
Towards Virtual Machine Support for Contextual Role-Oriented
Programming Languages

Lars Schütze
lars.schuetze@tu-dresden.de

TUD Dresden University of Technology
Dresden, Germany

Jeronimo Castrillon
jeronimo.castrillon@tu-dresden.de

TUD Dresden University of Technology
Dresden, Germany

ABSTRACT
Adaptive software becomes more and more important as comput-
ing is increasingly context-dependent. Runtime adaptability can be
achieved by dynamically selecting and applying context-specific
code. Role-oriented programming has been proposed as a para-
digm to enable runtime adaptive software by design. Roles change
the objects’ behavior at runtime, thus adapting the software to
a given context. Most approaches focus on optimizing language
implementations neglecting the fact that the generated code is a
verbose description of contextual roles in an object-oriented para-
digm, which incurs an overhead. This paper takes a novel approach
to reduce the semantic gap. We propose ObjectTeams/Truffle, to the
best of our knowledge, the first virtual machine that optimizes the
dispatch of contextual roles. We evaluate the implementation with
a benchmark for role-oriented programming languages achieving a
speedup of up to 2.49× over the reference implementation Object-
Teams/Java and 1.2× over an optimized version ObjectTeams/Java
using Dispatch Plans.

CCS CONCEPTS
• Software and its engineering→ Software performance; In-
terpreters; Context specific languages.

KEYWORDS
role-oriented programming, virtual machine, dispatch, quickening
ACM Reference Format:
Lars Schütze and Jeronimo Castrillon. 2023. Towards Virtual Machine Sup-
port for Contextual Role-Oriented Programming Languages. In Proceedings
of the 15th ACM International Workshop on Context-Oriented Programming
and Advanced Modularity (COP ’23), July 17, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3605154.3605851

1 INTRODUCTION
Separation of concerns is the main technique to conquer the in-
creasing complexity of software, as it allows for decomposing a
system into different smaller components. Decomposition is typ-
ically dominant, e.g., by object or function, and is predefined by
the underlying programming language. Prominent approaches are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COP ’23, July 17, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0244-0/23/07. . . $15.00
https://doi.org/10.1145/3605154.3605851

aspect-oriented programming (AOP) [24], context-oriented pro-
gramming (COP) [20], and role-oriented programming (ROP) [4, 33,
40]. Role-oriented programming has been proposed as an extension
to object-oriented programming to enable adaptive software by
design. Classes represent the structural aspect of the domain while
roles capture the behavioral aspects. To model context-dependency,
compartments encapsulate roles and represent the context in which
these roles can be active. Behavioral changes are implemented by
objects playing and renouncing roles, which in fact adds and re-
moves behavior to and from the object. ObjectTeams [18] is amature
implementation of contextual roles that provides an overall good
performance while supporting most of the features attributed to
roles [26]. To further improve execution performance, there exist
other language runtimes for ObjectTeams that capture and optimize
the dispatch to role functions at runtime [38].

Mapping the role-oriented paradigm into the object-oriented
paradigm creates a semantic gap (see Sec. 2.2 for a detailed expla-
nation). Composing methods (i.e., adaptations) out of decomposi-
tions and their execution violates assumptions common language
implementations hold about lookup resulting in inferior perfor-
mance [30, 35]. Most approaches neglect that the generated code
of the adaptive mechanisms is represented as a verbose description
as some mechanisms cannot be directly represented in an object-
oriented paradigm, which incurs an overhead [16].

This paper takes a novel approach to reduce the semantic gap.
We propose ObjectTeams/Truffle, to the best of our knowledge, the
first virtual machine that optimizes the dispatch of contextual roles.
The dynamic nature of contextual roles are a perfect candidate to
get supported by a virtual machine. ObjectTeams/Truffle is an im-
plementation of the ObjectTeams language model [19] in Espresso,
a meta-circular Java bytecode interpreter for the GraalVM [46].

With ObjectTeams/Truffle we could generate a speedup of up
to 2.49× (mean 2.23×) compared to ObjectTeams/Java. Compared
to ObjectTeams/InvokeDynamic the Role VM is up to 1.22× faster
(mean 1.18×).

2 BACKGROUND
This section introduces the role-oriented programming concept and
ObjectTeams/Java as the most optimized representative. We fur-
ther explain key concepts used in contemporary high-performance
dynamic programming language runtimes.

2.1 Role-Oriented Programming
Classes in the object-oriented paradigm are good at capturing struc-
tures of a domain but not at capturing varying behavior of objects
or groups of objects. The idea of roles originated from the domain
of databases, where it was observed that persisted objects tend to

1

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3605154.3605851
https://doi.org/10.1145/3605154.3605851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605154.3605851&domain=pdf&date_stamp=2023-07-17

COP ’23, July 17, 2023, Seattle, WA, USA Lars Schütze and Jeronimo Castrillon

1 class Account {

2 void withdraw(float amount) { · · · }

3 }

4 team class Bank {

5 class CheckingsAccount playedBy Account {

6 callin withFee(float amount) {

7 · · ·
8 result = base.withFee(amount * FEE);

9 · · ·
10 return result;

11 }

12 withFee(float) ← replace withdraw(float)

13 }

14 }

15 · · ·
16 Bank bigBank; Account acc;

17 · · ·
18 bigBank.activate ();

19 acc.withdraw (100.00);

Figure 1: ObjectTeams/Java code to declare a role with ad-
ditive behavior adaptations for accounts in a bank and its
usage.

represent more than a single specific class over time [3]. A similar
observation was made in the domain of conceptual modeling [32].

