication primitives within the group. For instance, the
shared memory type allows communication from all PEs to all PEs but limits
the possible communication resources to shared memories. The local memory
type only includes communication primitives with PEi = PEj and limits the
communication resources to local memories.

On the Tomahawk2, the mapper has three choices when placing channel
buffers. The buffer could be placed in the scratchpad that is local to the con-
suming PE, in the scratchpad that is local to the producing PE, or in the global
RAM1. The communication costs for consumer and producer vary depending
on the buffer location. If the buffer is mapped to the global RAM, both con-
sumer and producer have to perform data transfers. However, if the buffer is
located in the consumer’s scratchpad, only the producer has to perform data
transfers. The consumer can operate directly on its local memory. Similar, if
the buffer is located in the producer’s scratchpad, only the consumer has to per-
form a data transfer and the producer can operate directly on the buffer. As the
Tomahawk2 backend only allows one process per PE, direct communication
between two processes running on the same PE is not possible.

The dependency of communication costs on the channel mapping needs
to be respected by the communication model in order to accurately predict
network traversal times. However, the types of communication primitives that
MAPS defines do not consider the locality of buffers. Therefore, this work
introduces three new types of communication primitives. These are shared NoC
memory, producer NoC memory, and consumer NoC memory. Similar to shared
memory, the shared NoC memory type allows communication from all PEs to
all PEs via shared memories that are connected to the NoC. The producer and
consumer NoC memory types allow communication via local memories from
a PE to all other PEs. Depending on the type, the memory is either local to
the producer or to the consumer. Using these new types of communication

1 In general, the buffer could also be placed in the scratchpad of another PE. However, this
case is not mandatory and is not incorporated in this work.

40 4 Hardware Model

primitives, different cost models can be applied for each of the three different
mapping scenarios.

4.1.2 Cost Model

The cost model CMCP is a set of functions that map data volume to commu-
nication costs for a certain communication primitive CP. MAPS uses a cost
model that consists of three functions:

CMCP =
{
CCP(x),TCP(x),PCP(x)

}
(4.2)

All three functions map the communication volume x in bytes to a number of
cycles. CCP(x) defines the costs required for consuming a token on a KPN chan-
nel andPCP(x) defines the costs required for producing a token. TCP(x)models
pure transfer costs. For instance, this is useful when modelling DMA trans-
fers. Here, the processor could setup the DMA unit for handling a data transfer.
Then the processor is free to perform other operations while the data transfer
is handled by the DMA unit.

As the current cost model of MAPS models communication costs only
in dependence of transfer volume, this model is not suitable for modelling
NoC-based architectures. In a NoC-based architecture, communication costs
not only depend on the communication volume but also on the route that a
transfer takes. This work proposes an extended cost model that incorporates
the number of hops on a NoC route as well as the bandwidth of the slowest link
on this route (Equation 4.3). This extended cost model maps communication
volume x, number of hops h, and bandwidth limit b to a number of cycles. In
this work, the number of hops is the number of routers that a packet traverses
on its way.

CMCP =
{
CCP(x, b, h),TCP(x, b, h),PCP(x, b, h)

}
(4.3)

The proposed parameterization of the cost model allows for definition of
communication costs orthogonal to the definition of the interconnect archi-
tecture. The dependency between communication costs and network topology
can be completely modeled by the cost functions. This is a significant advantage
of the extended cost model over MAPS’ old cost model. In order to calculate

4.2 NoC Model 41

the communication costs for a certain transfer, the bandwidth limit and the
number of hops need to be derived specifically for that transfer.

This cost model does not consider the network load and is thus not suit-
able for modeling network congestion. A cost model that considers network
congestion could add an additional parameter that represents the network load.
Then the cost functions could model network congestion depending on the
load parameter. However, this work proposes an algorithmic approach as part
of the communication model for modelling network congestion. Section 4.5
discusses this approach.

4.2 NoCModel

An interconnect model for NoC architectures should provide an understanding
of the network topology and on how nodes in the network communicate. Using
the interconnect model, it should be possible to derive the number of hops
and the bandwidth limit for a specific transfer in order to parameterize the
cost model in Equation 4.3. The model should be capable of modelling the
NoC architecture of the Tomahawk2 but also be flexible enough to model other
NoC architectures and topologies. Such a model is currently not part of MAPS.
This section proposes a new interconnect model for internal representation of
NoC-based architectures in MAPS.

In the new model, a NoC is a list of devices, routers, and links. Devices can
be shared memories or PEs with a local memory. Links are unidirectional and
either connect a device and a router or two routers with each other. Each link
has a bandwidth that limits the maximum data rate that the link can handle.
Routers operate according to an oblivious deterministic routing algorithm.
Switching techniques and input buffers for router ports are not considered by
the NoC model.

Using this simplemodel, it is possible to construct arbitrary network topolo-
gies. Bymodelling single links instead of whole topologies, themodel can assign
different bandwidths to different links. This is useful for modelling the Toma-
hawk2 where all components, including the routers, operate asynchronously
and the clock frequencies can be adjusted individually for each component.

We can use this model in order to derive routes for arbitrary data transfers
as all routers, all links, and the routing algorithm are known. A route simply is
a list of links that need to be traversed when transferring data from device A to

42 4 Hardware Model

1 <Interconnect>
2 <Noc Name="noc_ic" GridReference="nocGrid" GridRouting="

HorizontalThenVertical">
3 <Masters List="PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7" />
4 <Slaves List="pe0_mem pe1_mem pe2_mem pe3_mem pe4_mem pe5_mem

pe6_mem pe7_mem global_mem"/>
5 </Noc>
6 </Interconnect>
7

8 <NocGrid Name="nocGrid">
9 <Mesh Bandwidth="10.15"> <!-- in bytes per cycle -->
10 <Router X="0" Y="0">
11 <SharedMemoryLink Memory="global_mem" Bandwidth="3.73"/>
12 </Router>
13 <Router X="0" Y="1">
14 <ProcessorLink Bandwidth="7.99" Processor="PE4"/>
15 <ProcessorLink Bandwidth="7.99" Processor="PE5"/>
16 <ProcessorLink Bandwidth="7.99" Processor="PE6"/>
17 <ProcessorLink Bandwidth="7.99" Processor="PE7"/>
18 </Router>
19 <Router X="1" Y="0">
20 <ProcessorLink Bandwidth="7.99" Processor="PE0"/>
21 <ProcessorLink Bandwidth="7.99" Processor="PE1"/>
22 <ProcessorLink Bandwidth="7.99" Processor="PE2"/>
23 <ProcessorLink Bandwidth="7.99" Processor="PE3"/>
24 </Router>
25 <Router X="1" Y="1">
26 </Router>
27 </Mesh>
28 </NocGrid>

Listing 4.1: An excerpt of the Tomahawk2 platform description for MAPS that
illustrates the definition of the NoC-based interconnect. The NoC
is implemented in a mesh topology consisting of four routers. The
link bandwidth can be set individually for each device.

4.3 Measurements 43

device B. Knowing the route, we can derive the number of hops and find the
slowest link to derive the bandwidth limit as required by the cost model.

In order to support the definition of the NoC architecture in the platform
description of MAPS, this work extends the existing XML description by new
tags and attributes. For example, Listing 4.1 on the preceding page shows the
XML description of the Tomahawk2 NoC. The Interconnect tag is already
part of MAPS and defines the general interconnect architecture. In the case
of the Tomahawk2, the interconnect is a NoC architecture consisting of eight
processing elements, eight local memories, and one global memory.

The network topology is specified using the NocGrid tag that is labeled by
a name and referenced to by the interconnect definition. This work provides
the Mesh tag as a shortcut for definition of mesh topologies. Tags for other
topologies or irregular structures are not provided by this work but can be
implemented easily. The Router tag defines routers that are automatically
connected according to the topology specified by the surrounding tag. The
tags SharedMemoryLink and ProcessorLink define links that connect a
router to a sharedmemory or to a processing element, respectively. By using the
Bandwidth attribute, the maximum bandwidth can be set globally, per router,
or per link. When MAPS creates its internal representation of the NoC model
from the XML description, it sets the bandwidth of each link to the minimum
value that applies to this link.

4.3 Measurements

The two previous sections discussed the interconnect model of MAPS and in-
troduced extensions that add support for modelling communication in NoC
architectures. In order to define a specific model for the Tomahawk2, we need
an understanding of the characteristics of its NoC architecture and of commu-
nication costs induced by the channel library. Therefore, this section presents
two benchmarks for measurement of communication costs (Section 4.3.1) and
link bandwidths (Section 4.3.2).

4.3.1 Communication Costs

In order to formulate a cost model for communication on the Tomahawk2,
we need an understanding of the timing characteristics of the channel library.

44 4 Hardware Model

Therefore, this section presents experiments that measure the time required
for performing produce and consume operations on KPN channels using the
channel library as presented in Section 3.4.3. Each of the experiments covers
one of three scenarios. These scenarios are read/write access to a buffer that is
located in a remote scratchpad, to a buffer that is located in a local scratchpad,
and to a buffer that is located in global RAM.

Experimental Setup

The experiments presented in this section measure the time that is required to
perform channel accesses. In order to perform these measurements on-chip,
a hardware timer is required. On the Tomahawk2 only the Core Manager
implements a hardware timer. Therefore, the Core Manager needs to perform
the time measurement. However, in order to examine scenarios that would
occur in real applications, where two processes running on different processing
elements communicate with each other, the process that performs the channel
accesses in question needs to be running on one of the processing elements.
Thus amechanism for controlling timemeasurement from a processing element
is required.

In the experiments presented in this section, processing elements may send
start and finish signals to the Core Manager. When the Core Manager receives
the start signal, it starts its timer and then waits for the finish signal. After
receiving the finish signal the Core Manager stores its current timer value and
the measurement is complete. The transfer of start and finish signals introduces
an additional delay. However, the delay is approximately equal for both signals.
Consequently, the delay gets compensated as it adds to the absolute time of
start and finish but not to the time difference between both points.

All the experiments below are implemented as CPN applications where one
of the processes performs the measurement. This process under observation
sends the start signal to the Core Manager, performs the operation in question
repeatedly, and then sends the finish signal to the Core Manager. The experi-
ments presented here repeat the operation in question 1,000 times in order to
derive an average value and thus filter out network jitter.

The experiments use channels with buffers bounded to six tokens. This is
the size MAPS uses for most channels in real applications as it is the initial value
of the bounding algorithm. A size of six tokens is small enough to fit buffers
with a token size up to 4,096 bytes into the Tomahawk2 scratchpad memories.

4.3 Measurements 45

In order to understand the influence of data volume and number of hops
on the communication costs, we need to perform measurements while varying
these parameters. The experiments presented here use different mappings in
order to vary the number of hops and change the token size within a range
from 8 bytes to 4,096 bytes.

The experiments only cover token sizes that are a multiple of 8 bytes. As
explained in Section 3.4.3 on page 30, token sizes that are not a multiple of
8 bytes need additional transfers to guarantee consistency. This increases the
execution time of channel access operations dependent on a token’s position
in memory. To keep the cost model simple, it only covers token sizes that are
a multiple of 8 bytes. However, in general it would be possible to derive cost
functions for arbitrary token sizes.

Experiment 1: Remote Access

The first experiment analyzes channel accesses for buffers that are located in
a remote scratchpad. It is based on a simple KPN application that consists
of a source process and a sink process connected by a single channel. The
processes may be mapped to neighbouring processing elements (e.g. PE0 and
PE1), resulting in a distance of one hop, or to processing elements with a three
hop distance (e.g. PE0 and PE4). Direct communication between two PEs over
a distance of two hops is not possible on the Tomahawk2.

In order to measure the execution time of a remote produce operation, the
channel buffer needs to be mapped to the consumer scratchpad. Consequently,
tomeasure the execution time of a remote produce operation, the channel buffer
needs to be mapped to the producer scratchpad. Figure 4.1a and Figure 4.1b
on the next page illustrate this setup.

Figure 4.2 on the following page displays an excerpt of the measured exe-
cution times for remote channel accesses. In order to keep the diagram clear, it
only show shows every fourth data point for a range from 8 to 2,048 bytes. As
the data points clearly show a linear trend, the diagram also displays a linear
function derived from linear regression over all data points.

In the diagram in Figure 4.2, there is no distinction between communi-
cation over a one hop distance and over a three hop distance for the remote
produce operation. The diagram only displays the values measured for a one
hop distance. However, the values measured for a three hop distance are approx-

46 4 Hardware Model

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(a) Consume remotely

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(b) Produce remotely

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(c) Consume locally

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(d) Produce locally

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(e) Consume in RAM

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(f) Produce in RAM

PE with the process under observation mapped to it
PE with the channel buffer mapped to it
Channel

Figure 4.1: These experimental setups are used for measurement of communi-
cation costs. Each setup applies a different mapping.

