
A Framework for the Dynamic Evolution
of Highly-Available Dataflow Programs

Sebastian Ertel	

Systems Engineering Group	

TU Dresden, Germany	

1

Pascal Felber	

Institut d’informatique	

Université de Neuchâtel, Switzerland

Middleware 2014	

Jetty’s Graceful Restart

2

!
!
!
!
!

• Downtimes ~8-10s ➪ Request latency ~1-2ms.

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’12

0 20 40 60 80 100 120 140 160 180
Time (s)

0

20

40

60

80

100

120

140

La
te

nc
y

(m
s) misconfigured

cache
fixed cache

config

graceful restart period

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

• Referential transparency.	

• State transfer.	

• Scalability.	

• Location transparency.

3

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

!
!
!

4

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

accept read parse load compose reply

load
NIO compose reply

NIOaccept read parse

NIO SWITCH
file channel

file content

expected:
file channel

expected:
file content

file content ≠

=

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

!
!
!

5

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

accept read parse load compose reply

load
NIO compose reply

NIOaccept read parse

NIO SWITCH
file channel

file content

expected:
file channel

expected:
file content

file content ≠

=

Dataflow in a Nutshell
• Widely adopted execution model for parallel processing.	

• Building blocks: (FIFO) arcs, operators, dataflow graph.	

• (Classic) Dataflow ➪ No operator state.	

• FBP (flow-based programming) ➪ Operator state allowed!	

!
!

!

!

6

Operator

Arc
(FIFO)

DAG - Directed (Acyclic) Data Flow Graph

Data
Packets

J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, Nov. 1980.	

J. P. Morrison. Flow-Based Programming. Nostrand Reinhold, 1994	

Micah Beck, Richard Johnson, and Keshav Pingali. 1991. From control flow to dataflow. J. Parallel Distrib. Comput.

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

• Referential transparency.	

• State transfer.	

• Scalability.	

• Location transparency.

7

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

√

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

8

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

9

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

10

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

11

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

12

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

13

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

14

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse load compose reply

Update Appointment

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

15

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse NIO
load compose reply

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

• Referential transparency.	

• State transfer.	

• Scalability.	

• Location transparency.

16

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

√ √

Update Coordination

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

17

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse NIO
load compose reply

Update Coordination

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

18

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse NIO
load compose reply

Update Coordination

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

19

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

NIO - Switch

accept read parse NIO
load compose reply

Update Coordination

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time!	

	
 	
 ➪ Introduction of a solid notion of time for (live) updates.

20

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

accept read parse NIO
load compose NIO

reply

Hot Swapping
• Goal: Change a program dynamically, i.e. online.	

• Problem: Preserving program correctness.	

• Challenges:	

• Consistency Problem ➪ State quiescence (who and when).	

• Mutual references ➪ Non-blocking update coordination.	

• Referential transparency.	

• State transfer.	

• Scalability.	

• Location transparency.

21

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

√ √

√

From Live Updates to
Dynamic Evolution

• Procedure: program replica + state transfer.	

• Impact: typically small and local bug fixes or security patches.	

• Occurrence: infrequent	

!

22

Live 	

updates

Dynamic 	

Software 	

Updates (DSU)

Dynamic 	

Software 	

Evolution

➪ ➪

Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State transfer for clear and efficient runtime
updates. IEEE ICDEW '11.	

Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-
purpose dynamic software updating for C. OOPSLA ’12.

From Live Updates to
Dynamic Evolution

• Procedure: in-place code + state update.	

• Impact: typically small and local bug fixes or security patches.	

• Occurrence: infrequent	

!

!

23

Live 	

updates

Dynamic 	

Software 	

Updates (DSU)

Dynamic 	

Software 	

Evolution

➪ ➪

Michael Hicks and Scott Nettles. 2005. Dynamic software updating. ACM Trans. Program. Lang. Syst. (TOPLAS)	

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.	

Cristiano Giuffrida and Andrew S. Tanenbaum. Cooperative update: a new model for dependable live update. In HotSWUp '09	

From Live Updates to
Dynamic Evolution

24

Live 	

updates

Dynamic 	

Software 	

Updates (DSU)

Dynamic 	

Software 	

Evolution

➪ ➪

Cristiano Giuffrida, Andrew S. Tanenbaum, et.al. Safe and automatic live update for operating systems. In ASPLOS '13.	

• Procedure: in-place code + state update.	

• Impact: local changes (operators) + program updates (graph). 	

• Occurrence: part of the development process.	

	
 ➪ Dynamic evolution of any (middleware) dataflow program.	

!

√

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

25

accept read parse load compose reply

Update

Cache
Extension

load

cache merge
hit

miss

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

26

accept read parse load compose reply

Update

Cache
Extension

load

cache merge
hit

miss

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

27

accept read parse load compose reply

Update

Cache
Extension

load

cache merge
hit

miss

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

28

Update

Cache
Extension

load

cache merge
hit

miss

accept read parse load compose reply

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

29

Update

Cache
Extension

load

cache merge
hit

miss

accept read parse load compose reply

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

30

Update

accept read parse load compose reply

Cache
Extension

load

cache merge
hit

miss

Cache
Extension

load

cache merge
hit

miss

Graph Updates

• Marker-based coordination to transition the graph from one
consistent state into the other.

31

accept read parse compose reply

Experimental Setup

32

clients spread across	

38 - (8-core) machines

server	

(1 thread/operator)

proxy

The NIO Switch

• Experiment: 30 concurrent clients request 1out of 10000
files of size 50kB.	

• Update: Coordinated switch (after ~40s) of our HTTP server
to support NIO.	

33

load
NIO compose reply

NIOaccept read parse

The NIO Switch

• Experiment: 30 concurrent clients request 1out of 10000
files of size 50kB.	