The difference to the object-oriented paradigm is to classify each
entity in the domain to either be of natural type, which is rigid and
independent, or of role type, which is anti-rigid and dependent [25].
This dependency of role types is the foundation of the relation,
which defines which natural type fills a role type. On the level
of instances, a natural that plays a role in a context is extended
with the behavior and properties of the role. Thus, roles allow
separating the structure and relations of entities in a domain and the
(context-dependent) behavioral adaptations [26, 40]. This change in
behavior enables adaptive software by design and in consequence
unanticipated adaptation [42].

2.2 Contextual Roles and the Semantic Gap
At runtime, instances of natural types are represented as objects
with a compound type consisting of the natural type and a list
of role types [23]. This dynamic extension happens orthogonal
to the inheritance hierarchy of the natural type. Method lookup
on these compound objects may return different call targets on
objects with the same natural type but different role-playing rela-
tions. Role-oriented semantics often must be emulated, which in
turn incurs a high runtime overhead [35]. The reason is the gap
between the object model of these concepts and the object model
of the underlying system or virtual machine (VM), a phenomenon
already known from aspect-oriented programming [16]. In fact,
heuristics often do not work with these dynamic extensions. As a
consequence less optimized code compiled is produced from run-
times resulting in inferior performance [30, 35]. Implementation
techniques range from interfaces and design patterns [4, 11, 41] over

embedded DSLs [8, 13, 22, 27, 31, 39, 42, 44] to standalone program-
ming languages [1, 18, 29]. The many implementations result from
an inconsistent view on what features constitute a role-oriented
programming language – forming a family of role languages [26].

ObjectTeams (OT) [17] is a programming model, which pro-
vides most of the features attributed to roles. It combines principles
and features of context-oriented programming and aspect-oriented
programming providing and allows class-wide as well as instance-
local adaptations. The reference implementation ObjectTeams/Java
(OT/J) extends Java featuring (unanticipated) adaptation [18]. To the
best of our knowledge, it is the fastest implementation of contextual
roles [35].

Fig. 1 shows a snippet of ObjectTeams/Java code.1 Contexts
are represented as team class who encapsulate their roles. A role
declaration uses the playedBy statement to declare the base type (i.e.,
natural type), which is eligible to play the role. A role may define
additional behavior in role functions. How a role interacts with its
base type is defined by bindings (see Fig. 1 line 12). Bindings declare
the method of the base type that is adapted, how the adaptation
must be applied, i.e., before, after, or replacing the original method,
and the role method (i.e., callin) going to be called. In terms used
in aspect-oriented programming, a callin intercepts a method call
and callNext proceeds the intercepted call.

The compiler assumes closed-world on the types of teams and
roles that it type checks. It asserts that declarations of bindings have
compatible type signatures to the declared base methods. For each
binding the compiler generates lookup code that implements the
dispatch to the declared role functions (e.g., callReplace), which
is part of the program executed at runtime. The lookup code con-
tains all possible dispatches to role functions defined inside a team
class. We observed that since the advance of contextual roles all
implementations rely on implementations based on patterns of
delegation.

For classes referenced by bindings, i.e., base types, the assump-
tion is open-world. At run-time there may be sub-classes loaded,
which were not known at compile time. To realize such a mixed
setting the compiler deduces type information, which is stored
in the class’ attributes. The OT/J language runtime adapts loaded
classes and generates entry points into role dispatch to preserve
the semantics.

Fig. 2 shows the evaluation from a function call of a program from
Fig. 1. This scheme has been coined recursive chaining wrapper, as
role method dispatch is implemented recursively over active team
instances (i.e., callNext). The generated code and the recursive
evaluation prohibit optimizations of the VM. For ObjectTeams/Java,
this causes a performance penalty of 59.9× compared to a pure
object-oriented design pattern implementation [35].

2.3 High-Performance Dynamic Language
Runtimes and Partial Evaluation

The primary research vehicle we use to demonstrate our optimiza-
tions is Espresso, a meta-circular Java bytecode interpreter for the
GraalVM [46]. The idea of a meta-circular virtual machine (VM) is
not new and already has been explored with the Jikes RVM [2] and

1A detailed description of the language features is presented in [19].

2

Towards Virtual Machine Support for Contextual Role-Oriented Programming Languages COP ’23, July 17, 2023, Seattle, WA, USA

Figure 2: Control flow of a role method dispatch. Grey boxes
represent execution of framework code while white boxes
represents behavior implementations.

Maxine VM [43]. However, recent advances in VM optimization
research re-opened the door for these kinds of VMs.

VMs follow different approaches to Just-in-Time (JIT) compila-
tion. The Graal [9, 10] JIT compiler uses a method-based compila-
tion model where the decision to optimize depends on heuristics
such as method execution counts. Approaches such as PyPy [6],
however, focus on compiling execution traces of the interpreter
(meta-tracing) evaluating the program under execution. The work
proposed in this paper builds on approaches using the former model
of compilation.

Some compilers emit bytecode, a sequential intermediate repre-
sentation (IR), which is the input to the dynamic language runtimes.
One representative is Java Bytecode that is the input to a Java VM.
During interpretation the language runtime may choose to quicken
bytecodes, effectively replacing bytecodes with more specific ones
using the feedback gathered during interpretation. Interpreters may
employ more language-specific quickening-based optimizations [7].