0 256 512 768 1,024 1,280 1,536 1,792 2,048

300

400

500

Token size in bytes

Ti
m
e
in

cy
cl
es

consume (1 hop)
consume (3 hops)
produce (1 hop)
linear regression

Figure 4.2: The measured communication costs for remote channel accesses
clearly show a linear trend.

4.3 Measurements 47

imately identical to the displayed values. The deviation between both values is
below 0.02% and can be explained by measurement error.

In fact, the execution time of a remote produce operation does not depend
on the number of hops as the DMAunit does not wait for an acknowledge signal
when it sends data. The DMA unit simply writes out all data word by word and
then the NoC handles the transfer. Therefore, the costs for a remote produce
operation only depend on the available bandwidth and the data volume. In
contrast, the consume operation reads data via DMA and thus has to wait for
a reply. Therefore, the costs for a remote consume operation depend on the
number of hops.

Experiment 2: Local Access

The second experiment analyzes channel accesses for buffers that are located
in the local scratchpad. The execution times for local produce and consume
operations are constant values that are independent of token size and number
of hops. This is because a channel access operation that operates locally does
not need to transfer any user data. The operation only has to perform one write
transfer in order to update the read or write pointer of the communication
partner. As this is a DMAwrite operation, its execution time is also independent
of the number of hops.

The experiment uses a setup consisting of four processes and three channels.
The process under observation is producer or consumer to all three channels.
The other three processes each connect to one of the channels. Figure 4.1c
and Figure 4.1d on the preceding page visualize this setup. The process under
observation produces or consumes tokens on all three channels in a round-
robin pattern. As the communication costs are independent of the data volume
for local channel accesses, the experiment uses a fixed token size of 8 bytes.

The usage of three parallel channels ensures that the process under obser-
vation always can perform its read or write operation and never has to wait for
another process to fill or empty the channel buffer. As local channel accesses
do not have to transfer the token, they are always faster than remote operations.
However, a remote channel access for a token size of 8 bytes does not need
considerably more time than a local access. The process under observation per-
forms three local channel accesses per iteration while the other three processes
only perform one remote channel access per iteration. This mechanism ensures

48 4 Hardware Model

that the process under observation never has to wait and that we only measure
the time required for performing a local channel access.

As discussed before, the experimentmeasures the time over 1,000 iterations.
This leads to a total of 3,000 channel access operations executed by the process
under observation. By dividing the total measured time by 3,000, we get the
average execution time of the operation in question. The experiment results
in an average execution time of 164 cycles for a local consume operation and
205 cycles for a local produce operation. Performing the experiment with a
mapping that spans the three channels over a one hop distance and over a three
hop distance leads to the same results. This verifies that local channel accesses
are in fact independent of the number of hops.

Experiment 3: RAM Access

The third experiment analyzes channel accesses for buffers that are located in
global RAM. Here, both producer and consumer issue a data transfer to or from
RAM.Therefore, the execution time of both operations depends on the transfer
size. However, both operations are independent of the number of hops as all
PEs have the same distance of two hops to the memory controller. As discussed
before, updating read and write pointer is also independent of the number of
hops.

The experiment uses an application with a structure that is similar to the
application used in the first experiment. Two processes communicate via a
single channel. This channel is mapped to the global RAM. Consumer and
producer process may be mapped to neighbouring PEs or two PEs with a three
hop distance. Figure 4.1e and Figure 4.1f on page 46 show the setup used for
this experiment.

Both consumer and producer process perform data transfers from or to
the RAM. In order to get accurate results from the time measurement for single
operations, we need to ensure that the two processes do not issue interleav-
ing data transfers. Therefore, this experiment uses a modified version of the
channel library that implements a mechanism for deactivating the data transfer
in produce or consume operations via preprocessor macros. This way, the ob-
served operation can operate normally while the communication partner only
performs maintenance tasks (e.g. read and write pointer management). This
setup guarantees that the process under observation is the only process that
performs data transfers to or from RAM.

4.3 Measurements 49

0 256 512 768 1,024 1,280 1,536 1,792 2,048

400

600

800

Token size in bytes

Ti
m
e
in

cy
cl
es

produce
consume
linear regression

Figure 4.3: The measured communication costs for RAM channel accesses do
not have a clear linear trend. Nevertheless, the costs are modeled
with linear functions.

Figure 4.3 shows the measured execution times of consume and produce
operations for token sizes in a range from 8 to 2,048 bytes. Again the diagram
only displays every fourth data point. The diagram further shows a linear re-
gression for both operations. As the data points for the produce operation
show a sharp bend at about 480 bytes, the communication costs for the pro-
duce operation are modeled with two linear functions. However, the diagram
shows various steps. Therefore, linear functions are not suitable for accurately
modeling the observed behaviour. Nevertheless, at this point a simple model
is favourable over a complex model as we do not know yet how accurate the
overall communication model will be. In fact, evaluation in Section 5.2 will
show that the overall communication model of MAPS cannot accurately model
RAM accesses on the Tomahawk2 and thus accuracy of the cost functions is
not a concern.

4.3.2 NoC Bandwidths

In order to parameterize the NoCmodel as presented in Section 4.2, we need to
measure the bandwidth that each links provides. There are five different types
of links on the Tomahawk2: links that connect two routers with each other,
links that connect from a PE to a router, links that connect from a router to

50 4 Hardware Model

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(a) PE write

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(b) PE read

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(c) Between routers

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(d) RAM write

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

(e) RAM read

Figure 4.4: The experimental setups for measuring the link bandwidth of all
five types of links on the Tomahawk2

a PE, a link that connects from the RAM interface to a router, and a link that
connects from a router to the RAM interface. For a complete measurement we
need to measure the bandwidth of all five types of links.

In order to measure the bandwidth of a link, we can issue a DMA transfer
with a known data volume andmeasure the time that is required for performing
the transfer. With the measured value, we can calculate the data rate of the
transfer. This data rate is the bandwidth of the slowest link that was traversed
by the transfer.

On the Tomahawk2 the Core Manager is the only component that im-
plements a hardware timer. Therefore, the Core Manager performs the time
measurement in this experiment. It issues DMA transfers with a data volume
of 8,192 bytes and measures the time until the DMA unit finishes the transfer.
As the Core Manager uses an architecture that is similar to the architecture of
the processing elements and also implements a similar DMA unit, we can apply
the values measured on the Core Manager to the processing elements.

From the Tomahawk2 architecture description [38] we know that the links
between routers are configured to higher bandwidth than the links connecting

4.4 Model Formulation 51

0 1 2 3 4 5 6 7 8 9 10 11

Between routers
PE read
PE write

RAM read
RAM write

10.15

7.99

7.99

7.14

3.73

Bandwidth in byte/cycle

Figure 4.5: The measured bandwidths for all five types of links on the Toma-
hawk2

to a PE or to RAM. By reading/writing from/to RAM or from/to a PE, we can
measure the bandwidth of the link that connects this component as this would
be the slowest link. However, this setup does not allow for measurement of the
bandwidth of links that connect two routers as they are always faster than the
link that the Core Manager uses to receive or transmit data.

To fully utilize a link between two routers, another parallel transfer besides
the one issued by the Core Manager is required. This additional transfer is
issued by a PE that operates independently. As the routers on the Tomahawk2
forward packets in round-robin fashion when two or more packets compete
for the same output port, both transfers get the same data rate, which is half of
the available bandwidth. Figure 4.4 illustrates the setups used for bandwidth
measurement of the different link types.

Figure 4.5 displays the bandwidths as measured using the setup that was
discussed above. In order to filter out network jitter, Figure 4.5 displays mean
values over 1,000 measurements. The measured bandwidths are the foundation
for the formulation of a Tomahawk2 NoC model.

4.4 Model Formulation

With the information gained from measurements in the previous section, we
can formulate a communication model for the Tomahawk2 that uses the cost
model and interconnect model discussed in Sections 4.1 and 4.2. The model
that this section presents, only considers token sizes that are amultiple of 8 bytes.
Communication costs for other token sizes would need to considered separately.

52 4 Hardware Model

In order to model communication cost on the Tomahawk2, three types of
communication primitives are required. The Shared NoC memory primitive
models communication via global RAM, the producer NoC memory primitive
models communication via a scratchpad that is local to the producer pro-
cess, and the consumer NoC memory primitive models communication via the
scratchpad that is local to the consumer process.

As discussed in Section 4.1 the cost model CMCP is a set of three func-
tions CCP, TCP, and PCP that model the costs for consuming, transferring, and
producing a token using the communication primitive CP. In the proposed
cost model, the functions are parameterized by the data volume x, the band-
width limit b, and the number of hops h. In order to create the Tomahawk2
communication model, we need to define the cost models for the shared NoC
memory primitives CMR, the producer NoC memory primitives CMP, and for
the consumer NoC memory primitives CMC.

The transfer cost function T models transfer costs that occur in addition
to the costs for processing consume and produce operations. This is useful for
modeling DMA transfers, where a produce or consume operation issues a DMA
transfer and the operation terminates while the data transfer is still ongoing.
However, this is not needed for the Tomahawk2. Although the channel library
as presented in Section 3.4.3 uses DMA transfers, there are no transfer costs in
terms of the communication model. A produce or consume operation always
waits until the data transfer is complete in order to ensure consistency at all
time. Therefore, we can set the transfer costs to zero.

TR(x, b, h) = TP(x, b, h) = TC(x, b, h) = 0 (4.4)

The cost functions for produce and consume operations can be derived from
the measurements discussed in Section 4.3.1. As the costs for local consume
and produce operations are constant, we can directly define PP and CC using
the measured values.

CC(x, b, h) = 164 (4.5)
PP(x, b, h) = 205 (4.6)

4.4 Model Formulation 53

From linear regression analysis in Figure 4.2 on page 46 over the data
measured for remote channel accesses we get the following equations.

CP
h=1(x) = 258+ 0.1256 · x (4.7)

CP
h=3(x) = 289+ 0.1256 · x (4.8)
PC(x) = 299+ 0.1256 · x (4.9)

On the Tomahawk2, the number of hops between two PEs is always one or
three. The topology does not allow for other values. As the cost for consuming
a token remotely depends on the number of hops, we get two equations for CP.
However, in order to define the cost model, we need to generalize CP so that it
models communication costs for arbitrary topologies. Under the assumption
that the number of hops has a linear influence on communication costs, we can
generalize CP and get the following equation.

CP(x, h) = CP
h=1(x) +

CP
h=3(x) − CP

h=1(x)

3− 1
· (h− 1) (4.10)

= 242.5+ 15.5 · h+ 0.1256 · x (4.11)

The slope in Equations 4.9 and 4.11 is the inverse data rate for remote
produce and consume operation. As the slope of 0.1256 approximately corre-
sponds to the bandwidth of 7.99 byte/cycle measured in Section 4.3.2 for reading
from and writing to a PE’s scratchpad, we can assume that the link bandwidth
limits the data rate of the transfer. Therefore, we can generalize Equations 4.9
and 4.11 in order to derive the final cost functions for remote channel accesses.

CP(x, b, h) = 242.5+ 15.5 · h+
x

b
(4.12)

PC(x, b, h) = 299+
x

b
(4.13)

From linear regression analysis in Figure 4.3 on page 49 over the commu-
nication costs measured for channel buffers that are located in global RAM we
get the following equations.

54 4 Hardware Model

CR
h=2(x) = 314+ 0.156 · x (4.14)

PR
h=2(x) =

{
299+ 0.128 · x x 6 480

209+ 0.319 · x x > 480
(4.15)

On the Tomahawk2, the costs for RAM accesses are identical for all PES as
all PEs have a two hop distance to the memory controller. However, the costs
are generally not independent of the number of hops and could vary for other
topologies. Nevertheless, we have no information on the relation between the
number of hops and communication costs for RAM accesses. Therefore, we
cannot generalize the equations for an arbitrary number of hops. We could
only assume that the relation between number of hops and communication
cost for RAM accesses is similar to the relation in Equation 4.12.

The diagram in Figure 4.3 on page 49 clearly shows that the data rate of
RAM accesses is not constant but changes in relation to the data volume. The
alternating data rate cannot be modeled by a bandwidth limit as this would lead
to a constant data rate. An alternative costmodel could introduce a service delay
in dependence of the token size in order to model the behaviour of the memory
controller. However, for now Equations 4.14 and 4.15 are left unchanged and
the dependence of communication costs on the number of hops as well as the
bandwidth limit are not modeled. Section 5.2 will review this decision.