• Update: Coordinated switch (after ~40s) of our HTTP server
to support NIO.	

34

load
NIO compose reply

NIOaccept read parse

0 10 20 30 40 50 60 70 80
Time (s)

10

20

30

40

50

60

70

La
te

nc
y

(m
s)

NIO switch
request

Dynamic Server Evolution
• Experiment: 	

• Small (feeds - 2kB) & “large” (webpage - 100kB) files.	

• 30 concurrent clients for each.	

• Goal: avoid penalizing small requests by large requests.	

• Evolution: Cache insertion (~70s) and proxy update (~145s).	

35

Dynamic Server Evolution
• Experiment: 	

• Small (feeds - 2kB) & “large” (webpage - 100kB) files.	

• 30 concurrent clients for each.	

• Goal: avoid penalizing small requests by large requests.	

• Evolution: Cache insertion (~70s) and proxy update (~145s).	

36

0 50 100 150 200
Time (s)

10
20
30
40
50
60
70
80
90

La
te

nc
y

(m
s)

cache insertion
request

proxy insertion
request

I/O interference during
cache loading

request size: 100 kB

request size: 2 kB

Conclusion

• Dataflow allows to take live updates to a new level:	

	
 	
 ➪ Do not update, evolve!	

• See the paper for the solutions of the skipped challenges.	

!

• Future work:	

• Scalable programming model.	

• External resource updates.

37

Thanks for your attention!	

Questions?	

38

Update Contention

39

102

103

cache insertion
request inline naive

offline naive

offline preloaded

offline Redis

iterative

45 50 55 60 65 70
Time (s)

20

30

40

50

60

70

80

La
te

nc
y

(m
s)

Motivation

40

• Jetty: Servlet Engine and HTTP Server.	

• Web server as an example of a highly concurrent program.	

!

• Jetty’s graceful restart after 95s into computation:	

• Minimal default installation, just serving files.	

• 38 concurrent clients request 20 kB file every 20 ms.	

• Downtimes ~8-10s ➪ Request latency ~1-2ms.

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’12

0 20 40 60 80 100 120 140 160 180
Time (s)

0

20

40

60

80

100

120

140

La
te

nc
y

(m
s) misconfigured

cache
fixed cache

config

graceful restart period

accept read parse load compose reply

• Implicit dataflow with Ohua:	

!

!

!

• Updates in Ohua:	

!

Programming Model

41

https://bitbucket.org/sertel/ohua-updates	

Server Evolution: Proxy

42

Step 2: Reconfigure Server Flow

N
ode 1

Proxy
Extension

N
ode
1accept read parse load compose reply

N
ode
2receive load compose send

accept read parse load compose reply

cond

send receive
join

merge

Step 1: Start the Proxy Flow

Shared Memory Arc Network Arc

preserve client connection

N
ode
2receive load compose send

N
ode
1accept read parse load compose reply

Server Evolution: Proxy

43

Step 2: Reconfigure Server Flow

N
ode 1

Proxy
Extension

N
ode
1accept read parse load compose reply

N
ode
2receive load compose send

accept read parse load compose reply

cond

send receive
join

merge

Step 1: Start the Proxy Flow

Shared Memory Arc Network Arc

preserve client connection

N
ode
2receive load compose send

N
ode
1accept read parse load compose reply

Server Evolution: Proxy

44

Step 2: Reconfigure Server Flow

N
ode 1

Proxy
Extension

N
ode
1accept read parse load compose reply

N
ode
2receive load compose send

accept read parse load compose reply

cond

send receive
join

merge

Step 1: Start the Proxy Flow

Shared Memory Arc Network Arc

preserve client connection

N
ode
2receive load compose send

N
ode
1accept read parse load compose reply

Graph Transformations

• Requirement: Interactive runtime.	

• Problem: Interfacing highly concurrent (distributed)
programs.	

• Runtime Graph Rewrite:	

• Provide unique entrance and exit points.	

• Enhance runtime features with operators (dataflow style).

45

Graph Rewrite ExtensionsUpdate API

accept read parse load compose reply

entrancecontrol exitup-init

Advanced Initialization Feedback

Server Socket Client Socket

The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time! ➪ “When” solved!

46

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time! ➪ “When” solved!

47

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time! ➪ “When” solved!

48

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time! ➪ “When” solved!

49

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

The Beauty of Abstraction

• Dataflow building blocks: arcs, operators, dataflow graph.	

• No assumptions on execution environment.	

• Key insight: 	

• That’s a distributed system! 	

• We know how to reason about time! ➪ “When” solved!

50

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, 1 (February 1985), 63-75.

Related Work

• Current state-of-the-art: STUMP and Kitsune (for C), Rubah (for Java) 	

• ➪ “Stop the world”, Update points and relaxed synchronization	

• No support for non-blocking updates.	

• No easy but yet efficient (runtime overhead, scalability) update algorithms.	

• No support for fine-grained and complex updates (mutual references).	

!
• ➪ Need to solve the consistency problem!	

• Closest work: Cooperative Live Updates (for Operating Systems)

51

Iulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09. ACM, New York, NY, USA	

Hayden, C.M.; Saur, K.; Hicks, M.; Foster, J.S..2012. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12	

Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. 2012. Kitsune: efficient, general-purpose dynamic
software updating for C. In OOPSLA '12.	

Luís Pina and Michael Hicks. 2013. Rubah: Efficient, General-purpose Dynamic Software Updating for Java. In HotSWUp’13.	

Cristiano Giuffrida and Andrew S. Tanenbaum. 2009. Cooperative update: a new model for dependable live update. In HotSWUp '09.	

Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2013. Safe and automatic live update for operating systems. In ASPLOS '13.	

Accept Read Parse NIO
Load Write NIO

Reply