A high-performance dynamic language runtime requires a cus-
tom VM and compiler increasing implementation and maintenance
efforts. To overcome this burden Truffle [45] defines a DSL and ex-
ecution model to implement self-modifying interpreters of abstract
syntax trees (AST). During interpretation the type feedback of the
interpreter is used to rewrite (i.e., specialize) the AST resulting
in specialized code to execute. The compiler IR is generated after
partial evaluating the specialized interpreter code, also called first
Futamura projection [12]. The resulting code is further optimized
and compiled by the Graal compiler to high-performance machine
code.

3 RELATEDWORK
This section introduces related work that focuses on improving the
lookup and dispatch of context-oriented [20] and aspect-oriented
programming languages [24].

Since object-oriented execution environments, i.e., virtual ma-
chines, do not understand aspect semantics, the aspect compiler
produces a verbose description of aspects as some mechanisms can-
not be directly represented in an object-oriented paradigm, which
incurs a high overhead [16]. To close that gap Steamloom [14, 15]
extends the Jikes RVM with aspect-oriented primitives to support
dynamic aspects. This means to reduce the number of residuals at
join point shadows and to provide facilities to efficiently execute
advices. Method bodies affected by advice invocation are rewritten
with aspect invocations. The required information is stored in an
Aspect Instance Table (AIT), a runtime data structure embedded in
the memory representation of classes. Advice invocation byte codes
indexed aspects from the AIT to be invoked. However, Steamloom
only implemented before and after advices. They remark that around
advices (the pendant to replace in role-oriented programming) are
a more demanding challenge [14].

The performance overhead of context-oriented programming
language implementations has been attributed to the violation of
assumptions a common language implementation holds about look-
up. ContextPyPy [30] optimized the dispatch of layered methods in
the meta-tracing JIT compiler PyPy by promoting context-oriented
dispatches. Promotion makes the JIT compiler to ensure that traces
are specialized regardless of whether the use of heuristics would
result in a specialization or not. A preliminary implementation
study dispatched context-oriented methods with invokedynamic
and concludes that it benefits the performance of dispatching lay-
ered methods.

Polymorphic dispatch plans [36, 37] have been proposed as a
solution to overcome the inherent overhead of role dispatch. Ob-
jectTeams/InvokeDynamic (OT/Inv) [38] is the reference imple-
mentation extending ObjectTeams/Java using runtime generated
dispatch graphs based on invokedynamic [34] byte codes. The ap-
proach supports the open-world assumption of lazily loaded types
at run-time. Inspired by partial evaluation, the lookup uses runtime
feedback to specialize role dispatch for observed values. To reduce
the overhead of role dispatch the graph must only include calls to
role methods without unnecessary delegations, e.g., bridge methods
such as callReplace as seen in Fig. 2. The resulting graph can be
optimized and reused in subsequent calls at the same call site. A
guard ensures that invalid lookup results will not be executed. The

3

COP ’23, July 17, 2023, Seattle, WA, USA Lars Schütze and Jeronimo Castrillon

OT/Java
Code

OT/Java
Compiler

Java
Bytecode

Bytecode
Parser

OT/Truffle
Lang Impl.

OT/Truffle
AST

Graal Truffle

compile

generate

build

compile
rewrite

use

Figure 3: Toplevel Architecture of ObjectTeams/Truffle.

guard captures types of active contexts on initial invocation and
evaluates on re-execution whether the active context is structurally
equal. Otherwise, a new graph must be computed and appended
to the call site, forming a polymorphic inline cache (PIC) [21]. The
approach provides a speedup on role dispatch and is able to mitigate
a fixed amount of variability. However, we observed that dispatch
plans are a too coarse-grained and rigid structure requiring recom-
putation as contexts change. A megamorphic call site triggers cache
contention, leading to slowdowns that can easily be of an order of
magnitude due to constant recomputation of the whole graph.

4 VIRTUAL MACHINE ARCHITECTURE FOR
CONTEXTUAL ROLES

We present ObjectTeams/Truffle, a VM implementation for con-
textual roles based on a model of contextual roles [18]. While we
specifically discuss our approach in the context of the contextual
role-oriented programming model ObjectTeams we are confident
that our findings can be applied to other role-oriented, class-based
programming languages. This section first introduces the neces-
sary ingredients a VM needs to support contextual roles. Then
we demonstrate how these ingredients can be implemented in a
meta-circular Java Bytecode interpreter written in Java.

4.1 Fundamentals of Virtual Machine Support
for Roles

As presented in Sec. 3 the representation of contextual approaches
and the dispatch to contextual methods impose a challenge for
heuristics and JIT compilers in dynamic language runtimes. To
support contextual roles the virtual machine must provide role-
specific primitives and be able to derive optimizations over these
primitives. In the following we will introduce key primitives that
must be provided to enable VM support for contextual roles.

4.1.1 Join Point Shadows. The programming model of contextual
roles divides monolithic entities into smaller, context-dependent
components. In consequence it must be ensured that all relevant
points in the application are found and observed, i.e., points in the
program thatmust bewoven. In aspect-oriented programming these
points of the application are called join point shadows. There are
two fundamental ways of weaving join points: The first approach

is to weave all eligible call sites independently. A second way is to
create an envelopemethod [5] to which all eligible call sites delegate
to. The weaving will take place inside the envelope method. To
support roles, a VM must provide support for join point shadows
and facilities to weave locations in the program code.