CR(x, b, h) = 314+ 0.156 · x (4.16)

PR(x, b, h) =

{
299+ 0.128 · x x 6 480

209+ 0.319 · x x > 480
(4.17)

On the whole, the cost model for the Tomahawk2 is defined by the Equa-
tions 4.4, 4.5, 4.6, 4.12, 4.13, 4.16, and 4.17.

Besides the cost model, we also need to define the NoC model for the
Tomahawk2. The network topology was already discussed in Section 3.1. In
order to define the bandwidth of all links, we can use the values measured in
Section 4.3.2. Figure 4.6 on the facing page visualizes the resulting model.

4.5 Network Congestion 55

Router
(0,0)

Router
(0,1)

Router
(1,0)

Router
(1,1)

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

10.15 byte/cycle
7.99 byte/cycle
7.14 byte/cycle
3.73 byte/cycle

Figure 4.6: NoC model for the Tomahawk2 with defined link bandwidths

4.5 Network Congestion

The NoC model as presented in Section 4.2 has a static view on the network. It
has no notion of state in the NoC (e.g. buffer utilization or ongoing transfers).
However, in a real NoC the state has an influence on transport times. Multiple
transfers may compete for the same resources. Contention between multiple
transfers may lead to congestion and, therefore, to slower data transfers. An
accurate NoC model should also be capable of modeling network congestion.
A NoC simulator could be used to derive accurate communication costs in all
scenarios but would also increase complexity drastically. Therefore, an analytic
approach for calculation of delays in a congested network is desirable.

Most analytical NoC models like those based on network calculus [17],
[18] or Poisson processes [39] are designed for evaluation of NoC architectures,
but cannot predict transfer times in a certain network state. Dasari, Nikolić,
Nélis, et al. proposed an algorithm that calculates tight worst case traversal
times in a NoC for a known load scenario [21]. This approach is based on a
contention-tree [35] that models the influence that multiple ongoing transfers
may have on each other. However, the algorithm operates recursively on the
tree which can lead to long computation times [21].

In order to keep the implementation expenses and the computational effort
required for modeling network congestion low, this work proposes a simple

56 4 Hardware Model

(a) Two incoming flows
that both use the full

bandwidth

(b) One incoming flow
uses half the available

bandwidth

(c) One incoming flow
uses a fourth of the
available bandwidth

Figure 4.7: Contention between two flows can lead to congestion. The slow-
down is larger for flows with high data rate and smaller or for flows
with low data rate.

algorithm that models congestion in the Tomahawk’s NoC. This algorithm
models the behaviour of transfers competing for the same output port of a
router. In the following, a single data transfer from A to B in the NoC is called
a flow. A flow transfers a known number of bytes x in a certain time t from A
to B. The average data rate of this flow is d̄ = x/t.

When two or more flows compete for the same output port, the routers
on the Tomahawk2 forward packets in a round-robin scheme. When n flows
with a high initial data rate d compete for the same output port of a router, all
flows get an equal share of the bandwidth b that the target link provides. The
resulting average bandwidth for each of the transfers from source to destination
is d̄ = b/n. If one of the flows has a lower initial data rate of d/n, the resulting
average data rate for each of the n flows still is d̄ = b/n. The reason for this
behaviour is that the router uses round-robin to decide which packet gets
forwarded. As long as all flows send at a data rate of at least b/n, all flows get
served by the router with a rate of b/n. From this observation we can conclude,
that the slowdown from network congestion is larger for flows that send data at
a high rate and is smaller for flows that send data at a low rate. In fact, a flow
that sends data at a rate that is less than b/n does not suffer from congestion
and is not slowed down by the network. Figure 4.7 illustrates the partitioning
of the available bandwidth on an outgoing link for two competing flows.

4.5 Network Congestion 57

In order to simulate congestion in a NoC, the NoC model needs to be
extended in order to keep track of the network state. The approach presented
here extends the NoC model by a list of all flows that are currently active in the
NoC. This way, we can model arbitrary combinations of flows that may or may
not use the same resources. For each active flow, we know the data volume and
can derive the communication cost without congestion from the cost model.
This gives us the initial average data rate of each flow.

In order to calculate the additional delay caused by congestion for each
active flow, we iterate over all links in the network and use the following algo-
rithm for each link.

1. Sum up the data rate of all flows traversing the link.

2. If the total data rate is equal to or less than the bandwidth of the link, the
algorithm terminates. Otherwise, it continues with step 3.

3. Find the flow with the highest data rate that traverses the link and incre-
ment its communication costs. This reduces the data rate of the flow.

4. Repeat from step 1.

For this algorithm to work correctly, the order of links that the algorithm
analyzes is important. When a flow traverses multiple links, it can first compete
with one flow in a link l1 and later on compete with another flow in a link l2.
As the flow’s data rate may be slowed down by congestion in l1 before reaching
l2, we need to analyze congestion in l1 first. Therefore, a safe order of links
needs to be found according to the network topology.

This simple algorithm allows for simulation of congestion delays for a
known network state. However, the algorithm only models congestion that
occurs, when two flows compete for the same output port. The NoC model
and the algorithm have no notion of the buffer utilization in the network.
In a congested network, buffers could fill up and block flows that want to
use otherwise unused links. For instance, a flow from PE1 to the RAM on
the Tomahawk2 would fill up the input buffer of the south-west router as the
memory controller services incoming packets slower than the NoC. Another
flow from PE0 to PE4 would be blocked, by the full buffer in the south-west
router. Figure 4.8 on the following page illustrates this scenario. The presented
algorithm is not able of modeling this kind of congestion. On the Tomahawk2
this scenario may only occur when a flow writes to the RAM. However, for

58 4 Hardware Model

larger NoC architectures this case could become more relevant and should be
considered separately.

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7

RAM

CM

Figure 4.8: A flow going to the RAM can
fill up the input buffer in the
south-west router and thereby
block other flows that use the
same input port.

4.6 Processor Model

The processor model of MAPS is required for performance estimation. The
performance estimator predicts the execution time of code segments by simu-
lating the scheduling of instructions in a virtual processor architecture. This
architecture is described by the processor model. The processor model defines
all functional units that a processor has, the register files, and how pipelines are
structured. The model also defines a mapping of instructions to the number of
cycles required for their execution.

Performance estimation in MAPS is based on the LLVM [30] compiler
infrastructure and uses a similar approach as the one proposed in [46]. Both
approaches use LLVM bytecode for performance estimation. LLVM bytecode
is a low-level intermediate representation of a program. It is machine code for
a virtual RISC architecture and is executable using the LLVM virtual machine.

The performance estimator predicts execution time based on information
learned from profiling. It translates code segments to LLVM bytecode, runs
the code in the LLVM virtual machine, and extracts a list of all instructions
that where executed. The performance estimator uses this list to simulate the
scheduling of instructions in a virtual architecture that is described by the
processor model.

To allow for accurate performance estimation for the Tomahawk2, a proces-
sor model for the Tomahawk’s Xtensa LX4 cores needs to be defined. However,

4.6 Processor Model 59

the specialized Xtensa instruction set does not map well to LLVM bytecode.
Xtensa cores are highly configurable and may be implemented as small mi-
crocontrollers as well as highly specialized DSP cores [51]. Depending on the
configuration, the ISA provides specialized instructions that have no direct
representation in the LLVM bytecode. For instance,the LOOP instruction allows
for zero overhead loops by marking a certain range of instructions for repeated
execution. In contrast, LLVM byte code always requires three operations per
iteration: increment, compare, and conditional branch.

Another problem when modeling the Tomahawk’s processing elements
is that they implement the windowed registers option [51] of the Xtensa ISA.
Using windowed registers, the actual register file is larger than specified by the
ISA. Code that is currently executing on a PE only operates on registers that
are part of the current window. The call instruction forwards the window by
a certain amount of registers. Thereby, the callee can operate on a fresh set of
unused registers while the caller’s register set is preserved. When the called
function returns, the window returns to its old position. By letting the caller’s
window and the callee’s window overlap, the caller can pass parameters to the
callee. This way, it is not necessary to preserve registers by pushing them to
the stack before calling a function. However, when a call is executed and the
register file is full, the whole register file needs to be pushed to the stack and
needs to be restored when returning.

The processor model of MAPS only supports simple register files and has
no concept for modeling access to windowed registers. This makes it impossible
to accurately predict the execution time of call and return instructions as there
is no information on the register files state. More importantly, the usage of
LLVM bytecode leads to imprecise predictions for specialized instructions of
the Xtensa ISA, e.g. the LOOP instruction. Altogether, the processor model of
MAPS is not suitable for accurately modeling the Xtensa ISA as implemented
on the Tomahawk2. During this work, incorrect predictions up to a factor of
three where observed. For instance, the execution time predictions for a Sobel
filter implementation (see Section 5.4.1) are about 2.6 times larger than the
measured execution time.

Modifying the processor model in order to fit better the Xtensa ISA is a
complex and time-consuming task. As working time is limited and this work’s
focus is on modeling communication in a network on chip (NoC) architecture,
the Tomahawk2 hardware model uses a generic RISC processor model that is

60 4 Hardware Model

provided byMAPS. However, this leads to inaccurate prediction of computation
times and, therefore, is a limitation of this work.

4.7 Conclusion

This chapter introduced a Tomahawk2 hardware model for the MAPS compiler
framework. Thereby, existing models where extended in order to add better
support for the Tomahawk2 platform. Theproposed hardwaremodel introduces
new types of communication primitives, uses an extended cost model that
can be parameterized according to the network topology, and provides an
interconnect model with support for NoC based architectures. Furthermore, an
algorithm for calculating delays caused by network congestion was proposed.
The previous section discussed the processor model of MAPS and reached the
conclusion that this processor model cannot accurately model the Xtensa ISA,
which is a limitation of this work.

5
Evaluation

In order to evaluate the solutions that Chapter 3 and Chapter 4 proposed,
this chapter presents a series of experiments that cover various aspects of the
proposals. Section 5.1 discusses the setup used for time measurement on the
Tomahawk2 and analyzes the measurement error. Section 5.2 evaluates the
communication model that this work proposes without considering network
congestion. The algorithm for modelling network congestion is evaluated
separately in Section 5.3. Section 5.4 compares the performance of applications
that are written in TaskC with KPN applications in MAPS. Finally, Section 5.5
reviews mapping strategies for the Tomahawk family.

5.1 Time Measurement

The experiments presented in this chapter measure the total execution time of
applications running on the Tomahawk2. Therfore, a method for measuring
time is required. On the Tomahawk2, only the Core Manager can perform time
measurements as only the Core Manager implements a hardware timer. Time
could also be measured externally on the host PC (see Section 3.4.1). However,
the communication between the Tomahawk2 board and the host PC would add
a large and unpredictable delay. Therefore, time measurement directly on the
chip is preferable in order to achieve accurate results.

The time measurement method that this chapter uses is similar to the
method discussed in Section 4.3.1. The Core Manager performs the time
measurement and signals are used in order to enable communication between
Core Manager and PEs. However, in contrast to the time measurement in

61

62 5 Evaluation

Section 4.3.1, the Core Manager not only performs the measurements. Here, it
also controls the measurements.

There is a start and a finish signal. The start signal is a broadcast signal that
the Core Manager sends to all PEs when it starts the timer. When booting up,
the PEs perform all necessary initialization tasks and then wait for the start
signal before they start executing the KPN that the mapping assigned to them.
This mechanism ensures that all processes start execution at almost the same
point in time and that the time required for booting up and initialization is
excluded from the time measurement.

When a process terminates, it sends the finish signal to the Core Manager.
The Core Manager stops the timer when it received the finish signal from all
eight PEs. Thus the Core Manager measures application execution time from
the start of execution of all processes until termination of the last process.

The introduction of signals for the timemeasurements induces a systematic
error. Signal handling and transfers cause an additional delay that is part of the
measured time frame. As the PEs start execution only after they received and
handled the start signal and the measurement only terminates after the Core
Manager received and handled the last finish signal, the delays for both signals
add to the total measured execution time of the application.

In order to estimate the measurement error, a simple experiment can be
used. This experiment executes a “dummy” application consisting of eight pro-
cesses which terminate immediately. If we use the time measurement method
as described above for the dummy application, we can directly measure the
systematic error as we know that the total execution time of the dummy appli-
cation is zero. By repeating this experiment we can derive an distribution of
the absolute error. Figure 5.1 on the next page displays this distribution for a
total of 1,000 measurements.

The distribution of the systematic error in Figure 5.1 shows an irregular
pattern. There is a smaller group of occurrences at about 800 to 900 cycles and
a larger group at about 1,100 to 1,300 cycles. The median error is 1,141 cycles.

