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Jetty’s Graceful Restart
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• Downtimes ~8-10s  ➪ Request latency ~1-2ms.

_____________________	

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’12
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Hot Swapping
• Goal: Change a program dynamically, i.e. online.	


• Problem: Preserving program correctness.	


• Challenges:	


• Consistency Problem ➪ State quiescence (who and when).	


• Mutual references ➪ Non-blocking update coordination.	


• Referential transparency.	


• State transfer.	


• Scalability.	


• Location transparency.
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Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	


Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	


Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	




Hot Swapping
• Goal: Change a program dynamically, i.e. online.	


• Problem: Preserving program correctness.	


• Challenges:	


• Consistency Problem ➪ State quiescence (who and when).	


• Mutual references ➪ Non-blocking update coordination.	


!
!
!

4

_____________________	

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	


Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	


Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	


accept read parse load compose reply

load
NIO compose reply

NIOaccept read parse

NIO SWITCH
file channel

file content

expected:
file channel

expected:
file content

file content ≠

=



Hot Swapping
• Goal: Change a program dynamically, i.e. online.	


• Problem: Preserving program correctness.	


• Challenges:	


• Consistency Problem ➪ State quiescence (who and when).	


• Mutual references ➪ Non-blocking update coordination.	


!
!
!

5

_____________________	

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	


Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	


Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	


accept read parse load compose reply

load
NIO compose reply

NIOaccept read parse

NIO SWITCH
file channel

file content

expected:
file channel

expected:
file content

file content ≠

=



Dataflow in a Nutshell
• Widely adopted execution model for parallel processing.	


• Building blocks: (FIFO) arcs, operators, dataflow graph.	


• (Classic) Dataflow  ➪  No operator state.	


• FBP (flow-based programming) ➪ Operator state allowed!	


!
!

!

!
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____________________	


J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, Nov. 1980.	


J. P. Morrison. Flow-Based Programming. Nostrand Reinhold, 1994	


Micah Beck, Richard Johnson, and Keshav Pingali. 1991. From control flow to dataflow. J. Parallel Distrib. Comput. 
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Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	


• No assumptions on execution environment.	


• Key insight: 	


• That’s a distributed system! 	


• We know how to reason about time!	


	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

8

_____________________	


K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 
3, 1 (February 1985), 63-75.
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Update Coordination

• Dataflow building blocks: arcs, operators, dataflow graph.	


• No assumptions on execution environment.	


• Key insight: 	


• That’s a distributed system! 	


• We know how to reason about time!	


	
 	
 ➪ Introduction of a solid notion of time for (live) updates.
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From Live Updates to 
Dynamic Evolution

• Procedure: program replica + state transfer.	


• Impact: typically small and local bug fixes or security patches.	


• Occurrence: infrequent	


!
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_____________________	

Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State transfer for clear and efficient runtime 
updates. IEEE ICDEW '11.	


Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-
purpose dynamic software updating for C. OOPSLA ’12.



From Live Updates to 
Dynamic Evolution

• Procedure: in-place code + state update.	


• Impact: typically small and local bug fixes or security patches.	


• Occurrence: infrequent	


!
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From Live Updates to 
Dynamic Evolution
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Cristiano Giuffrida, Andrew S. Tanenbaum, et.al. Safe and automatic live update for operating systems. In ASPLOS '13.	


• Procedure: in-place code + state update.	


• Impact: local changes (operators) + program updates (graph). 	


• Occurrence: part of the development process.	


	
 ➪ Dynamic evolution of any (middleware) dataflow program.	


!
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Graph Updates

• Marker-based coordination to transition the graph from one 
consistent state into the other.
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Graph Updates

• Marker-based coordination to transition the graph from one 
consistent state into the other.
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Experimental Setup
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The NIO Switch

• Experiment: 30 concurrent clients request 1out of 10000 
files of size 50kB.	


• Update: Coordinated switch (after ~40s) of our HTTP server 
to support NIO.	


33

load
NIO compose reply

NIOaccept read parse



The NIO Switch

• Experiment: 30 concurrent clients request 1out of 10000 
files of size 50kB.	


• Update: Coordinated switch (after ~40s) of our HTTP server 
to support NIO.	


34

load
NIO compose reply

NIOaccept read parse

0 10 20 30 40 50 60 70 80
Time (s)

10

20

30

40

50

60

70

La
te

nc
y

(m
s)

NIO switch
request



Dynamic Server Evolution
• Experiment: 	


• Small (feeds - 2kB) & “large” (webpage - 100kB) files.	


• 30 concurrent clients for each.	


• Goal: avoid penalizing small requests by large requests.	


• Evolution: Cache insertion (~70s) and proxy update (~145s).	
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Conclusion

• Dataflow allows to take live updates to a new level:	


	
 	
 ➪ Do not update, evolve!	


• See the paper for the solutions of the skipped challenges.	


!

• Future work:	


• Scalable programming model.	


• External resource updates.
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Thanks for your attention!	


Questions?	
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Update Contention
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Motivation

40

• Jetty: Servlet Engine and HTTP Server.	


• Web server as an example of a highly concurrent program.	


!

• Jetty’s graceful restart after 95s into computation:	


• Minimal default installation, just serving files.	


• 38 concurrent clients request 20 kB file every 20 ms.	


• Downtimes ~8-10s  ➪ Request latency ~1-2ms.

_____________________	

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’12
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• Implicit dataflow with Ohua:	


!

!

!

• Updates in Ohua:	


!

Programming Model

41

_____________________	

https://bitbucket.org/sertel/ohua-updates	




Server Evolution: Proxy
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Graph Transformations

• Requirement: Interactive runtime.	


• Problem: Interfacing highly concurrent (distributed) 
programs.	


• Runtime Graph Rewrite:	


• Provide unique entrance and exit points.	


• Enhance runtime features with operators (dataflow style).
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The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	


• No assumptions on execution environment.	


• Key insight: 	


• That’s a distributed system! 	


• We know how to reason about time! ➪ “When” solved!

46
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Related Work

• Current state-of-the-art: STUMP and Kitsune (for C), Rubah (for Java) 	


• ➪ “Stop the world”, Update points and relaxed synchronization	


• No support for non-blocking updates.	


• No easy but yet efficient (runtime overhead, scalability) update algorithms.	


• No support for fine-grained and complex updates (mutual references).	


!
• ➪ Need to solve the consistency problem!	


• Closest work: Cooperative Live Updates (for Operating Systems)
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