4.1.2 Plays Relation. An object may simultaneously play roles
in multiple contexts. The activation and deactivation of said con-
texts would change the order in which the roles are filled, i.e., in
which their behavior influences the object itself. This relationship
is represented by the plays relation, which maps an object to its
roles [25]. Virtual machine support for roles would entail facilities
to efficiently retrieve and store elements from that relation.

4.1.3 Role Dispatch. To the best of our knowledge, since the ad-
vance of contextual roles, all programming language implementa-
tions for contextual roles fall back to delegation-based implemen-
tations to realize role dispatch. The reasons are manyfold. First, it
depends on the way contextual roles are represented, which often is
reduced to role classes encapsulated by their context class. Second,
the plays relation is retrieved from the context objects and is not
stored with the role-playing object itself. This adds an extra level of
indirection. Third, join points are evaluated at run-time. Repeated
evaluation of the same join point should be omitted if the values of
relevant properties do not change.

4.2 Extending Espresso with Support for
Contextual Roles

In the following we will discuss how our prototypical implemen-
tation realizes the aforementioned fundamental requirements to
provide support for contextual roles. A top-level diagram picturing
the components of our approach in context is depicted in Fig. 3.

To handle join points we extended the ObjectTeams/Java com-
piler to annotate envelope methods. The compiler stores infor-
mation for bindings in the attributes section of team classes. We
extended the Java Bytecode parser to read the non-standard at-
tributes and to store them in VM class representations. After the
VM parses the Java Bytecodes the ObjectTeams/Truffle (OT/Truf-
fle) language implementation, an extension of Espresso, will build
the corresponding AST. We diverged from the original Espresso
implementation whenever we encounter a reference to an envelope
method. Call sites that reference annotated methods will be quick-
ened into intrinsic AST nodes that execute role dispatch. The goal
is to represent the ObjectTeams runtime model directly in VM data
structures instead of using a language level meta-object protocol
(MOP) and chains of delegation.

A fundamental part of the plays relation is the retrieval of roles
played in the current context. In the model of ObjectTeams this
is called lifting [19, §2.3]. To lift the base object, we represent the
access to the plays relation in a separate AST node. This makes
it possible to capture and specialize on values of the domain, i.e.,
the particular context type that is accessed. The resulting node
can be shared among multiple identical liftings that occur during a
dispatch.

ObjectTeams/Truffle supports all the different types of role meth-
ods, i.e., before, after, and replace. Dispatch to roles is realized with
multiple AST nodes where there is a node for each type of dispatch.

4

Towards Virtual Machine Support for Contextual Role-Oriented Programming Languages COP ’23, July 17, 2023, Seattle, WA, USA

1 // The Java interface of callAllBindings

2 Object callAllBindings(IBoundBase base ,

3 Team[] teams , int index ,

4 int[] callinIds , int boundMethodId ,

5 Object [] originalArguments);

1 // The Java interface of callNext

2 Object callNext(IBoundBase base ,

3 Team[] teams , int index ,

4 int[] callinIds , int boundMethodId ,

5 Object [] originalArguments ,

6 Object [] arguments ,

7 int superCall);

Figure 4: The Java interfaces of the envelope methods
callAllBindings and callNext in ObjectTeams/Java.

The VM infers from the attributes the amount of role methods
contributed by a respective context and the precedence of the role
methods. This enables the generation of a concrete sequence of
instructions instead of using loops or recursion in the compiled
code of these nodes. For example, for AST nodes that realize the
dispatch to before and after role methods, respectively, the partial
evaluator can unroll the loop over contributed role methods since
the bounds are known at run-time.

In essence, the semantic gap is reduced due to the partial eval-
uation friendly design of the AST, the annotation of compile-time
static values, the annotation of parameters to be cached, and the
guards to decide when to reuse a value of a parameter. The result
of the partial evaluation is a smaller IR with more opportunities for
optimization by the Graal JIT compiler.

5 A SELF-MODIFYING AST TO REPRESENT
CONTEXTUAL ROLE DISPATCH

This section discusses design decisions and implementation details
of our proposed virtual machine support for contextual roles. We
present how support for contextual roles can be captured in an AST
effectively representing the language semantics for consumption
by the VM, closing the semantic gap. The proposed structure is de-
signed to be friendly to partial evaluation, a prerequisite to produce
high-performance machine code.

5.1 Envelopes and Quickening
ObjectTeams/Java uses the envelope approach [5] to execute advices
from join point shadows. The envelopes are the entry point to
structured role dispatch. To initialize role dispatch OT/J defines the
envelope callAllBindings. Its task is to collect the relevant runtime
values that will be used in the dispatch logic to find the call targets.
The signature, shown in Fig. 4, declares the required values. The
weaver originally captured the base method that initiated the call
from the lexical scope during weaving, which is required in order
to query the runtime for activated contexts (teams) specific to that
base method. In our implementation the envelope is replaced with
a role dispatch AST node. Therefore, the Bytecode Parser reads the
basemethod from the call stack when a call to the envelope is parsed

for the first time before quickening the call node. The parameter
boundMethodId is used as a predicate to identify the original method
later.