In order to compensate the systematic error, the Core Manager automati-
cally subtracts the median value of 1,141 cycles from the measured execution
time. However, this only reduces the absolute error but a systematic error re-
mains because of the variation that is shown in Figure 5.1. Based on the error
measurement, we can assume the remaining systematic error to be within a
range of about -353 to 147 cycles.

5.2 Communication Model 63

800 900 1,000 1,100 1,200 1,300
0

100

200

300

Total execution time in cycles

N
um

be
ro

fo
cc
ur
re
nc
es

Figure 5.1: Distribution of the systematic error over 1,000 time measurements.
The median error is 1,141 cycles.

5.2 Communication Model

Section 4.4 introduced a communicationmodel for the Tomahawk2. In order to
evaluate the quality of execution time predictions that are based on this model,
this section discusses three experiments that compare the measured execution
time of an application running on the Tomahawk2 to the values predicted by
the trace replay module (TRM). The first experiment (Section 5.2.1) is based
on a simple KPN application with only one channel. The second experiment
uses a more complex application with a pipeline structure (Section 5.2.2) and
the third experiment is based on random KPN applications (Section 5.2.3).

All three experiments use the Tomahawk2 communication model that was
defined in Section 4.4 but do not include the congestionmodel from Section 4.5.
Section 5.3 evaluates the congestion model separately.

5.2.1 Single Channel Application

The first experiment is based on a simple KPN application that consists of
a source and a sink process connected by a single channel. Neither process
performs any computations but only produces/consumes 1,000 tokens in a for
loop. The experiment measures the total execution time of the single channel

64 5 Evaluation

application for token sizes within the range from 8 to 4,096 bytes and for various
mappings.

In order to examine all three communication primitives of the communi-
cation model, the experiment uses three different mappings. Each of the three
mappings places the source and the sink process on neighbouring PEs so that
there is a one hop distance between both processes. The three mappings differ
in the channel buffer placement. The mappings place the channel buffer in the
consumer scratchpad, the producer scratchpad, or in global RAM.

The setup for this experiment is similar to the setup that Section 4.3.1 used
in order to measure the communication costs. Therefore, we can expect the
measured execution times to match the TRM prediction. Figure 5.2 on the
facing page displays the experiment’s results.

Figure 5.2a on the next page covers mappings that place the channel buffer
in a scratchpad memory. For both the consumer scratchpad mapping and the
producer scratchpad mapping, there is a constant offset between simulated and
measured execution times. This prediction error can be explained by the insuffi-
cient processor model. As discussed in Section 4.6, the Tensilica compiler can
optimize for loops using the LOOP instruction and thus realizes zero overhead
loops. However, the processor model is not aware of this optimization and,
therefore, includes the overhead for increment and conditional branch in its
prediction. However, as this difference in predicted and actual processing time
is constant and the offset between measured and simulated execution times is
also constant, we can conclude that the hardware model predicts communica-
tion times accurately for a single channel that is mapped to a scratchpad.

Figure 5.2b shows the experiment’s results for a mapping that places the
channel buffer in global RAM. In contrast to Figure 5.2a, there is a divergence
between measurement and simulation. For a token size of 4,096 bytes, the
measured execution time is more than 50 percent higher than the simulated
execution time. This discrepancy is caused by interleaving memory requests.
When both the consumer and the producer process send requests to thememory
controller, the controller cannot operate on contiguous memory areas but
has to handle interleaving request separately. This increases the service time
for interleaving requests drastically. Therefore, the proposed communication
model cannot accuratelymodel RAM accesses. The following section will revisit
this problem based on a different setup.

5.2 Communication Model 65

0 512 1,024 1,536 2,048 2,560 3,072 3,584 4,096

4

6

8

·105

Token size in bytes

Ex
ec
ut
io
n
tim

e
in

cy
cl
es

Measured (Producer)
TRM (Producer)
Measured (Consumer)
TRM (Consumer)

(a) Transfer via scratchpad

0 512 1,024 1,536 2,048 2,560 3,072 3,584 4,096

1

2

·106

Token size in bytes

Ex
ec
ut
io
n
tim

e
in

cy
cl
es

Measured
TRM

(b) Transfer via global RAM

Figure 5.2: Comparison of measured and simulated execution times for a sin-
gle channel application. While the transfer time for scratchpad
accesses can be predicted accurately, interleaving RAM accesses
lead to mispredictions.

66 5 Evaluation

5.2.2 Pipeline Application

In order to evaluate performance estimation for a more complex application,
this section presents an experiment based on a pipeline application. Figure 5.3a
on the facing page visualizes the KPNof this application. It comprises six worker
processes, a source process, and a sink process. The source process permanently
produces tokens and the sink process permanently consumes tokens. In each
iteration, a worker process consumes a token, performs computations, and
produces a token.

In order to avoid erroneous predictions of computation times caused by
the insufficient processor model, the worker processes simulates computations
by calling a delay function. The worker process in this experiment use a delay
of 1,000 cycles. The CPN keyword __PNconsume can be used to define the
exact execution time of a process segment. Using this keyword, the experiment
ensures that trace analysis uses exactly the delay of 1,000 cycles.

The pipeline application can be mapped to the Tomahawk2 in various ways.
In the best case scenario (Figure 5.3b), processes that communicate witch each
other are mapped close to each other and each link in the NoC is used by
exactly one KPN channel. In the worst case scenario (Figure 5.3c), processes
that communicate with each other are mapped to different groups of PEs and
multiple KPN channels share the same NoC links.

Figure 5.4 on page 68 displays the experiment’s result. Similar to the single
channel experiment, this experiment examines three scenarios for the place-
ment of channel buffers. The mapping places all channel buffers in the con-
sumer scratchpads (Figure 5.4a), in the producer scratchpads (Figure 5.4b), or
in the global RAM (Figure 5.4c). The diagrams only show TRM values for the
best case mapping as the predicted difference between best case and worst case
mapping is relatively small and would not be visible in the diagrams.

In the case that all channel buffers are mapped to the consumer scratchpad,
the measured best case execution times match the TRM simulation. Similar to
the single channel application, there is a constant offset between both values,
which can be explained by the processor model’s misprediction due to the
for loop. The execution time for the worst case mapping only matches the
TRM prediction for small token sizes and diverges significantly for token sizes
larger than 2,048 bytes. This is caused by network congestion as multiple KPN
channels share the same network links. Based on these results, we can conclude

5.2 Communication Model 67

Src W1 W2 W3 W4 W5 W6 Sink

(a) KPN

W1

W2W3

Src

W6

SinkW4

W5

RAM

(b) Best case mapping

W6

W4W2

Src

Sink

W1W3

W5

RAM

(c) Worst case mapping

Figure 5.3: A pipeline application with two mapping scenarios

that the cost model for the consumer communication primitive accurately
predicts transfer times for uncongested networks.

Figure 5.4b on the following page shows a different behaviour. In the case
that all channel buffers are mapped to the producer scratchpad, the measured
values for both the best case mapping and the worst case mapping diverge sig-
nificantly from the predicted values. The memory interfaces of the scratchpads
on the Tomahawk2 are responsible for this increase of the total execution time.

Although the network links on the Tomahawk2 may operate in full-duplex,
the memory interface that connects the scratchpad memory to the NoC cannot
handle simultaneous reads andwrites. For example, when thememory interface
of PEx handles a read request send by PEy, this memory interface is busy and
cannot accept further requests. This may lead to additional delays and is the
reason for the divergence of measured and predicted values in Figure 5.4b.

When a worker processWx finishes producing a token, it immediately con-
sumes a new token. At the same time the next worker processWx+1 consumes
the newly produced token. As the channel buffer is located in the scratchpad
of the producing processes, both consume operations require a data transfer.
One transfer writes to the scratchpad ofWx and one reads from this scratchpad.
However, as the memory interface can only handle one request at a time, one
transfer has to wait, which leads to an additional delay.

68 5 Evaluation

0 512 1,024 1,536 2,048 2,560 3,072 3,584 4,096

1.5

2

2.5

·106

Token size in bytes

Ex
ec
ut
io
n
tim

e
in

cy
cl
es Measured (Best mapping)

Measured (Worst mapping)
TRM (Best mapping)

(a) Transfer via consumer scratchpad

0 512 1,024 1,536 2,048 2,560 3,072 3,584 4,096

1.5

2

2.5

·106

Token size in bytes

Ex
ec
ut
io
n
tim

e
in

cy
cl
es Measured (Best Mapping)

Measured (Worst mapping)
TRM (Best mapping)

(b) Transfer via producer scratchpad

0 512 1,024 1,536 2,048 2,560 3,072 3,584 4,096

0

2

4

6

·107

Token size in bytes

Ex
ec
ut
io
n
tim

e
in

cy
cl
es Measured (Best mapping)

Measured (Worst mapping)
TRM (Best mapping)

(c) Transfer via global RAM

Figure 5.4: Comparison of measured and simulated execution times for the
pipeline application. The worst case mapping leads to mispredic-
tions due to network congestion (a and b). Interleaving RAM
accesses slow down the memory controller and lead to a large
runtime overhead (c).

5.2 Communication Model 69

The NoC model as presented in Section 4.2 has no notion of memory
interfaces. Therefore, it cannot predict the delay caused by processes waiting for
a busy interface. This is a limitation of the proposed hardware model. However,
the pipeline application enables and amplifies this effect due to its synthetic
structure with identical processes. Other applications might not be affected by
this limitations.

Figure 5.4b on the preceding page illustrates measured execution times and
TRMprediction for the case that all channels aremapped to the RAM.Naturally,
there is no clear difference between the best case mapping and the worst case
mapping. As all processes communicate via global RAM, the mapping has no
direct influence on the communication.

There is a large difference of more than an order of magnitude between
the predicted execution times and the measured values for large token sizes.
As already discussed for the single channel application, this discrepancy is
caused by interleaving memory requests. As the pipeline application comprises
more processes than the single channel application, the number of interleaving
memory requests is much higher and thus the effect has a stronger influence
on the total execution time.

The proposed communication model does not consider the influence of
interleaving RAM requests when estimating communication times. This is
a further limitation of the communication model. However, incorporating
interleaving into the communication model is not reasonable as the hardware
should avoid interleaving. In fact, the NoC provides a burst mode that ensures
continues transmission a series of packets without interleaving. This would be
similar to a network with optional wormhole switching. However, due to a bug
in the Tomahawk2 hardware design, the burst mode is not available. As the
interleaving issue will be resolved in future iterations of the Tomahawk chip,
creating a specific interleaving model for the Tomahawk2 is not be reasonable.

5.2.3 Random Applications

The two previous sections used synthetic benchmarks to analyze performance
prediction for communication intensive applications on the Tomahawk2. In
order to cover a wide range of possible applications, this section analyzes ran-
domly generated KPNs.

70 5 Evaluation

Tretter introduced a random KPN generator for MAPS in his diploma
thesis [54]. This generator uses SDF3 [49] for generation of random SDF graphs
and generalizes these graphs in order to create KPNs. As a KPN is not only
defined by its network structure but also by the behaviour of all processes, the
random KPN generator also creates process traces.

As the random KPN generator is incorporated into MAPS, the generated
KPNs can only be used internally. In order to create an actual executable
application, CPN code needs to be generated. For this purpose, a small script
was created as part of this work. This script analyzes the KPN structure and
parses process traces of a randomly generated application in order to create
CPN code. For each channel access in the process traces the script adds a
__PNin or __PNout statement. Computation times between channel access
are implemented by a call to a delay function.

This experiment is based on 2,500 randomly generated KPNs. Each KPN
consists of up to eight processes. Each channel has amean token size of 512 bytes
and each process segment has a mean length of 5,000 cycles. The Load Balancer
algorithm of MAPS is used to derive a mapping for each application. Then the
TRM estimates the total execution time of this application and the application
is executed on the Tomahawk2 in order to measure the real execution time.

For each pair of measured and predicted execution times we can calculate
the relative error of the TRM prediction. By calculating the relative error for all
2,500 measurements, we get a distribution of the relative error over all analyzed
KPNs. Table 5.1 and Figure 5.5 illustrate the characteristics of this distribution.

The results show that most predictions are close to the actual measured
value. The relative error is less than 1% for 88% of all analyzed KPNs and is less
than 5% for 99% of all analyzed KPNs. However, there are cases where the TRM
underestimates the total execution time significantly. The maximum relative
error of all analyzed KPNs is 15.3%. This rare but large discrepancy between
predicted and measured values is caused by contention on the scratchpad
memory interface as described in the previous section.