To proceed (see base.withFee(*) in Fig. 1) from a replace callin
OTJ provides the envelope callNext. Proceed is naturally called from
within the body of a role method. The lexical scope of proceed is
not able to capture the method that initiated the role dispatch. The
solution is to exploit the fact that method activation records can
be accessed as first-class entities at VM level. A method activation
is normally recorded as a stack frame. The VM operates a stack of
frames carrying information on the method whose execution has
triggered its creation. In order to re-constitute the origin of the role
call we placed a cookie on the stack that identifies the base method.
Stack walking is able to capture the cookie.

An object-oriented VM treats the calls to the envelopes as calls to
regular methods. Thus, the envelopes can be found in the sequence
diagram shown in Fig. 2. To overcome the semantic gap, our VM
replaces each envelope with an intrinsic method. Each intrinsic
method quickens the invokevirtual bytecode node to the respective
AST nodes for the envelopes callAllBindings and callNext encoding
the role dispatch semantics. This is the entry point to the self-
modifying AST.

5.2 Role Dispatch Optimization Opportunities
We know that efficient dispatch is key for performance. It has been
shown that it is possible to optimize the implementation of contex-
tual role dispatch by representing the dispatch with primitives that
can be understood and optimized by a language runtime. For exam-
ple, dispatch plans realized with the invokedynamic bytecode close
the semantic gap and enable the generation of optimized code [38].
However, we observed that dispatch plans are a too coarse-grained
and rigid structure requiring recomputation as contexts change.

As highlighted in Sec. 4 ObjectTeams/Truffle provides VM imple-
mentations for key primitives of contextual roles. Using an AST to
represent role dispatch opens the opportunity to define specialized
variants for important program states. For example, if there is no
active context the role dispatch will not be executed at all but the
original method. It also enables the possibility to only change parts
of the AST instead of having to recompute the overall dispatch
when the application state changes.

Our implementation exploits the fact that at each point at run-
time the active contexts and their provided roles are known. An
example AST is depicted in Fig. 5 representing the most important
nodes to dispatch the statement acc.withdraw(*) taken from Fig. 1.
Arrows do represent parent-child relations from the AST. Black
arrows and nodes of the AST will contribute to the resulting gen-
erated code while grayed, dashed arrows and nodes are removed
during partial evaluation because they are dominated by invalidated
assumptions.

When executing the dispatch the AST node first is specialized
w.r.t. the type of the first active context instance (see node call all
bindings in Fig. 5). In subsequent calls a guard checks whether the
first active context is of a different type and either reuses the node or
embeds a new one, effectively creating a polymorphic inline cache
(PIC) [21] for contexts. This specialization forwards to a node that
implements the dispatch to all provided role methods of a specific

5

COP ’23, July 17, 2023, Seattle, WA, USA Lars Schütze and Jeronimo Castrillon

call all
bindings

team
bindings

team
bindings

team=Bank

...

before

replace

after

cnt(before)=0

cnt(after)=0

cnt(replace)=1

lift

role

binding

Figure 5: The intrinsic AST that replaces the envelope callAll-
Bindings created for acc.withdraw(*) in Fig. 1. Gray, dashed
elements represent nodes that will not be compiled.

context (node team bindings). When this node is created the VM
reads the internally stored attributes of contexts and their bindings
and switches the assumptions about the contributed role methods
accordingly. For example, the Bank from Fig. 1 only provides a
replace callin, which invalidates the assumptions representing the
existence of before and after callins. The design of the AST allows
to produce and optimize on a fine-grained granularity.

A context can declare multiple roles each with multiple before
and after bindings for the same base method. In such a case all
role methods are called before and after, respectively, ordered by
their declared precedence. There exists an AST node for each type
of callin to account for their different ascribed semantics. To re-
duce the amount of AST nodes we grouped the execution of each
kind of callin in the respective nodes. This allows us to unroll the
calls to role methods for before and after producing a sequence of
instructions.

6 EVALUATION
This section evaluates the run-time performance and characteris-
tics of ObjectTeams/Graal, a VM implementation of ObjectTeams.
We compare our approach to the reference implementation Object-
Teams/Java [18] and ObjectTeams with Dispatch Plans [38].

6.1 Benchmark Characterization
We used a typical synthetic benchmark we designed to compare dif-
ferent language implementations of the role-oriented concept [35].
The benchmark uses many demanding role-oriented programming
features such as multiple active contexts, deep roles (i.e., roles
playing roles), and multiple callins that are not easily built with
object-oriented design patterns.

The benchmark describes a banking scenario. Persons and ac-
counts are classes implementing basic behavior. For example, ac-
counts can withdraw and deposit money. A bank is a compart-
ment (i.e., context) where persons can play the role of customers.
Accounts play roles that change the account’s behavior such as
different fees involved in withdrawing money from a checking
account.

1 bank.activate ();

2 for (Account from :

3 bank.getSavingAccounts ()) {

4 for (Account to :

5 bank.getCheckingAccounts ()) {

6 Transaction transaction =

7 new Transaction ();

8 transaction.activate ();

9 transaction.execute(from ,to,amount);

10 transaction.deactivate ();

11 }

12 }

13 bank.deactivate ();

Figure 6: The measured portion of the Bank benchmark dy-
namic case written in Object Teams/Java. Bank and Transaction

are teams whose roles influence the Account behavior.

We evaluate the approaches with a dynamic case with variable
context activations to explore different characteristics of context-
dependent software. Figure 6 shows the measured portion of the
dynamic case. The inner-most loop models transactions as teams,
which are activated and deactivated in every iteration. The activa-
tion and deactivation of the contained roles has no observable effect
on the runtime until a relevant base method is called. The accounts
play multiple roles (i.e., deep roles). For instance, the account that
plays the roles of the source (from) in the transaction also plays
the role of a SavingsAccount in the Bank. The target (to) of cash
flow inside the transactions plays at the same time the role of a
CheckingsAccount inside the bank. The activation and deactivation
of the Transaction team changes the active roles for each of the
role-playing instances.

6.2 Methodology
To gain valuable results the benchmark is executed for each ap-
proach with a set of different problem sizes. Every benchmark has
been run 5 times for each data point. We measured the execution
time per run and report the geometric mean and standard deviation
for each problem size and approach. To observe whether there are
scalability problems, we measured with different problem sizes.
For the dynamic case we varied the problem size from 1.0 to 2.5
million transactions. The number of accounts participating in the
transactions is increased proportional.

The benchmarkwas executed by the benchmark execution frame-
work ReBench [28]. The benchmark was conducted on an Intel Core
i7-9700T CPU @ 2.00GHz with 32GB RAM. For the evaluation we
built Espresso from commit 393e30fb1b9 with mx version 6.19.0.
The JDK our VM build is based on is LabsJDK CE17 JVMCI v23.0b01.

6.3 Performance Analysis
The results of the dynamic case are presented in Fig. 7. For com-
parison the runtime of the reference implementation ObjectTeam-
s/Java [18], ObjectTeams/InvokeDynamic [38], and the approach
proposed in this paper, ObjectTeams/Truffle are measured. It depicts

6

Towards Virtual Machine Support for Contextual Role-Oriented Programming Languages COP ’23, July 17, 2023, Seattle, WA, USA

0

100

200

300

1.
0

1.
5

2.
0

2.
5

Transactions in million

R
u
n
ti
m
e
in

s
(l
ow

er
is

b
et
te
r)

ObjectTeams/InvokeDynamic ObjectTeams/Java ObjectTeams/Truffle

Figure 7: Runtime in s for the dynamic case. The error bar
shows the standard deviation of the run-time.

the geometric mean of the measured runtimes for each approach
and each problem size.

For ObjectTeams/Java and ObjectTeams/Truffle it is noticeable
that the standard deviation increases with increasing problem size.
The reason is that with these approaches garbage collection is
executed more often increasing the execution time. One of the
reasons may be the handling of runtime values used to execute the
dispatch. The standard deviation for ObjectTeams/InvokeDynamic
is lower across all problem sizes because it implements a copy-on-
write optimization for the data structure representing the active
team instances. We did not implement such an optimization for
ObjectTeams/Truffle.

It stands out that ObjectTeams/Java is the slowest implementa-
tion in this benchmark. ObjectTeams/Truffle shows a speedup of up
to 2.49× (mean 2.23×) compared to ObjectTeams/Java. Compared
to ObjectTeams/InvokeDynamic our approach is up to 1.22× faster
(mean 1.18×).

6.4 Threats to Validity
We are aware that Espresso is still an early prototype of a meta-
circular Java VM. It passes the Java Compatibility Kit but might
have unequally good implementations for different parts of the
Java Virtual Machine Specification. This could skew the results and
improperly favor one implementation over the other.

The reference implementation ObjectTeams/Truffle supports a
limited set of features provided by ObjectTeams/Java. It is possible
that features may require additional checks or rewrites of the AST
imposing restrictions on the implementation we did not account
for, yet. The benchmark purposely avoided features that have not

been implemented across all compared implementations of the
ObjectTeams model.

7 CONCLUSION AND FUTUREWORK
Context-dependent software continues to become increasingly im-
portant. The role concept is a promising candidate to build context-
dependent software as contexts and behavioral adaptations can
be directly represented in the language. This enables a flexible
software development process suitable to build context-dependent
software. In general, however, contextual role language implemen-
tations, as well as related aspect-oriented and context-oriented
implementations suffer from a high runtime overhead when exe-
cuting dispatches.

Since object-oriented virtual machines do not understand the
semantics of contextual roles, the compiler produces a verbose de-
scription of roles in an object-oriented paradigm, which incurs a
high overhead. This paper proposed prerequisites to support roles
in a virtual machine. We present a VM implementation to effi-
ciently execute contextual roles. While we specifically discuss our
approach in the context of the contextual role-oriented program-
ming language ObjectTeams we are confident that our findings
can be applied to other role-oriented, class-based programming
languages. For a demanding role-based benchmark we achieved a
speedup of up to 2.49× compared to the reference implementation
ObjectTeams/Java. Compared to ObjectTeams with dispatch plans
our approach achieves a speedup of up to 1.22×.

We are confident that our approach is also able to work in the
context of AOP languages using the pointcut-advice model and
layered COP languages. The execution of behaviors in each of these
related approaches is concerned with the evaluation of joinpoints
and a multi-dimensional dispatch, which could be mapped to the
role dispatch discussed in this work. We see optimization potential
for instances of roles, layers, and aspects that are shared and possess
no private state.

In the current implementation the role-playing relation is still
using the language level meta-object-protocol of ObjectTeams/Java.
However, the heap and object graph are immediately accessible
from within the virtual machine. In future work we want to ex-
tend the memory model of the VM and VM classes to manage the
role-playing relation inside the virtual machine. This requires a VM
internal handling for context activation and deactivation, which
would make the language level meta-object-protocol of Object-
Teams/Java obsolete. For the performance characteristics of the
implementation we predict that this would greatly improve speed
and resource consumption.

ACKNOWLEDGMENTS
This work has been funded by the German Research Foundation
within the Research Training Group Role-based Software Infras-
tructures for continuous-context-sensitive Systems (GRK 1907) and
the Center for Advancing Electronics Dresden (cfaed). We want
to thank Alfonso Peterssen and Christian Humer who provided
detailed information about the architecture of Espresso and Truffle.

REFERENCES
[1] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. 1995. Fibonacci: A Program-

ming Language for Object Databases. The VLDB Journal 4, 3 (July 1995), 403–444.

7

COP ’23, July 17, 2023, Seattle, WA, USA Lars Schütze and Jeronimo Castrillon

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby,
S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V.
Sarkar, and M. Trapp. 2005. The Jikes Research Virtual Machine Project: Building
an Open-Source Research Community. IBM Systems Journal 44, 2 (2005), 399–417.

[3] Charles W. Bachman and Manilal Daya. 1977. The Role Concept in Data Models.
In Proceedings of the Third International Conference on Very Large Data Bases,
Vol. 3. Tokyo, Japan, 464–476.

[4] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and MartinaWulf. 1997. The Role Object
Pattern. In Proceedings of the 1997 Conference on Pattern Languages of Programs
(PLoP 97).

[5] Christoph Bockisch, Michael Haupt, Mira Mezini, and Ralf Mitschke. 2005.
Envelope-Based Weaving for Faster Aspect Compilers. In NODe 2005 GSEM
2005, Vol. P-69. 3–18.

[6] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the Meta-Level: PyPy’s Tracing JIT Compiler. In Proceedings of the 4th
Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems - ICOOOLPS ’09. ACM Press, Genova, Italy,
18–25.

[7] Stefan Brunthaler. 2010. Efficient Interpretation Using Quickening. ACM SIG-
PLAN Notices 45, 12 (Dec. 2010), 1.

[8] Mohamed Dahchour, Alain Pirotte, and Esteban Zimányi. 2004. A Role Model and
Its Metaclass Implementation. Information Systems 29, 3 (May 2004), 235–270.

[9] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wim-
mer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative
Intermediate Representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop.

[10] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Specula-
tion without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler.
ACM Press, 187–193.

[11] Martin Fowler. 1997. Dealing with Roles. In Proceedings of the 1997 Conference on
Pattern Languages of Programs (PLoP 97).

[12] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process–An Ap-
proach to a Compiler-Compiler. Higher-Order and Symbolic Computation 12, 4
(1999), 381–391.

[13] Georg Gottlob, Michael Schrefl, and Brigitte Röck. 1996. Extending Object-
Oriented Systems with Roles. ACM Transactions on Information Systems 14, 3
(July 1996), 268–296.

[14] Michael Haupt and Mira Mezini. 2005. Virtual Machine Support for Aspects with
Advice Instance Tables. L’Objet 11, 3 (2005).

[15] Michael Haupt, Mira Mezini, Christoph Bockisch, Tom Dinkelaker, Michael
Eichberg, and Michael Krebs. 2005. An Execution Layer for Aspect-Oriented
Programming Languages. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments. ACM Press, 142.

[16] Michael Haupt and Hans Schippers. 2007. A Machine Model for Aspect-Oriented
Programming. In ECOOP 2007 – Object-Oriented Programming, Vol. 4609. Springer
Berlin Heidelberg, Berlin, Heidelberg, 501–524.

[17] Stephan Herrmann. 2003. Object Teams: Improving Modularity for Crosscutting
Collaborations. In Objects, Components, Architectures, Services, and Applications
for a Networked World. Vol. 2591. Springer Berlin Heidelberg, Berlin, Heidelberg,
248–264.

[18] Stephan Herrmann. 2007. A Precise Model for Contextual Roles: The Program-
ming Language ObjectTeams/Java. Applied Ontology 2, 2 (2007), 181–207.

[19] Stephan Herrmann, Christine Hundt, and Marco Mosconi. 2011. OT/J Language
Definition v1.3.

[20] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. The Journal of Object Technology 7, 3 (2008), 125.

[21] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically-
Typed Object-Oriented Languages with Polymorphic Inline Caches. In ECOOP’91
European Conference on Object-Oriented Programming. Vol. 512. Springer-Verlag,
Berlin/Heidelberg, 21–38.

[22] Bo Nørregaard Jørgensen and Eddy Truyen. 2003. Evolution of Collective Object
Behavior in Presence of Simultaneous Client-Specific Views. In Object-Oriented
Information Systems. Vol. 2817. Springer Berlin Heidelberg, Berlin, Heidelberg,
18–32.

[23] Tetsuo Kamina and Tetsuo Tamai. 2010. A Smooth Combination of Role-based
Language and Context Activation. In FOAL 2010 Proceedings.

[24] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented Programming. In
ECOOP’97 — Object-Oriented Programming. Vol. 1241. Springer Berlin Heidelberg,
Berlin, Heidelberg, 220–242.

[25] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. 2015. A
Combined Formal Model for Relational Context-Dependent Roles. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Software Language

Engineering. Pittsburgh, PA, USA, 113–124.
[26] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aß-

mann. 2014. A Metamodel Family for Role-Based Modeling and Programming
Languages. In Software Language Engineering. Vol. 8706. Springer International
Publishing, Cham, 141–160.

[27] Max Leuthäuser. 2017. Pure Embedding of Evolving Objects. In The Ninth Inter-
national Conference on Advanced Cognitive Technologies and Applications. 22–30.

[28] Stefan Marr. 2018. ReBench: Execute and Document Benchmarks Reproducibly.
(Aug. 2018).

[29] Supasit Monpratarnchai and Tamai Tetsuo. 2008. The Implementation and Exe-
cution Framework of a Role Model Based Language, EpsilonJ. IEEE, 269–276.

[30] Tobias Pape, Tim Felgentreff, and Robert Hirschfeld. 2016. Optimizing Sideways
Composition: Fast Context-oriented Programming in ContextPyPy. ACM Press,
13–20.

[31] Michael Pradel and Martin Odersky. 2008. SCALA ROLES A Lightweight Ap-
proach towards Reusable Collaborations. In ICSOFT 2008 - Proceedings of the 3rd
International Conference on Software and Data Technologies. 13–20.

[32] Trygve Reenskaug, Per Wold, and Odd Arilc Lehne. 1996. Working with Objects:
The OOram Software Engineering Method. Manning, Greenwich.

[33] Dirk Riehle and Thomas Gross. 1998. Role Model Based Framework Design and
Integration. In Proceedings of the 13th ACM SIGPLANConference on Object-oriented
Programming, Systems, Languages, and Applications. ACM Press, 117–133.

[34] John R. Rose. 2009. Bytecodes Meet Combinators: Invokedynamic on the JVM. In
Proceedings of the ThirdWorkshop on Virtual Machines and Intermediate Languages.
ACM Press, Orlando, Florida, 1–11.

[35] Lars Schütze and Jeronimo Castrillon. 2017. Analyzing State-of-the-Art Role-
based Programming Languages. In Proceedings of the International Conference on
the Art, Science, and Engineering of Programming - Programming ’17. ACM Press,
Brussels, Belgium, 1–6.

[36] Lars Schütze and Jeronimo Castrillon. 2019. Efficient Late Binding of Dynamic
Function Compositions. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering - SLE 2019. ACM Press, Athens,
Greece, 141–151.

[37] Lars Schütze and Jeronimo Castrillon. 2020. Efficient Dispatch of Multi-object
Polymorphic Call Sites in Contextual Role-Oriented Programming Languages. In
17th International Conference on Managed Programming Languages and Runtimes.
ACM, Virtual UK, 52–62.

[38] Lars Schütze, Cornelius Kummer, and Jeronimo Castrillon. 2022. Guard the
Cache: Dispatch Optimization in a Contextual Role-oriented Language. In COP
2022: International Workshop on Context-Oriented Programming and Advanced
Modularity (Collocated with ECOOP). ACM, Berlin Germany, 27–34.

[39] Yannis Smaragdakis and Don Batory. 2002. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-Based Designs.
ACM Transactions on Software Engineering and Methodology 11, 2 (April 2002),
215–255.

[40] Friedrich Steimann. 2000. On the Representation of Roles in Object-Oriented and
Conceptual Modelling. Data & Knowledge Engineering 35, 1 (Oct. 2000), 83–106.

[41] Friedrich Steimann. 2001. Role= Interface: A Merger of Concepts. Journal of
Object-Oriented Programming (2001).

[42] Nguonly Taing, Markus Wutzler, Thomas Springer, Nicolás Cardozo, and Alexan-
der Schill. 2016. Consistent Unanticipated Adaptation for Context-Dependent
Applications. In Proceedings of the 8th International Workshop on Context-Oriented
Programming. ACM, Rome Italy, 33–38.

[43] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,
Laurent Daynès, and Douglas Simon. 2013. Maxine: An Approachable Virtual
Machine for, and in, Java. ACMTransactions on Architecture and Code Optimization
9, 4 (Jan. 2013), 1–24.

[44] R.K. Wong and H.L. Chau. 1998. Method Dispatching and Type Safety for Objects
with Multiple Roles. In Proceedings. Technology of Object-Oriented Languages and
Systems, TOOLS 25 (Cat. No.97TB100239). IEEE Comput. Soc, Melbourne, Vic.,
Australia, 286–296.

[45] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-Performance Dynamic Language Runtimes.
ACM Press, 662–676.

[46] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software - Onward! ’13. ACM Press, Indianapolis, Indiana, USA, 187–204.

Received 2023-05-22; accepted 2023-06-15

8

	Abstract
	1 Introduction
	2 Background
	2.1 Role-Oriented Programming
	2.2 Contextual Roles and the Semantic Gap
	2.3 High-Performance Dynamic Language Runtimes and Partial Evaluation

	3 Related Work
	4 Virtual Machine Architecture for Contextual Roles
	4.1 Fundamentals of Virtual Machine Support for Roles
	4.2 Extending Espresso with Support for Contextual Roles

	5 A Self-Modifying AST to Represent Contextual Role Dispatch
	5.1 Envelopes and Quickening
	5.2 Role Dispatch Optimization Opportunities

	6 Evaluation
	6.1 Benchmark Characterization
	6.2 Methodology
	6.3 Performance Analysis
	6.4 Threats to Validity

	7 Conclusion and Future Work
	Acknowledgments
	References