On the whole, the random KPN experiment shows that the proposed Tom-
ahawk2 hardware model allows for accurate predictions in most scenarios.
However, in some cases the hardware model’s limitations may lead to signifi-
cant mispredictions.

5.3 Network Congestion 71

Minimum −0.983%
1st Quartile −0.338%
Median −0.191%
Mean 0.186%
3rd Quartile 0.258%
Maximum 15.331%

Table 5.1: Characteristics of the relative error dis-
tribution for 2,500 TRM performance
estimations on random traces

−2 0 2 4 6 8 10 12 14 16

Relative error in%

Figure 5.5: Box plot of the relative error distribution for 2,500 TRM perfor-
mance estimations on random traces

5.3 Network Congestion

The previous section examined the Tomahawk2 communication model without
applying the congestion algorithm proposed in Section 4.5. In order to evaluate
the congestion model, this section discusses two experiments. The first experi-
ment in Section 5.3.1 examines network congestion on PE links, which are links
that connect from a router to a processing element. The second experiment in
Section 5.3.2 considers congestion on router links, which are links that connect
two router with each other.

Figure 5.6 illustrates the setup for the two congestion experiments. In both
scenarios four KPN channels share certain network links. Each channel has
a source and a sink process that produces or consumes tokens continuously.
Both experiments place all channels in the consumer scratchpad.

We can vary the data rate of each channel by varying the token size. As the
channel library has a constant overhead for producing and consuming tokens,
a smaller token size leads to a smaller data rate and a higher token size leads to
a higher data rate. However, we do not know the exact relation between token
size and data rate.

A simple experiment derives the relation between token size and data rate
for a single channel. A source and sink process are connected by KPN channel
and continuously produce or consume tokens for a known amount of time. We

72 5 Evaluation

4

1

23

(a) Congestion on link between router
and PE

1

23

4

(b) Congestion on links between
routers

Figure 5.6: For the congestion measurement, four parallel channels (labeled
1–4) share certain network links.

can measure the average data rate of this channel by counting the number of
bytes transferred within the known time frame. Figure 5.7 shows the measured
relation.

5.3.1 PE Link Congestion

The first experiment examines congestion in a PE link for a varying number of
active channels. It uses the setup shown in Figure 5.6a. All active channels are
set to the same data rate. For a higher data rate and for a higher number of active
channels, congestion becomes more likely. Figure 5.8 shows the experiment’s
results and compares measured and predicted execution times.

Figure 5.8 illustrates that the total execution time increases, when the com-
bined data rate of all active channels reaches the link bandwidth of 8 byte/cycle
and thus network congestion occurs. The diagrams further shows, that the
proposed congestion algorithm is capable of predicting the additional delay
caused by network congestion for PE links and for channels with equal data rate.
However, the predictions are more accurate for highly congested networks.

5.3 Network Congestion 73

1,024 2,048 3,072 4,096 5,120 6,144 7,168
0

2

4

6

Token size in bytes

D
at
a
ra
te
in

by
te /
cy
cl
e

Figure 5.7: Relation between token size and average data rate for a single KPN
channel

Measured TRM with congestion TRM without congestion

1 2 3 4

0

0.5

1

·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Data rate = 2.5 byte/cycle

1 2 3 4

0

0.5

1

·106

Data rate = 3 byte/cycle

1 2 3 4

0

0.5

1

·106

Number of parallel channels

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Data rate = 3.5 byte/cycle

1 2 3 4

0

0.5

1

·106

Number of parallel channels

Data rate = 4 byte/cycle

Figure 5.8: Comparison of measured execution times and predictions for con-
gestion on a PE link. For high congestion, the congestion model
yields accurate predictions.

74 5 Evaluation

5.3.2 Router Link Congestion

The second experiment examines congestion on links that connect two routers
with each other. The experiment uses the setup displayed in Figure 5.6b. In
this experiment, all four channels are active at all time. The data rate of three
channels is fixed and the data rate of the fourth channel is varied within a range
from 0.1 to 6 byte/cycle. This setup enables examination of various load scenarios.

Figure 5.9 on the facing page illustrates the experiment’s results. The dia-
grams compare measured execution times with the TRM predictions. From
this comparison, we can clearly see that the congestion algorithm accurately
predicts communication times in highly congested networks. However, the first
diagram (fixed data rate of channel 1–3 is 2 byte/cycle) clearly shows that there is
an area of low congestion where the congestion algorithm is not effective.

The congestion algorithm only considers the average data rate of active
flows. Currently, a flow consists of a computation part (channel library) and a
transfer part (DMA).As the computation part is part of the total communication
time of a flow, the average data rate of the flow is lower than the actual data rate
of the DMA transfer. Therefore, the combined average data rate of two flows
may be lower than the link bandwidth, although there is congestion in the real
application. This is a limitation of the proposed congestion algorithm.

The two benchmarks that where analyzed in this section are synthetic and
specifically designed to cause network congestion. However, such a high con-
gestion will not occur in a real application. As a real application not only per-
forms channel accesses but also performs computations in between accesses,
congestion is unlikely to occur on the Tomahawk2. However, in other plat-
forms with large scale networks congestion needs to be considered also for real
applications.

5.4 Performance Comparison of KPN and TaskC

KPN and TaskC are two fundamentally different approaches for programming
MPSoC architectures. While TaskC uses atomic kernels of computation, KPN
describes a network of parallel processes. While MAPS assigns hardware re-
sources statically to KPN applications, TaskC applications are mapped dynami-
cally at runtime. While tasks in TaskC may communicate via arbitrary areas of
global memory, KPN processes communicate via FIFO channels.

5.4 Performance Comparison of KPN and TaskC 75

Measured TRM with congestion TRM without congestion

0 1 2 3 4 5 6

0.5

1

·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Data rate of channel 1–3 = 2 byte/cycle

0 1 2 3 4 5 6

0.5

1

1.5

·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Data rate of channel 1–3 = 3 byte/cycle

0 1 2 3 4 5 6
0.5

1

1.5

·106

Data rate of channel 4 in byte/cycle

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Data rate of channel 1–3 = 4 byte/cycle

Figure 5.9: Comparison of measured execution times and predictions for con-
gestion on a router link. For high congestion, the congestionmodel
yields accurate predictions.

76 5 Evaluation

Src

Ver

Hor

Abs

(a) Sobel filter

Src

FFTL FilterL IFFTL

FFTR FilterR IFFTR

Sink

(b) Two channel audio filter

Figure 5.10: KPN representation of two applications that are used for perfor-
mance comparison of KPN and TaskC

This section presents two benchmarks that illustrate the difference in terms
of performance between KPN and TaskC. Both benchmarks are based on real
world applications. The first application is the Sobel filter (Section 5.4.1) and
the second application is a two channel audio filter (Section 5.4.2). Figure 5.10
visualizes the KPNs for both applications.

The Sobel filter and audio filter applications where selected as benchmarks,
as they are real applications and comply with the limitations of the Tomahawk2
backend. Both applications have a simple structure and can easily be ported to
TaskC. Furthermore, the applications can easily be parameterized in order to
compare multiple scenarios.

In order to derive a comparable TaskC implementation from a KPN ap-
plication, all processes are implemented as tasks. Thereby, a task represents
one iteration of a KPN process. The main thread that runs on the Application
Processor is responsible for deploying tasks according to the process network.
It may deploy multiple tasks of the same type, meaning multiple iterations of a
KPN process, at the time. For the sake of simplicity, both TaskC implementa-
tions use a new area of memory for each data transfer between tasks. This leads
to a much higher memory consumption compared to a KPN application. The
remaining section uses the term process in a wider sense: it represents a KPN
process as well as the corresponding tasks in TaskC.

Similar to the execution time measurement for KPN applications, the Core
Manager handles the measurement for TaskC applications. In order to exclude
initialization from the time measurement, the Core Manager starts its hardware
timer when it receives the first task descriptor. The Core Manager stops the
measurement after the last task terminated and the Application Processor send
a shut down signal.

5.4 Performance Comparison of KPN and TaskC 77

5.4.1 Sobel Filter

The Sobel operator is a simple filter for edge detection in image processing [48].
When applied to an input image, the operator creates an image with emphasized
edges. The Sobel operator uses two 3 × 3 kernels that it convolves with the
original image. One kernel approximates derivatives for horizontal changes and
the other kernel approximates derivatives for vertical changes. For each point
in the image, the approximations of the horizontal and vertical gradient can be
combined to a vector. If we set the brightness of each point in the output image
to the magnitude of its gradient vector, the output images shows emphasized
edges.

Figure 5.10a on the facing page illustrates the KPN implementation. Al-
though MAPS provides an example CPN implementation of a Sobel filter, a
new implementation was created for this work. As the example implementa-
tion in MAPS uses sliding windows, this application is not compatible to the
Tomahawk2 backend and, therefore, a new implementation is required.

Both the TaskC and the KPN implementation process an input image line
by line. Therefore, a token is a full image line. A source process generates an
image and sends it line by line to the two worker processes. One worker process
convolves the generated image with the vertical Sobel kernel and the second
process convolves the image with the horizontal Sobel kernel. The output of
both processes is sent to a third worker process that calculates the magnitude
of the gradient vector.

Figure 5.11 on the next page compares the execution times of both the
KPN and TaskC implementation of the Sobel filter for various image sizes. The
displayed values are derived from a single measurement and the source process
scales the generated image according to the configuration. A change in the
image width results in a change of the token size in both applications as a token
is one image line. However, changing the picture height only increases the total
number of iterations as both implementations generate and process the image
line by line.

The results in Figure 5.11 clearly show that the execution time of the KPN
implementation is always better than the execution time of the TaskC imple-
mentation. This is an interesting result as the TaskC application can utilize
all eight processing elements of the Tomahawk2 while the KPN application
is limited to four processing elements due to its static mapping. Compared

78 5 Evaluation

KPN TaskC

10 50 100 500 1000
104

105

106

107

108

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Image width: 10 pixels

10 50 100 500 1000
104

105

106

107

108

Image width: 50 pixels

10 50 100 500 1000
104

105

106

107

108

Image height in pixels

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

Image width: 100 pixels

10 50 100 500 1000
104

105

106

107

108

Image height in pixels

Image width: 1000 pixels

Figure 5.11: Performance comparison for the Sobel filter implemented in
TaskC and KPN. Although the TaskC application can utilize more
PEs, the KPN implementation is always faster.

5.4 Performance Comparison of KPN and TaskC 79

to the KPN implementation, the TaskC application has the double amount of
processing power available but still the overall execution time is higher.

Due to the logarithmic y-axis in Figure 5.11, the diagrams can be used
to compare the relative difference of the execution time between both imple-
mentations for various image sizes. When the image height changes, the rel-
ative difference stays approximately constant. Only in the case of a height of
10 pixels the relative difference is slightly higher than for the other displayed
image heights. However, changing the image width has an influence on the
relative difference between the two execution times. The relative difference gets
smaller for a larger image width. It decreases to a factor of two for an image
width of 1,000 pixels. However, for an image width of 10 pixels, the relative
difference is more than an order of magnitude.

When increasing the image width, both the token size and the computa-
tional effort required for one iteration increase. For a small image width the
computational effort for each task is relatively low. In this case, the overhead for
dependency checks and task deployment in the TaskC application outweighs
the task execution time. For higher image widths, the execution time of single
tasks increases while the overhead for task deployment is constant. Therefore,
the TaskC implementation of the Sobel filter becomes more efficient for larger
image widths.

Possibly the TaskC application could become more efficient than the KPN
application for image widths that are larger than 1,000 pixels. However, this
experiment is limited to a maximum of about 1,000 pixels due to the memory
constraints of the Tomahawk2.

5.4.2 Audio Filter

TheAudio Filter is an exampleKPNapplication provided byMAPS. Figure 5.10b
on page 76 visualizes the audio filter process network. The audio filter appli-
cation comprises eight processes that operate on a two channel audio stream.
The use of eight processes makes this application well suited as a benchmark
for the Tomahawk2 with its eight processing elements.

The audio filter application operates on 1,024 byte data blocks and processes
a total of 20 kiB audio data. A source processes creates two audio streams
from a stereo source—one for the left audio channel and one for the right audio
channel. Data blocks for both channels pass a pipeline of three processes. The

80 5 Evaluation

Process Computation time in cycles
(measured) (rounded)

Src 48, 610 50, 000

FFT 3, 027, 372 3, 000, 000

Filter 153, 625 150, 000

IFFT 3, 013, 417 3, 000, 000

Sink 97 0

Table 5.2: Computation times for
the audio filter processes
derived from pthread
traces in MAPS on x86

first process performs an FFT, the second process applies the actual audio filter,
and the third process performs the inverse FFT. A sink process unites both
audio streams and stores the result.

The audio filter application as provided by MAPS does not fit into the
scratchpad memories of the Tomahawk2. In order to avoid the complexity of
optimizing the application, this experiment uses an application that has the
same temporal behaviour but does not implement the actual computations. The
processes of the audio filter application have a rather simple structure. In each
iteration they consume a token from the input channel, perform computations
for a certain amount of time, and produce a token on the output channel.
Knowing the time required for computations, this behaviour can be mimicked
using a simple delay. This leads to a flexible benchmark that is inspired by a real
application but where certain parameters, like the time required for performing
a certain computation, can easily be changed in order to understand their
influence on the performance.

In order to derive the computation time for each of the audio filter processes,
we can analyze process traces generated by the pthread backend of MAPS.
Table 5.2 shows the computation times derived from trace analysis on an x86
architecture. As these values originate from analysis on an x86 architecture,
they are not representative for other processor architectures. However, the
measured computation times can be seen as an estimation of the execution
times on other architectures and are a good starting point for this experiment.

Both the TaskC and the KPN application implement delay functions ac-
cording to the rounded values from Table 5.2. Measurement of the execution
time for both applications yields values of 36 million cycles for the KPN imple-
mentation and 25 million cycles for the TaskC implementation. These values
show, that the TaskC application is more efficient than the KPN implementation.

5.4 Performance Comparison of KPN and TaskC 81

The audio filter application does not equally distribute the computational
effort amongst its processes. The computation time required for performing an
FFT or IFFT on a data block is 20 times higher than the computation required
for applying the filter. This divergence in computation times between processes
leads to the difference in total execution time between TaskC and KPN. The
static mapping of MAPS does not allow for efficient usage of the available
resources as it does not exploit data parallelism. The filter process always has
to wait for the much slower FFT process. Due to the static assignment of one
process to one processing element, the processing elements cannot perform
other computations while the process is waiting. In contrast, TaskC assigns
resources dynamically and, therefore, can execute the FFT tasks in parallel in
order to utilize all processing elements.

In order to get a better understanding of the computation times of single
process iterations on the application performance, we can vary these times and
examine their influence on the overall execution time. Let tFFT be the time
required for performing one iteration of the FFT process and let tFilter be the
time required for applying the filter to one data block. If we assume that the
computation time for FFT and IFFT is identical then the total time T required
for processing one token is defined by the following equation.

T = 2tFFT + tFilter (5.1)

Let ρ be the ratio of computation times in the audio filter application with
ρ = tFilter/tFFT . Then tFFT and tFilter can be calculated as follows.

tFFT =
T

2+ ρ
(5.2)

tFilter =
Tρ

2+ ρ
(5.3)

With Equations 5.2 and 5.3 we can calculate the computation times of the
audio filter processes in dependence of T and ρ. Therefore, we can measure the
performance of the KPN and TaskC audio filter implementations for various
values of T and ρ in in order to understand the influence of these parameters
on the overall execution time. When changing ρ for a fixed value of T only
the distribution of the computational effort amongst processes changes but the
overall effort for processing all input data is constant.

82 5 Evaluation

KPN TaskC

10−1 100 101

3.0

4.0

5.0

6.0

·107

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es T = 6 · 106 cycles

10−1 100 101

3.0

4.0

5.0

6.0

·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es T = 6 · 105 cycles

10−1 100 101
1.0

1.5

2.0

2.5
·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es T = 2.4 · 105 cycles

10−1 100 101

0.6

0.8

1.0

1.2

·106

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es T = 1.2 · 105 cycles

10−1 100 101

4.0

6.0

·105

Computation time ratio ρ

To
ta
le
xe
cu
tio

n
tim

e
in

cy
cl
es

T = 6 · 104cycles

Figure 5.12: Performance comparison for the audio filter implemented in
TaskC and KPN.The performance of the KPN implementation
highly depends on ρ, which is the ratio between the computation
length of filter and FFT.

5.5 Mapping 83

The diagrams in Figure 5.12 show the results of performancemeasurements
that vary ρ within a range from 0.05 to 20. Each diagram displays the results
for a certain value of T . The case T = 6 · 106 cycles and ρ = 0.05 approximately
reflects the original audio filter application. For T = 6 · 106 and ρ > 8, the
execution time of the TaskC application could not be obtained as the application
crashes for these values. The reason for these crashes could not be identified
within the time frame of this work.

Figure 5.12 verifies that the efficiency of the KPN audio filter realization
depends on the distribution of computational effort amongst processes. For
an equally distributed computational effort (ρ = 1), the overall execution time
of the KPN application is minimal. The overall execution time of the TaskC
application is approximately constant for all values of ρ. Therefore, we can
conclude that TaskC is not affected by unevenly distributed processing times of
tasks and that KPN shows best performance on the Tomahawk2 for an evenly
distributed workload.

Each diagram in Figure 5.12 shows the measured execution time for a
specific value of T . In the case T = 6 · 106 cycles, the KPN application only
reaches the performance of TaskC for ρ = 1. However, for smaller values of T
and thus smaller computation times of single tasks, TaskC becomes less efficient
as the overhead for dependency checking and task deployment is constant. In
the case of T = 6 · 104, the KPN application is faster for all considered values
of ρ. Based on these results, we can conclude that KPN is better suited for
applications with fine grained processes and that TaskC is better suited for
applications with complex tasks.

5.5 Mapping

So far this work discussed code generation and a hardware model for the
Tomahawk2 but did not yet consider the influence of mapping decisions on
the performance of KPN applications. Therefore, this section compares the
resulting application performance for three mapping algorithms and for a set
of random KPN applications. The considered mapping algorithms are Load
Balancer, GBM, and Random Walk (see Section 2.3.3 for details). While the
Load Balancer uses a rather simple strategy, GBM applies a complex heuristic.
RandomWalk selects the best mapping out of a set of random mappings. In
this experiment this set comprises 100 mappings.

84 5 Evaluation

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

RandomWalk

Load Balancer

GBM

Total execution time normalized to the Load Balancer in%

(a) Tomahawk2 (Based on 2,500 random KPN applications)

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

RandomWalk

Load Balancer

GBM

Total execution time normalized to the Load Balancer in%

(b) Virtual next generation Tomahawk platform
(Based on 400 random KPN applications)

Figure 5.13: Box plots comparing the total execution time of three mapping
algorithms normalized to the Load Balancer. The more complex
GBM algorithm is not significantly better compared to the Load
Balancer.

The mapping experiment only compares TRM predictions and does not
consider actual execution times. This reduces the effort for performing the
experiment significantly but the results are not as representative as they would
be for measured values. However, Section 5.2.3 showed that the TRM values
correspond with the measured values in most cases.

Figure 5.13a compares the performance of three mapping algorithms for
2,500 random KPNs. In the figure, the total execution time is normalized to
the execution time achieved by the Load Balancer. Values that are less than one
stand for execution times that are better than the execution time of the Load
Balancer and values that are greater than one stand for worse execution times.

The diagram shows that GBM is better than the Load Balancer for most
cases. However, the improvement over the Load Balancer is only within the

5.5 Mapping 85

range up to 5%. In 25% of the cases, GBM even generates mappings that are
significantly worse than the Load Balancer mappings. With a median of one,
the RandomWalk algorithm achieves execution times that are comparable to
the Load Balancer. In half the cases, RandomWalk is better and in the other
half the Load Balancer is better.

In the average case, the discrepancy between GBM, Load Balancer, and
RandomWalk is rather small. Therefore, the choice of mapping algorithm is
not critical for applications running on the Tomahawk2. Due to the regular
structure of the Tomahawk2, bad mapping decisions do not necessarily have a
strong influence on the application performance.

The next generation of the Tomahawk, could be more interesting for map-
ping. A chip of the new Tomahawk generation will only comprise four process-
ing elements. However, a PCB will hold multiple connected chips connected
by off-chip links. As the off-chip communication is significantly slower than
on-chip communication, mapping decisions should have a stronger influence
on the application performance.

In order to comparemapping algorithms for the next Tomahawk generation,
a virtual platform was created. Figure 5.14 illustrates this platform. It consists
of a total of 16 processing elements connected my start mesh NoC that is similar
to the Tomahawk2 NoC. However, the links between routers are significantly
slower. Their bandwidth is assumed to be 5 Gbit/cycle.

Router
(0,0)

Router
(0,1)

Router
(1,0)

Router
(1,1)

PE0

PE1PE2

PE3

PE4

PE5PE6

PE7 PE8

PE9PE10

PE11

PE12

PE13PE14

PE15

Figure 5.14: A virtual platform that
represents a possible fu-
ture generation of the
Tomahawk chip.

86 5 Evaluation

Figure 5.13b on page 84 compares the performance of the three mapping
algorithms for the virtual next generation platform. The measurement for this
new platform only analyzes 400 randomKPNs. The time required for executing
the mapping algorithms for the next generation platform is significantly higher
than for the Tomahawk2. Therefore, a larger data set could not be obtained
within reasonable time.

The figure shows that RandomWalk leads to significantly worse mapping
than the Load Balancer for the next generation platform. However, GBM is
still not a significant improvement over the Load Balancer and can still lead to
significantly worse mappings. This illustrates that a complex mapping heuristic
is not required in order to find sufficiently efficientmappings for the Tomahawk2
and for the next generation platform.

6
Future Work and Conclusion

This work presented and evaluated tools for programming the Tomahawk2
MPSoC using the KPN model of computation. Chapter 3 discussed design
and implementation of a backend for the MAPS compiler framework. With
the newly introduced backend, MAPS is capable of generating code for the
Tomahawk2 in order to derive executable implementations of KPN applications.

Chapter 4 introduced modifications to the hardware model of MAPS that
are required for incorporating features of the Tomahawk2 platform. Most
importantly, a NoC model was created. Furthermore, a specific Tomahawk2
cost model was defined based on various benchmarks.

Chapter 5 evaluated the Tomahawk2 backend and hardware model. Al-
though there are limitations, it was shown that the proposed hardware model
can be used to create accurate performance estimations for Tomahawk2 appli-
cations. A performance comparison of three mapping algorithms showed that
the choice of mapping algorithm only has a small influence on the application
performance. Therefore, complex heuristics are not required in order to find
efficient mappings for the Tomahawk2.

A comparison of the performance of KPN and TaskC applications, showed
that both models have advantages and disadvantages. While TaskC can exploit
data parallelism, its dynamic approach leads to a large overhead which makes
TaskC unsuitable for applications with fine grained tasks. KPN, on the other
hand, keeps the runtime overhead low due to the static mapping that MAPS
derives. However, the static mapping prevents runtime adjustments according
to the current load scenario. Therefore, statically mapped KPN cannot utilize
the available hardware resources as efficient as TaskC.

87

88 6 Future Work and Conclusion

6.1 Future Work

The achievements as well as the limitations of this work leave a lot of room for
future work.

Utilize excluded Tomahawk features

Section 3.1 introduced a simplified model of the Tomahawk2 platform in order
to exclude features that are beyond the scope of this work. However, integration
of some of these features could be interesting for future work.

TheTomahawk’s ADPLLs and powermanagement units allow for frequency
and voltage scaling. This can be used to implement power saving mechanisms.
Therefore, the Tomahawk2 platform could be interesting for research on power
optimization in MAPS. The mapper could statically assign critical processes
to fast processing elements and uncritical processes to slower but more power
efficient processing elements. A runtime manager that adjusts operating fre-
quencies according to the current load scenario could also be integrated.

The Tomahawk2 implements Duo-PEs that comprise two cores of different
ISAs—a DSP and a RISC core. However, as there is no C compiler for the
DSP core this work excluded the Duo-PE feature and only considered the
RISC cores. Future iterations of the Tomahawk2 platform could implement
cores of other architectures. For such an architecture, it would be interesting to
derivemapping strategies that include the possibility for switching the processor
architecture at compile-time as well as at runtime.

Overcome limitations of the Tomahawk2 backend

Section 3.2 introduced a series of design choices that where made in order to
keep the effort for implementing the channel library and code generator within
reasonable bounds. However, these design choices led to limitations that should
be considered in feature work.

As there is no runtime scheduler for the Tomahawk2, applications that
run on the Tomahawk2 are restricted to a total of eight processes—one process
per processing element. Future work could consider the implementation of
a runtime scheduler in order to allow for multiple processes per processing
element. This could improve the utilization of the available computational
resources significantly, especially for scenarios with multiple applications. An

6.1 Future Work 89

alternative to the implementation of a real scheduler could be the usage of
Protothreads [23].

The channel library presented in Section 3.3 and Section 3.4 does not
support CPN features that are extensions to the KPN model of computation.
These are the support for channels withmultiple readers and the sliding window
feature that enables simultaneous access to multiple tokens. Although these
features are not required for KPN applications, the backend needs to implement
them in order to be fully compatible to all CPN applications.

The presented channel library puts no restrictions on token sizes. However,
the library is most efficient for token sizes that are a multiple of eight bytes.
Due to the fixed packet size of eight bytes of the Tomahawk2 NoC, other token
sizes require special consideration. The solution presented in Section 3.4 adds
additional data transfers that ensure data consistency. This introduces an addi-
tional overhead. Future work could implement other techniques like packaging.
Packaging could also be interesting for optimizing channels with small token
sizes.

Continue work on the NoC model

Evaluation in Section 5.2 showed that the proposed NoC model is capable of
modelingNoC communication on the Tomahawk2 accurately inmost scenarios.
Section 5.3 further showed that the proposed congestion algorithm can predict
delays accurately for highly congested networks. However, both models leave
room for improvement.

In order to get a better understanding of the qualities and limitations of
the proposed communication model, evaluation on other platforms is required.
Especially platforms with large scale networks like the Adapteva Epiphany
E64G401 [2] are of interest. Also the future generation of the Tomahawk
platform with its off-chip network is interesting for evaluation.

Future work could also consider incorporation of more complex NoC
models for performance estimation in large scale networks. NoC models that
are based on contention trees [35] are able to predict packet traversal times for
a known load scenario. This could be useful for performance prediction in the
TRM.The contention tree algorithm proposed by Dasari, Nikolić, Nélis, et al.
is capable of deriving tight worst case bounds for network traversal times in a
known load scenario [21]. However, the recursive approach of contention tree
algorithms has a high complexity [21].

90 6 Future Work and Conclusion

Besides a NoC-aware communication model, a NoC aware mapping heuris-
tic that considers the network load could be interesting for future work. Such
an algorithm could be based on a NoC model that considers the average case
characteristic of a network. For instance, stochastic automata networks (SAN)
provide efficient average case estimation of transfer times [44]. Cruz proposed
a network calculus that uses probabilistic reasoning to characterize network
load [17], [18]. Approaches that are based on Poisson processes like the ones
proposed in [26] and [39] could also be used.

Develop a dynamic mapping strategy

The design of the Tomahawk platform with the dedicated Core Manager makes
this platform interesting for dynamic mapping. Instead of deriving a complete
mapping at compile time, the Core Manager could make mapping decisions at
runtime. As the Core Manager can base the decisions on the actual load, it can
utilize the existing resources more efficiently.

Section 5.5 showed that mapping heuristics do not need to be complex
in order to find efficient mappings for the Tomahawk2. Therefore, mapping
decisions could bemade at runtimewithout the introduction of a large overhead.
Moreover, a hybrid approach could be used. MAPS could derive a static initial
mapping that gets adjusted during runtime. Thereby, the runtime mapper can
base its decisions on information learned from compile time analysis in MAPS.

In the literature various proposals for dynamic mapping heuristics can be
found. For instance, Hölzenspies, Hurink, Kuper, et al. investigated runtime
mapping of streaming applications onto heterogeneous MPSoCs with the aim
of reducing the energy consumption [25]. Carvalho, Calazans, and Moraes
proposed heuristics thatminimize communication volume and, therefore, avoid
network congestion [9]. The spiral mapping heuristic proposed by Benhaoua,
Benyamina, and Boulet aims for minimizing data volume, network congestion,
and total execution time [7]. The spiral heuristic places tasks of an application
grouped in clusters where tasks with a high communication volume between
them are placed next to each other. Future work could review the heuristics
proposed in the literature and implement a runtime mapping heuristic on the
Tomahawk2.

6.2 Conclusion 91

Integrate future developments

The Tomahawk platform and especially its software stack is a work in progress.
The Tomahawk backend for MAPS should incorporate new features that will
be introduced in the near future.

Currently a Tomahawk development kit as well as a framework for defini-
tion of computational kernels and communication channels are under develop-
ment. A future version of the Tomahawk backend for MAPS should be based
on this abstraction layer as it would enable execution of KPN applications on
all versions of the Tomahawk platform. There are plans to provide mechanisms
for scheduling and migration of computation kernels. This would allow straight
forward implementations of dynamic mapping heuristics on the Core Manager.

A future Tomahawk backend could also be based on M3 OS [6]. The
microkernel-based system for heterogeneous manycores (M3) is an operating
system designed for MPSoC applications. It provides isolation and operating
system services on the NoC layer. A dedicated core runs the kernel and con-
figures other cores via a common hardware component, the so called DTU.
Depending on the configuration, cores may access operating system services or
communicate with other cores via their DTU.The abstraction of communica-
tion, providence of operating system services, and the increased security due to
isolation make M3 interesting as a target system for MAPS.

6.2 Conclusion

Thiswork contributes a Tomahawk2 backend for theMAPS compiler framework
as well as a communication model for NoC-based architectures. Both the
backend and the communication model where evaluated on hardware using a
Tomahawk2 chip.

The proposed backend enables execution of KPN applications on the Tom-
ahawk2. This introduces KPN as an alternative programming model for the
Tomahawk2. As KPN is an abstract and widely used model of computation, it
provides better portability than the current programming model TaskC, which
was designed specifically for the Tomahawk architecture. The well defined
structure of KPN applications as well as the explicit definition of dependen-
cies increase maintainability and usability compared to TaskC. However, due
to the dynamic mapping, TaskC allows for better utilization of the available
resources. In the future, MAPS can overcome this limitation by supporting

92 6 Future Work and Conclusion

dynamic mapping of KPN applications. Nevertheless, the lower runtime over-
head of KPN applications can lead to better performance compared to TaskC,
for applications with fine grained processes.

The proposed communication model allows for orthogonal definition of
NoC architecture and communication costs. The Tomahawk2 model predicts
local and remote accesses to scratchpad memories accurately. However, the
Tomahawk2 model only has a limited support for RAM accesses as it does not
model the slowdown that interleaving RAM request may cause.

The proposed communication model incorporates an algorithm that mod-
els network congestion. This algorithm accurately predicts traversal times in
highly congested networks. However, in architectures with small NoCs, like
the Tomahawk2, congestion rarely occurs for real applications. The influence
of mapping decisions on the application performance is also relatively small for
small networks. Nevertheless, as the trend goes towards MPSoC designs that
integrate thousands of cores [8], a good NoC model that considers network
congestion as well as NoC-aware mapping heuristics are relevant for future
applications.

Bibliography

[1] B. Ackland, A. Anesko, D. Brinthaupt, S. Daubert, A. Kalavade, J.
Knobloch, E. Micca, M. Moturi, C. Nicol, J. O’Neill, J. Othmer, E.
Sackinger, K. Singh, J. Sweet, C. Terman, and J. Williams, “A single-chip,
1.6-billion, 16-b MAC/s multiprocessor DSP,” IEEE Journal of Solid-State
Circuits, vol. 35, no. 3, pp. 412–424, Mar. 2000, issn: 0018-9200. doi:
10.1109/4.826824.

[2] Adapteva, Inc., E64G401 Epiphany-IV 64-core Microprocessor Datasheet,
2013. [Online]. Available: http://www.adapteva.com/docs/
e64g401_datasheet.pdf (visited on Mar. 20, 2016).

[3] ——, (n.d.). The Parallella Computer, [Online]. Available: http://www.
adapteva.com/parallella/ (visited on Aug. 14, 2015).

[4] O. Arnold, E. Matúš, B. Noethen, M.Winter, T. Limberg, and G. Fettweis,
“Tomahawk: Parallelism and Heterogeneity in Communications Signal
Processing MPSoCs,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 3s,
107:1–107:24, Mar. 2014, issn: 1539-9087. doi: 10.1145/2517087.

[5] Arteris, Inc. (2005). A comparison of Network-on-Chip and Busses,
[Online]. Available: http://www.design-reuse.com/articles/
10496/a-comparison-of-network-on-chip-and-busses.
html (visited on Aug. 18, 2015).

[6] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis, “M3: A
Hardware/Operating-System Co-Design to Tame Heterogeneous Many-
cores,” in Proceedings of the Twenty-first International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Apr. 2016, to appear.

[7] M. K. Benhaoua, A. E. H. Benyamina, and P. Boulet, “Heuristics for Rout-
ing and Spiral Run-time Task Mapping in NoC-based Heterogeneous
MPSOCs,” IJCSI International Journal of Computer Science Issues, 1st ser.,
vol. 10, no. 4, p. 1694, Jul. 2013, issn: 1694-0814. arXiv: 1312.5764.

93

http://dx.doi.org/10.1109/4.826824
http://www.adapteva.com/docs/e64g401_datasheet.pdf
http://www.adapteva.com/docs/e64g401_datasheet.pdf
http://www.adapteva.com/parallella/
http://www.adapteva.com/parallella/
http://dx.doi.org/10.1145/2517087
http://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html
http://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html
http://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html
http://arxiv.org/abs/1312.5764

94 Bibliography

[8] S. Borkar, “Thousand Core Chips: A Technology Perspective,” in Pro-
ceedings of the 44th Annual Design Automation Conference, ser. DAC ’07,
New York, NY, USA: ACM, 2007, pp. 746–749, isbn: 9781595936271.
doi: 10.1145/1278480.1278667.

[9] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for Dynamic Task
Mapping in NoC-based Heterogeneous MPSoCs,” in 18th IEEE/IFIP
International Workshop on Rapid System Prototyping, 2007. RSP 2007,
May 2007, pp. 34–40. doi: 10.1109/RSP.2007.26.

[10] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping Concurrent
Dataflow Applications to Heterogeneous MPSoCs,” IEEE Transactions
on Industrial Informatics, vol. 9, no. 1, pp. 527–545, Feb. 2013, issn: 1551-
3203. doi: 10.1109/TII.2011.2173941.

[11] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid, “Communication-
aware mapping of KPN applications onto heterogeneous MPSoCs,” in
2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC), Jun.
2012, pp. 1262–1267. doi: 10.1145/2228360.2228597.

[12] J. Castrillón, Programming Heterogeneous MPSoCs. Springer Interna-
tional Publishing, 2014, isbn: 978-3-319-00674-1 978-3-319-00675-8.
doi: 10.1007/978-3-319-00675-8.

[13] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. As-
cheid, H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: An integrated frame-
work for MPSoC application parallelization,” in 45th ACM/IEEE Design
Automation Conference, 2008. DAC 2008, Jun. 2008, pp. 754–759. doi:
10.1145/1391469.1391663.

[14] Circular Buffer, inWorl Heritage Encyclopedia. [Online]. Available: http:
//www.worldlibrary.org/articles/circular_buffer (vis-
ited on Mar. 22, 2016).

[15] Clang team. (n.d.). “clang” C Language Family Frontend for LLVM,
[Online]. Available: http://clang.llvm.org/ (visited on Aug. 11,
2015).

[16] C-Port Corp., C-5 Network Processor Architecture Guide, May 31, 2001.
[Online]. Available: http : / / www . freescale . com / files /
netcomm/doc/ref_manual/C5NPD0-AG.pdf?fsrch=1 (visited on
Aug. 18, 2015).

http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1109/RSP.2007.26
http://dx.doi.org/10.1109/TII.2011.2173941
http://dx.doi.org/10.1145/2228360.2228597
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1145/1391469.1391663
http://www.worldlibrary.org/articles/circular_buffer
http://www.worldlibrary.org/articles/circular_buffer
http://clang.llvm.org/
http://www.freescale.com/files/netcomm/doc/ref_manual/C5NPD0-AG.pdf?fsrch=1
http://www.freescale.com/files/netcomm/doc/ref_manual/C5NPD0-AG.pdf?fsrch=1

95

[17] R. L. Cruz, “A calculus for network delay. I. Network elements in isola-
tion,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 114–
131, Jan. 1991, issn: 0018-9448. doi: 10.1109/18.61109.

[18] ——, “A calculus for network delay. II. Network analysis,” IEEE Transac-
tions on Information Theory, vol. 37, no. 1, pp. 132–141, Jan. 1991, issn:
0018-9448. doi: 10.1109/18.61110.

[19] P. Cumming, “The TI OMAPtm Platform Approach to SOC,” inWin-
ning the SoC Revolution, G. Martin and H. Chang, Eds., Springer US,
2003, pp. 97–118, isbn: 978-1-4613-5042-2 978-1-4615-0369-9. doi:
10.1007/978-1-4615-0369-9_5.

[20] W. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Design Automation Conference, 2001. Proceedings,
2001, pp. 684–689. doi: 10.1109/DAC.2001.156225.

[21] D. Dasari, B. Nikolić, V. Nélis, and S. M. Petters, “NoC Contention Anal-
ysis Using a Branch-and-prune Algorithm,” ACM Trans. Embed. Com-
put. Syst., vol. 13, no. 3s, 113:1–113:26, Mar. 2014, issn: 1539-9087. doi:
10.1145/2567937.

[22] E. W. Dijkstra, “Over de sequentialiteit van procesbeschrijvingen,” n.d.
[Online]. Available: http://www.cs.utexas.edu/users/EWD/
ewd00xx/EWD35.PDF.

[23] A. Dunkles and O. Schmidt, “Protothreads – Lightweight Stackless
Threads in C,” Mar. 2005. [Online]. Available: http://dunkels.com/
adam/dunkels05protothreads.pdf (visited on Feb. 16, 2016).

[24] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC
for advanced set-top box and digital TV systems,” IEEE Design Test of
Computers, vol. 18, no. 5, pp. 21–31, Sep. 2001, issn: 0740-7475. doi:
10.1109/54.953269.

[25] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M. Smit, “Run-time
Spatial Mapping of Streaming Applications to a Heterogeneous Multi-
processor System-on-chip (MPSoC),” in Proceedings of the Conference
on Design, Automation and Test in Europe, ser. DATE ’08, New York, NY,
USA: ACM, 2008, pp. 212–217, isbn: 9783981080131. doi: 10.1145/
1403375.1403427.

http://dx.doi.org/10.1109/18.61109
http://dx.doi.org/10.1109/18.61110
http://dx.doi.org/10.1007/978-1-4615-0369-9_5
http://dx.doi.org/10.1109/DAC.2001.156225
http://dx.doi.org/10.1145/2567937
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
http://dunkels.com/adam/dunkels05protothreads.pdf
http://dunkels.com/adam/dunkels05protothreads.pdf
http://dx.doi.org/10.1109/54.953269
http://dx.doi.org/10.1145/1403375.1403427
http://dx.doi.org/10.1145/1403375.1403427

96 Bibliography

[26] P.-C. Hu and L. Kleinrock, “An Analytical Model for Wormhole Routing
with Finite Size Input Buffers,” presented at the 15th Intl. Teletraffic
Congress, Jun. 1997.

[27] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Information processing, North Holland, Amsterdam, Aug. 1974,
pp. 471–475.

[28] G. Kahn and D. MacQueen, “Coroutines and Networks of Parallel Pro-
cesses,” Jan. 1977.

[29] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K.
Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM
on VLSI, 2002. Proceedings, 2002, pp. 105–112. doi: 10.1109/ISVLSI.
2002.1016885.

[30] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004, Mar. 2004, pp. 75–86.
doi: 10.1109/CGO.2004.1281665.

[31] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987, issn: 0018-9219. doi:
10.1109/PROC.1987.13876.

[32] Y. Li, S. Peng, and W. Chu, “Efficient Collective Communications in
Dual-Cube,” J. Supercomput., vol. 28, no. 1, pp. 71–90, Apr. 2004, issn:
0920-8542. doi: 10.1023/B:SUPE.0000014803.83151.dc.

[33] ——, “Metacube—a versatile family of interconnection networks for
extremely large-scale supercomputers,” vol. 53, no. 2, pp. 329–351, 2010,
issn: 0920-8542. doi: 10.1007/s11227-009-0297-2.

[34] T. Limberg, M. Winter, M. Bimberg, R. Klemm, M. Tavares, H. Ahlen-
dorf, E. Matúš, G. Fettweis, H. Eisenreich, G. Ellguth, and J.-U. Schlüssler,
“A Heterogeneous MPSoC with Hardware Supported Dynamic Task
Scheduling for Software Defined Radio,” presented at the Design Au-
tomation Conference 2009 (DAC’09), 2009.

http://dx.doi.org/10.1109/ISVLSI.2002.1016885
http://dx.doi.org/10.1109/ISVLSI.2002.1016885
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1023/B:SUPE.0000014803.83151.dc
http://dx.doi.org/10.1007/s11227-009-0297-2

97

[35] Z. Lu, A. Jantsch, and I. Sander, “Feasibility analysis of messages for
on-chip networks using wormhole routing,” in Design Automation Con-
ference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pa-
cific, vol. 2, Jan. 2005, 960–964 Vol. 2. doi: 10.1109/ASPDAC.2005.
1466499.

[36] G. Martin, “Overview of the MPSoC design challenge,” in 2006 43rd
ACM/IEEE Design Automation Conference, 2006, pp. 274–279. doi: 10.
1109/DAC.2006.229245.

[37] D. Nadezhkin, S. Meijer, T. Stefanov, and E. Deprettere, “Realizing FIFO
Communication When Mapping Kahn Process Networks Onto the
Cell,” in Proceedings of the 9th International Workshop on Embedded
Computer Systems: ARCHITECTURES, Modeling, and Simulation, ser.
SAMOS ’09, Berlin, Heidelberg: Springer-Verlag, 2009, pp. 308–317,
isbn: 9783642031373. doi: 10.1007/978-3-642-03138-0_34.

[38] B. Noethen, O. Arnold, E. P. Adeva, T. Seifert, E. Fischer, S. Kunze, E.
Matúš, G. Fettweis, H. Eisenreich, G. Ellguth, S. Hartmann, S. Höpp-
ner, S. Schiefer, J.-U. Schlüßler, S. Scholze, D. Walter, and R. Schüffny,
“10.7 A 105GOPS 36mm2 heterogeneous SDR MPSoC with energy-
aware dynamic scheduling and iterative detection-decoding for 4G in
65nm CMOS,” in Solid-State Circuits Conference Digest of Technical Pa-
pers (ISSCC), 2014 IEEE International, Feb. 2014, pp. 188–189. doi:
10.1109/ISSCC.2014.6757394.

[39] U. Y. Ogras and R. Marculescu, “Analytical Router Modeling for
Networks-on-Chip Performance Analysis,” inDesign, Automation Test in
Europe Conference Exhibition, 2007. DATE ’07, Apr. 2007, pp. 1–6. doi:
10.1109/DATE.2007.364440.

[40] M. Paganini, “Nomadik®: AMobile Multimedia Application Processor
Platform,” in Proceedings of the 2007 Asia and South Pacific Design Au-
tomation Conference, ser. ASP-DAC ’07, Washington, DC, USA: IEEE
Computer Society, 2007, pp. 749–750, isbn: 9781424406296. doi: 10.
1109/ASPDAC.2007.358078.

[41] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” IEEE Transactions on Computers, vol. 54, no. 8, pp. 1025–1040,
Aug. 2005, issn: 0018-9340. doi: 10.1109/TC.2005.134.

http://dx.doi.org/10.1109/ASPDAC.2005.1466499
http://dx.doi.org/10.1109/ASPDAC.2005.1466499
http://dx.doi.org/10.1109/DAC.2006.229245
http://dx.doi.org/10.1109/DAC.2006.229245
http://dx.doi.org/10.1007/978-3-642-03138-0_34
http://dx.doi.org/10.1109/ISSCC.2014.6757394
http://dx.doi.org/10.1109/DATE.2007.364440
http://dx.doi.org/10.1109/ASPDAC.2007.358078
http://dx.doi.org/10.1109/ASPDAC.2007.358078
http://dx.doi.org/10.1109/TC.2005.134

98 Bibliography

[42] T. M. Parks, “Bounded Scheduling of Process Networks,” 1995.
[43] G. L. Peterson, “Myths About theMutual Exclusion Problem,” Inf. Process.

Lett., vol. 12, no. 3, pp. 115–116, 1981. doi: 10.1016/0020-0190(81)
90106-X.

[44] B. Plateau and K. Atif, “Stochastic automata network of modeling parallel
systems,” IEEE Transactions on Software Engineering, vol. 17, no. 10,
pp. 1093–1108, Oct. 1991, issn: 0098-5589. doi: 10.1109/32.99196.

[45] V. Rantala, T. Lehtonen, and J. Plosila, Network on Chip Routing Algo-
rithms. 2006.

[46] A. Ray, T. Srikanthan, and W. Jigang, “Practical techniques for perfor-
mance estimation of processors,” in Fifth International Workshop on
System-on-Chip for Real-Time Applications, 2005. Proceedings, Jul. 2005,
pp. 308–311. doi: 10.1109/IWSOC.2005.94.

[47] W. Sheng, S. Schürmans, M. Odendahl, M. Bertsch, V. Volevach, R.
Leupers, and G. Ascheid, “A Compiler Infrastructure for Embedded
Heterogeneous MPSoCs,” in Proceedings of the 2013 International Work-
shop on Programming Models and Applications for Multicores and Many-
cores, ser. PMAM ’13, New York, NY, USA: ACM, 2013, pp. 1–10, isbn:
9781450319089. doi: 10.1145/2442992.2442993.

[48] I. Sobel, “An Isotropic 3x3 Image Gradient Operator,” 2015. doi: 10.
13140/RG.2.1.1912.4965.

[49] S. Stuijk and M. Geilen, “SDF3: SDF for free,” Proceedings - Interna-
tional Conference on Application of Concurrency to System Design, ACSD,
pp. 276–278, 2006, issn: 1550-4808. doi: 10.1109/ACSD.2006.23.

[50] Tensilica, Inc., Xtensa C/C++ Compiler, Aug. 2002. [Online]. Available:
http://ip.cadence.com/uploads/pdf/xcc_prod_brief_V_
final_.pdf (visited on Feb. 16, 2016).

[51] ——, Xtensa LX Microprocessor Overview Handbook, 2004. [Online].
Available: http://ip.cadence.com/uploads/pdf/xtensalx_
overview_handbook.pdf (visited on Feb. 16, 2016).

[52] ——, Implementing a Memory-Based Mutex and Barrier Synchronization
Library, Application Note AN07-092-00, Jul. 2007. [Online]. Available:
http://ip.cadence.com/uploads/pdf/Mutex_apnote.pdf
(visited on Feb. 16, 2016).

http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1109/32.99196
http://dx.doi.org/10.1109/IWSOC.2005.94
http://dx.doi.org/10.1145/2442992.2442993
http://dx.doi.org/10.13140/RG.2.1.1912.4965
http://dx.doi.org/10.13140/RG.2.1.1912.4965
http://dx.doi.org/10.1109/ACSD.2006.23
http://ip.cadence.com/uploads/pdf/xcc_prod_brief_V_final_.pdf
http://ip.cadence.com/uploads/pdf/xcc_prod_brief_V_final_.pdf
http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf
http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf
http://ip.cadence.com/uploads/pdf/Mutex_apnote.pdf

99

[53] Texas Instruments. (n.d.). Keystone Device Architecture, Texas Instru-
ments Wiki, [Online]. Available: http://processors.wiki.ti.
com/index.php/Keystone_Device_Architecture (visited on
Aug. 14, 2015).

[54] A. Tretter, “Communication-Aware Mapping and Scheduling of KPN
Applications onto Heterogeneous MPSoCs,” DiplomaThesis, Institute
for Communication Technologies and Embedded Systems (ICE) RWTH
Aachen University, Nov. 2011.

[55] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip
(MPSoC) Technology,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701–1713, Oct. 2008,
issn: 0278-0070. doi: 10.1109/TCAD.2008.923415.

http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
http://dx.doi.org/10.1109/TCAD.2008.923415

	Frontmatter
	Title
	Task
	Statement of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms

	Introduction
	State of the Art and Motivation
	Multi Processor System on Chip (MPSoC)
	Kahn Process Network (KPN)
	MPsoC Application Programming Studio (MAPS)
	C for Process Networks (CPN)
	Process Traces
	KPN Mapping
	Code Generation: cpn-cc

	Tomahawk MPSoC
	Tomahawk2 Architecture
	Intra-Chip Communication
	The TaskC Programming Model

	Motivation

	Backend
	Tomahawk2: A Simplified View
	Limitations
	Design
	Implementation
	Setup and File Structure
	Code Generation
	Channel Library

	Conclusion

	Hardware Model
	Communication Model
	Communication Primitves
	Cost Model

	NoC Model
	Measurements
	Communication Costs
	NoC Bandwidths

	Model Formulation
	Network Congestion
	Processor Model
	Conclusion

	Evaluation
	Time Measurement
	Communication Model
	Single Channel Application
	Pipeline Application
	Random Applications

	Network Congestion
	PE Link Congestion
	Router Link Congestion

	Performance Comparison of KPN and TaskC
	Sobel Filter
	Audio Filter

	Mapping

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography

