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ABSTRACT
Many distributed applications deployed on the Internet must
operate continuously with no noticeable interruption of ser-
vice. Such 24/7 availability requirements make the main-
tenance of these application difficult because fixing bugs or
adding new functionality necessitates the online replacement
of the software version by the new one, i.e., a “live update”.
Support for “live update” is therefore essential to allow soft-
ware evolution of critical services. While the problem of
live update has been widely studied and several techniques
have been proposed (e.g., using group communication and
replication), we propose in this paper an original approach
for the dataflow-based programming model (FBP). An in-
teresting property of FBP is its seamless support for multi-
and many-core architectures, which have become the norm
in recent generation of servers and Cloud infrastructures.
We introduce a framework and new algorithms for imple-
menting coordinated non-blocking updates, which do not
only support the replacement of individual software com-
ponents, but also modifications of structural aspects of the
applications independently of the underlying execution in-
frastructure. These algorithms allow us to transparently
orchestrate live updates without halting the executing pro-
gram. We illustrate and evaluate our approach on a web
server application. We present experimental evidence that
our live update algorithms are scalable and have negligible
impact on availability and performance.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Programming—Data-
flow languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Frameworks

1. INTRODUCTION
Context and Motivations. The recent evolutions in micro-
processor design [6] have brought increasing numbers of cores
into modern computers. While this provides higher com-
puting power to applications, it also introduces several chal-
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Figure 1: Graceful restart of a Jetty web server with the
default configuration and 38 concurrent clients requesting
one out of 10000 files of 20 kB size randomly every 20 ms.

lenges related to concurrent programming. First, we need
the right tools to develop concurrent applications that are
both correct and efficient, i.e., can exploit the parallel com-
puting capacities of the cores. Second, the added complexity
of concurrent programs make debugging, testing, and soft-
ware evolution much harder than for sequential programs,
in particular when dealing with dependable systems.

In this paper, we tackle the problem of software evolution
for applications that have availability requirements and must
remain operational on a 24/7 basis. This is an important
challenge because on the one hand multi-cores provide us
with additional resources to scale up, e.g., by dedicating
additional cores for concurrently servicing more clients; on
the other hand, when an application must be updated to a
new version, orchestrating the restart of all the components
running on multiple cores and/or nodes is very challenging if
service must not be interrupted. Therefore the “live update”
problem can be studied from a new perspective in the light
of modern multi-/many-core and Cloud architectures.

To illustrate the impact of software reconfiguration on
availability, we have experimented with Jetty’s web server,1

a widely used application designed for servicing thousands
of requests per second in highly concurrent settings. For
every reconfiguration or activation of a new feature, Jetty
needs to be gracefully shut down and restarted (new con-
nection requests are dropped but requests in progress are
allowed to finish). Restarts result in loss of computational
state and persistent connections, hence penalizing request
latency and throughput, and ultimately leading to customer
dissatisfaction. Figure 1 shows a scenario in which the de-
fault configuration of Jetty’s cache size (2,048 files) leads to
increasing delays for clients. This issue could be resolved
by increasing the cache size (10,000 files), but resulted in a

1http://www.eclipse.org/jetty/
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Figure 2: This simple HTTP server handles requests con-
currently in a pipeline parallel fashion. To switch the server
from blocking I/O to non-blocking I/O (NIO), we need to
change the load to retrieve a file channel rather than the file
content and the reply to use NIO’s sendfile primitive.

measured downtime of 8 s which is substantial considering
an average request latency of 1 ms. Hence, an execution en-
vironment that allows us to update or reconfigure critical
application services with negligible overheads and no inter-
ruption of service is highly desirable.
Live Update. Early approaches to live update rely on
restarting a new instance of the program and transferring
its state [14]. However, the costs of redundant hardware
and the overheads of state transfer and synchronization can
be substantial [16]. Focus has therefore turned towards the
live update of running programs in-place, coined as dynamic
software updates (DSU) [17]. Exchanging and altering an ex-
ecuting program without breaking correctness a particularly
challenging [26]. In this paper, we use the notion of program
state consistency to reason about update correctness [10].
The live update process identifies three key challenges when
dealing with object-based systems as considered here: state
transfer, referential transparency, and mutual references [9].

The first step is to find a quiescent state where an update
can be applied safely. This is especially challenging in highly
concurrent systems where many threads2 access shared state
at any given time. Hence, before performing a state transfer,
we need to identify (i) the threads accessing the shared state
to be updated and the (ii) time at which these accesses occur.
We refer to these two elements of state quiescence detection
as participants and appointment respectively.

Prominent approaches for live update systems force devel-
opers to introduce barriers into the program to achieve qui-
escence [16, 24]. In addition to the blocking behavior (i.e.,
forcing threads to idle during update) and the performance
penalty during normal execution, this approach is hard to
scale to large multi-threaded programs because of their com-
plexity and the risk of synchronization hazards (e.g., dead-
locks) [11]. Further, while the timeliness of updates has been
identified as a requirement [23], no live update mechanism
we are aware of is based on a solid definition of time.

Another important challenge is to preserve referential trans-
parency in the process of updating all pointers to the new
state, i.e., one must still be able to consistently access state
while the update is in progress.

Live updates become even more complicated when mutual
dependencies between the components exist. Consider the
example of a simple web server handling requests concur-
rently in a pipeline parallel fashion, as illustrated in Fig-
ure 2. If we want to change the processing of input/out-
put from blocking to non-blocking (NIO), it is not sufficient
to halt only the load and reply components because data

2We use the terms of threads and processes interchangeably
to refer to concurrent execution units.

containing file content might exist in between both. After
the update the reply would not be able to handle these
requests.3 Even event-based approaches that support non-
blocking live updates of individual components still have to
block when the update spans more than one component and
do not address the problem of undelivered messages [10].

Another desirable property for live updates is to provide
location transparency, i.e., seamlessly handle updates of com-
ponents irrespective of whether they are executing locally or
remotely. This is particularly important in cloud computing
environments where servers are virtualized and services can
be dynamically relocated to other machines, e.g., for load
balancing or fault tolerance.

Finally, most live update systems deal with small security
patches. Support for complex updates to also enhance the
system has gained attention only recently [24, 10]. In order
to fully enable dynamic evolution of programs, updates must
not be limited to new features inserted at well-defined points
but must support structural program changes.
Contributions and Roadmap. It has been shown that
structured software design helps providing safe and flexible
live update capabilities [11]. In light of these observations,
we do not aim at bringing live update capabilities to any ex-
isting programs or languages. We instead take the opportu-
nity to argue for a different type of programming model [6]
that can naturally solve the aforementioned challenges of
dynamic software evolution: (data)flow-based programming
(FBP) [21]. In addition to providing powerful abstractions
for multi-core programming and for implicit parallel and dis-
tributed applications, we strongly believe that FBP offers a
promising foundation to incorporate live updates.

In this paper we make several contributions. We first eval-
uate the FBP concepts with regard to the requirements of
dynamic software evolution (Section 2). We then introduce
in Section 3 a live update algorithm based on Lamport’s
logical time to coordinate mutual dependency updates in
a non-blocking fashion. We present in Section 4 FBP ex-
tensions for supporting scalable live updates that require
no programmer intervention. In Section 5, we extend our
algorithm by enabling unrestricted live updates even to the
structure of the dataflow graph itself. We describe the imple-
mentation of our approach in the Ohua dataflow framework
in Section 6 and present a case study for the dynamic de-
velopment of the web server from Figure 2 in Section 7. We
also evaluate the efficiency, timeliness and overheads of our
algorithm for different types of updates. We finally discuss
related work in Section 8 and conclude in Section 9.

2. FBP FOR LIVE UPDATES
FBP can be found at the heart of many advanced data

processing systems today where parallel and concurrent pro-
cessing is key for scalability: IBM’s data integration sys-
tems [18], database engines [8, 12], data streaming [4, 27],
declarative network design [20] and even web servers [30].
Our Ohua dataflow framework targets a more general ap-
proach by introducing FBP as a parallel programming model,
similar to Cilk [3], but in a truely implicit way: The dataflow
dependency graph is derived from a program written in the
functional language Clojure. Dataflow dependency graphs
are widely considered to be a sound basis for parallel compu-

3As a matter of fact, restarting the whole server would also
involve discarding such state.



tations and their reasoning [1]. Respectively, dataflow rep-
resents a good abstraction for our live update algorithms.
This section evaluates flow-based programming as a core
foundation to support live updates.

2.1 Referential Transparency by Design
In FBP, an algorithm is described in a directed acyclic4

dataflow graph where edges are referred to as arcs and ver-
tices as operators. Data travels in small packets in FIFO
order through the arcs. An operator defines one or more in-
put and output ports. Each arc is connected to exactly one
input port and one output port. An operator continuously
retrieves data one packet at a time from its input ports and
emits (intermediate) results to its output ports.

In Ohua, the dataflow graph is not explicitly created in
the program or via a visual tool as is the case in other
dataflow systems. Instead, it is derived from a functional
program implemented in Clojure where functions represent
operators implemented in Java. The language separation is
meant to help the developer to understand the difference
between functionality and algorithm. The algorithm of the
web server example of Figure 2 is given in Listing 1.

Listing 1: Ohua-style HTTP Server Algorithm in Clojure

1 ; classic Lisp−style
2 (ohua
3 (reply (compose (load (parse (read (accept ”80”))))))))
4
5 ; or using Clojure's threading macro to improve readability

(which transforms at compile−time into the above)
6 (ohua
7 (−> ”80” accept read parse load compose reply))

In the classic dataflow approach [2, 7], operators are fine-
grained stateless instructions. In contrast, FBP operators
are small functional code blocks, which are allowed to keep
state. This programming model is similar to message-passing
with actors, which currently gains momentum in languages
such as Scala [13]. FBP cleanly differentiates between func-
tionality such as loading a file from disk and the web server
algorithm: the former is used to implement the latter. FBP
algorithms make reasoning about complex programs easier
by hiding the implementation details (functionality). An
operator neither makes any assumptions nor possesses any
knowledge about its upstream (preceding) or downstream
(succeeding) neighbours. Therewith, operators are context-
free and highly reusable. As an example, Listing 2 shows
the implementation of the reply operator in Ohua.

Listing 2: Ohua-style Operator Implementation in Java

1 class Reply extends Operator {
2 // stateless operator
3 @Function Object[] reply(Socket s, String resp) {
4 OutputStreamWriter writer = new
5 OutputStreamWriter(s.getOutputStream());
6 writer.write(resp); // send response
7 writer.close();
8 s.close();
9 return null; }}

4While FBP does not define restrictions on the graph struc-
ture, we restrict ourselves to acyclic graphs in this paper for
simplicity reasons.
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Figure 3: HTTP server handling requests in 3-way parallel.

Finally, an FBP program defines the communication be-
tween operators, which at runtime translates into data de-
pendencies, via arcs at compile-time rather than at runtime.
This solves the problem of concurrent state accesses and al-
lows for an implicit concurrent race-free program execution.
Ohua’s programming model is similar to that of purely func-
tional languages that provide referential transparency by de-
sign, with the major difference that operators are allowed
to keep state. Operators do not however share state, only
pointers in the realm of an operator can point to the state
that changes during a live update. For example, Ohua oper-
ators can choose whether they want their state to be man-
aged by the runtime engine or on their own. In the latter
case, Ohua requires getter and setter functionality for state
access. This allows us to update all operator-managed state
pointers via a single function call and respectively preserves
the referential transparency property.

Note that state handling is not exclusively related to live
updates but is also required for other tasks, e.g., checkpoint-
ing to implement fault tolerance or operator migration to
adapt to varying workloads. The state of a program is not
only defined over the state of the operators but also includes
the in-flight packets among the arcs. Packets stored inside
the arcs correspond to function calls in the synchronous pro-
gramming model and therefore do not count towards pro-
gram state, which is sensitive to live updates. Nevertheless,
as seen in the NIO Switch example of Figure 2, in-flight
packets become problematic upon mutual dependencies. We
defer this problem to the next section and assume for now
that all arcs are drained before such an update can proceed.

2.2 Sequential Operator State Access
Although operators are executed concurrently, which in-

troduces implicit pipeline parallelism, concurrent execution
of the same operator is not allowed in FBP. Therewith, the
only remaining case where shared state might exist is when
replicating an operator to process packets in parallel. Fig-
ure 3 shows an example of the web server graph answering
requests in a 3-way parallel fashion. FBP does not however
address data parallelism as it has no knowledge on whether a
part of a flow graph can be replicated by splitting the packet
flow. Therefore, this form of parallelism cannot be directly
exploited by Ohua’s execution engine. It requires either the
help of the developer or a graph inspection algorithm. Note
that, in both cases, parallelism is introduced at the level
of the flow graph and not its runtime representation. For
instance, Listing 3 relies on a user-defined balance macro
(code omitted) to insert a balance-data operator, replicate
the code provided as the last parameter three times, and
create data dependencies to set up the graph in Figure 3.

Listing 3: Explicit Data Parallelism via Clojure Macros

1 (ohua
2 (let [accepted (accept 80)]
3 (balance 3 accepted
4 (−> read parse load write reply)))



Although, the mapping of operator instances to threads
is dynamic, no concurrent execution of the same operator
instance is permitted. Each operator in the graph becomes
an independent instance at runtime. Respectively, operator
state access remains strictly sequential and therewith one
can know at any point in time which thread is executing
an operator and accessing its operator state, thus precisely
identifying the participants in the state quiescence problem.

3. A TIME-BASED ALGORITHM
In order to safely apply a live update, we must first find

the right point in time when operator state is quiescent. Cer-
tainly the scheduler has all execution knowledge of which op-
erator is currently being executed on which thread and which
operator is currently inactive. There are, however, sev-
eral arguments against involving the scheduler. First, FBP
does not declare any scheduler interface or other schedul-
ing details. Hence, a scheduler-based solution cannot di-
rectly leverage FBP abstractions and would lack generality.
Second, FBP does not state how often and when an oper-
ator might return control to the scheduler. As such either
the scheduler must forcefully interrupt operator execution or
timeliness of a live update cannot be guaranteed. Most im-
portantly, the mutual dependency problem can not be solved
using the scheduler, as already explained in the NIO Switch
example of Figure 2. Even when the scheduler blocks execu-
tion of both the load and the reply, in order to make sure
both operator states are quiescent, packets in between these
two operators expect the old blocking I/O API. The simple
solution of draining the packets among the arcs between the
load and the reply once again forces the load, the compose

and the reply to idle while applying the update. Hence, a
notion of time with respect to the computation is required
to define a solid concept of timeliness for live updates and
perform non-blocking mutual dependency updates.

3.1 The Right Point in Computation Time
Another way to reason about a dataflow graph without

violating FBP principles is in terms of a distributed sys-
tem, i.e., a set of independent processes (with operators as
functionality) communicating with each other by exchanging
messages (information packets) via FIFO channels.

Reasoning about time in a distributed system based on
the happened-before relationship of events was described in
Lamport’s seminal paper [19]. It provides the foundation for
Chandy and Lamport’s algorithm to capture a global snap-
shot of a distributed system [5], which defines the notion
of computation time and explains the associated reasoning
about the states of the participating processes. The central
idea is to inject a marker into the dataflow to mark a spe-
cific time t in computation in a decentralized fashion. The
marker travels along the FIFO channels of the system. On
arrival at a process, the local computational state is at time
t as defined by the happened-before relationship of message
arrival events. The process then captures its state and prop-
agates the marker to all outgoing links. A global snapshot is
consistent with the states of all processes gathered at time t.
The algorithm is solely based on the marker concept and the
happened-before relationship of message arrival events at
the processes. Further, it operates in a purely non-blocking
fashion as a natural part of data processing and allows us to
specify a concrete point in computation time for operators
to capture their state, or in our case apply an update.

Algorithm 1: Marker-based Update Algorithm

Data: operator o := (I,O) consisting of input and output
ports; marker m arriving on input port i ∈ I at time
s ≤ t; j the joined representation of all arrived
markers m (with the same id)

1 if m arrived on all k ∈ I then
2 if m.target = o.id then // operator update (s = t)
3 oldState ← o.getState();
4 updatedState ← m.updateState(oldState);
5 updatedOp ← m.updateOperator(o);
6 updatedOp.setState(updatedState);
7 if j.dependents 6= ∅ then
8 for dependency marker c ∈ j.dependents do

// coordination (enforce update consistency:
s = t)

9 c.setDependent(true);
10 o.broadcastInOrder(c);

11 end
12 else // initialize termination
13 j.setCleanup(true);
14 o.broadcastOutOfOrder(j);

15 end
16 else // marker propagation
17 if j.isDependent() then // consistency (s = t)
18 o.broadcastInOrder(j);
19 else // timeliness (s < t)
20 o.broadcastOutOfOrder(j);
21 end

22 end
23 foreach k ∈ I do k.unblock()

24 else
25 if m.isCleanup() then // termination
26 o.broadcastOutOfOrder(m);
27 foreach k ∈ I do k.unblock();
28 j ← ∅; // drop all subsequently arriving markers m

29 else // marker join
30 j.dependents ← j.dependents ∪ m.dependents;
31 if m.isDependent() then
32 i.block();
33 j.setDependent(true);
34 else
35 // initial marker detected, no mutual

dependency upstream

36 end
37 end

38 end

3.2 Marker-based Update Coordination
Our approach to decentralized update coordination is pre-

sented in Algorithm 1. The marker propagation for mutual
dependencies adheres to the principles of Lamport’s snap-
shot algorithm to preserve consistency. We extend the algo-
rithm to not only capture the state of an operator on marker
arrival, but also update it. An update is injected as an up-
date marker in the dataflow graph (see Section 4.2). The
marker contains the unique identifier of the operator to be
updated as well as the functionality to update its state and
the operator implementation. Operators propagate the up-
date marker from their input to their output ports through
the flow graph (Lines 16–22). Whenever the marker encoun-
ters the target operator, the update is performed inline with
the computation (Lines 2-6) at a time t in computation.

In order to coordinate a mutual dependency update, we
piggyback in an update marker m as many markers as there
are mutually dependent downstream operators to be up-
dated at the same point in time. Once m has been applied,
these markers are propagated downstream at time t in the
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Figure 4: An extended version of our HTTP server that additionally supports UPDATE requests to the files it provides. An
UPDATE of a file shares functionality with a GET whenever possible and returns the previous version of the updated file.

computation (Lines 8–11). Hence, in order to switch our
HTTP server flow to NIO (see Figure 2), we submit one
marker for the load, which piggy backs another one for the
reply operator. At time t the marker arrives at the load

operator. The update is performed and the marker targeted
for the reply is propagated downstream. On its way to
its destination the remaining update marker defines a clear
point in time at which the update of the reply is safe to be
performed. All packets sent by the load operator at an ear-
lier time s < t that require the old blocking API are located
downstream of the marker while all packets sent at a later
time u > t that require the new NIO API are upstream.
Safety of the update process is guaranteed by the FIFO or-
dering of packets inside the arcs and immediate propagation
of arriving markers inside the operators (see Lines 17–19).
Finally, the last update marker reaches the reply opera-
tor at time t and performs the update. Both updates were
performed without blocking any of the operators.

3.3 Marker Joins
Up to now, we assumed that operators only have one in-

put port. Typically, operators with more than one input
port merge or join the data arriving from the different input
ports. So does our algorithm with respect to the piggy-
backed markers and its type (Lines 29, 32). According to
Lamport’s algorithm, operators with more than one input
port have to wait for the update marker to arrive at all in-
put ports before it can be propagated (Line 1). Until this
point in time, packets from input ports that have already re-
ceived the marker must not be dequeued (Lines 30–35). Note
that the algorithm only blocks input ports that received a
marker with a dependency to an upstream update (Lines
9, 30–33).5 Although all input ports have to see a marker
before the propagation is safe, input ports without an up-
stream update are not blocked as packets arriving on these
ports are not influenced by the downstream update (Lines
34–36). This seems counter-intuitive because arcs represent
data dependencies and hence a downstream operator should
always depend on all operators upstream. We describe such
a scenario in the context of the version of our HTTP server
in Figure 4 that was enhanced to handle updates to the pro-
vided resources. Similar to the semantics of data structures
in common languages, our server does not only update a file
but also returns the content of the previous version. As such,
GET and UPDATE functionality share operators of the flow
graph, e.g., accept, read, load and reply. Both cond oper-
ators dispatch data based on the type of the request. Since,
parsing the new content for a resource update might require
more time, we execute this step in a two-way parallel fash-

5In our algorithm, blocking does not lead to idling threads
but rather restricts the functionality available for execution.

ion. A mutual dependency update for the functionality of
the parse-post and store operators is injected as an inde-
pendent marker. After updating the parse-post operators
the adjacent downstream merge performs a marker join of
two dependent markers. In the second merge that funnels
UPDATE and GET requests to the load we encounter the
situation where the initial marker from the GET branch does
not define an upstream dependency (Lines 33–35). In this
case it is safe to allow further propagation of GET requests
because their further processing remains unaffected by the
second part of the mutual dependency update. Finally, after
the dependent marker has arrived at the store and finished
the update, we send a marker to clean up existing markers in
the graph (Lines 12–15). This is required because our prop-
agation algorithm has no knowledge of the structure of the
data flow graph. Therefore, propagation happens via broad-
casting the markers. The cleanup marker resolves the case in
our HTTP flow graph where the dependent marker arrives
from the GET branch at the last merge. Here the merge

must block this port as it has no knowledge of the location
of the searched target and might be required to coordinate
the arriving markers towards a defined time t. If no marker
would arrive among the input ports, the algorithm would
deadlock. To avoid this, we propagate a cleanup marker out
of band to penalize processing as little as possible. Once the
merge receives this marker it unblocks all ports and signals
that no coordination towards an update of marker m is re-
quired any more (Lines 25–28). It cleans all received update
information and drops all future markers of type m.

3.4 Deadlocks
The arrival of a packet on an input port is controlled by

the operator algorithm, which requests packets via its input
ports. Therefore, a marker can only arrive at an input port
if there are no more packets in front of it, i.e., it is located
at the head of the queue associated with the incoming arc.
The introduction of blocking into marker propagation is an
invasive step that directly influences the operator algorithm.
The marker join algorithm is non-deterministic by nature:
it allows arbitrary dequeuing behaviour from all input ports
that have not seen the marker yet and blocks all dequeu-
ing from the rest. As a result, the operator algorithm must
adapt to this aspect, yet it does not have the notion of a
blocked port. To an operator, a blocked port looks like one
with no data currently available. It may therefore decide to
back off and delay processing until data becomes available
instead of querying another input port. This deterministic
behaviour can lead to deadlocks when the operator algo-
rithm decides to wait for data to arrive on a blocked port.

The classic example for this type of problematic join is a
deterministic merge with packets forwarded in a predefined
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order. In practice, however, non-deterministic merges are
far more common when combining packets from a parallel
pipeline. For the rest of this paper we assume that the exe-
cution semantics of the language avoid this type of deadlock.

3.5 State
Referential transparency and state transfer during an up-

date are respectively solved by FBP and our marker-based
approach. The challenge of mutual dependency updates is
to find all state in the system that was derived from the
program version before the update and either flush it be-
fore applying the update, or update it. The marker makes
sure that old state is flushed from the (dependent) incom-
ing arcs before the dependent operator is updated. Still,
some old state may hide in any of the operators in between
the mutually dependent operators. The update manager
has therefore to decide whether the old state is considered
harmful to the system. This might be the case if the update
fixes a bug where state of other operators was corrupted and
needs to be corrected. In such a case all these (downstream)
operators need to be included into the update. In our fu-
ture work, we intend to provide more advanced solutions to
remove this burden from the user applying the update.

3.6 Timeliness
Finally, the moment in computation time t when an up-

date is to be applied must not match the time v when the
initial update marker m is inserted into the flow graph. If
m travels through the graph in FIFO order with the data,
it arrives at its target operator at time v. In Algorithm 1
the operator is updated on arrival such that t = v. It is
straightforward to extend the algorithm to wait for a cer-
tain amount of time and apply the update at a later point
t > v. Note, however, that this is possible only if the marker
is independent, i.e., the current update is not dependent on
an upstream update. The important insight is that FIFO
marker propagation is only required to coordinate mutual
dependencies (Lines 17–21). When finding the update tar-
get, we do not need to adhere to this rule and we can utilize
out of order propagation possibilities among the arcs (Line
14), such as out-of-band processing among TCP connections
if available. As a result, it is possible to deliver timely up-
dates even at t < v.

4. FBP EXTENSIONS
This section describes the extensions to incorporate our

marker-based update algorithm into the FBP model in a
scalable and location transparent manner.

4.1 Structured Operators and Packet Dispatch
The FBP model consists of three major abstractions: arcs,

operators, and a dataflow graph. A scalable design must
preserve low complexity in terms of operator implementa-
tion and algorithm construction. Existing FBP systems fo-
cus primarily on the actual functionality. We reach beyond

by structuring an operator into operator functionality (the
operator code), port handlers, and a packet dispatch mech-
anism, as depicted in Figure 5. While the operator func-
tionality is provided in the classical way, the port handlers
and the packet dispatcher are features of the runtime sys-
tem that each operator instance inherits. Port handlers are
meant to provide common functionality to all operators and
therefore treat them as black boxes with respect to the im-
plemented functionality. Still, the structure of an operator,
i.e., its input and output ports, is known to a port handler.

We also refine the notion of packets by distinguishing be-
tween meta-data and data packets. Markers are examples of
the former class, while the latter correspond to information
packets as known from FBP. Each port handler registers for
one or more types of meta-data packets. The packet dis-
patcher extends packet retrieval and makes sure handlers
take responsibility for meta-data packets they have regis-
tered for. In contrast, data packets are always dispatched to
the operator functionality. Since port handlers are meant as
an extension of the operator functionality, they also consist
of sequential context-free code blocks. The programming
interface for port handlers is illustrated in Listing 4.

Listing 4: Update port handler stub in Ohua

1 class UpdateHandler extends PortHandler {
2 List<InputPort> blocked;
3 void arrived(InputPort i, UpdateMarker m) {
4 // implementation of the update algorithm
5 }}

One handler is allowed to register at to multiple input ports.
We further require that all calls in the realm of an operator
are synchronous and the packet dispatcher is stateless, such
that all dequeue operations among input ports preserve the
FIFO processing order of the packets in the data flow graph.

This enhanced operator structure, together with the packet
classification and automatic dispatch, provide a powerful ex-
tension framework to implement not only our coordinated
update algorithm but also runtime features such as check-
pointing or logging in a scalable and distributed manner.

4.2 Dataflow Graph Transformations
The major strength of FBP resides in the abstraction of

the flow graph itself. In essence, the arcs of the graph define
the data dependencies between the operators at compile-
time rather than at runtime. FBP does not define the imple-
mentation (array, shared memory queue, TCP connection,
etc.) of the arcs but only their (FIFO) semantics. This
provides independence from the actual execution infrastruc-
ture. The clear structural decomposition of the algorithm
into small context-free operators allows the runtime system
to exploit pipeline parallelism on any distributed architec-
ture, e.g., multi-core, cluster, WAN, etc. Since our algo-
rithm and its extensions strictly adhere to these principles,
they inherit this location transparency property. Neverthe-
less, the injection of the update marker into the flow graph
still requires knowledge on the current location of all source
operators, i.e., operators without incoming arcs.

4.2.1 Flow Graph Entrance and Exit
We address this problem via rewriting of the dataflow

graph. Just like the above extensions to the operator, this
rewriting neither influences the construction of the dataflow
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graph nor the functionality of operators or even the design of
port handlers. It can be applied before runtime to the entire
dataflow graph and, as such, it is independent of the actual
algorithm implemented by the structure and operators of
the graph and leaves both unchanged.

Our rewriting, as depicted in Figure 6, wraps the flow
graph with an entrance operator and an exit operator.
The former has outgoing arcs to all source operators in the
flow graph while the latter is connected via incoming arcs to
all operators that have no outgoing arcs, also referred to as
target operators. All arcs and operators added during rewrit-
ing are valid FBP components and can be executed by the
very same runtime system. Computation however only take
place in the original graph and all extension operators re-
main silent at runtime. There is consequently no reason for
the runtime system to move these operators, e.g., in order to
balance the computation across multiple processes or nodes
in a cluster. Therefore, there is no need anymore for our
update marker injection to identify the source operators in
the flow graph because we created a single entry point: the
entrance operator. Scalability to a large number of source
or target operators depends on the arc implementation. For
example, in Ohua, a network arc maps to a ZeroMQ6 con-
nection and a fast message broker network that seamlessly
scales to thousands of concurrent connections.

Finally, an additional control operator provides an API
to submit update requests from the external world. The
operator translates these requests into markers and sends
them downstream the dataflow graph.

4.2.2 Advanced Transformations
Our rewriting is not limited to the three aforementioned

operators. In Figure 6, we also added an up-init operator
that performs offline preparation of the updates. Further-
more, when the original flow graph is split and deployed
on multiple nodes, each of the subflows represents a valid
dataflow graph by itself and is eligible for rewriting. While
the control operator remains on the initial node, the up-

init operator can be transposed within the subflows to
achieve local initialization of the updates. Since, no ad-
ditional arcs from inside the original flow graph to the local
up-init exist, the update algorithm needs to be extended.
When an update marker arrives at the target operator it
does not apply the update but sets a flag in the marker
and sends it downstream. The marker propagates through
the rest of the flow graph until it reaches the exit opera-
tor. Upon identifying the flag, the exit operator notifies the
local up-init via a feedback arc. From that point on the
algorithm works as before: the up-init performs the initial-
ization and forwards the marker into the subflow where it

6http://zeromq.org/
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hits the target operator (again) and applies the update.

5. STRUCTURAL UPDATES
Up to this point we have addressed updates spanning one

or multiple operators, which are akin updates of small func-
tions in a program. The step from live updates to dynamic
development does however require the capability to update
the program, i.e., the dataflow graph, itself. In this section
our focus extends to structural updates to the flow graph. It
is important to stress that no new FBP features are added,
as restructuring is solely based on the FBP extensions and
our marker-based update algorithm. It follows that, when a
port handler is executing, all input and output ports of the
associated operator are inactive and can thus be rewired.
We further assume that all structural changes are validated
before submission by an algorithm that verifies that the up-
date does not lead to violations at any of the downstream
operator interfaces.

For example, in Figure 7 we extend our simple HTTP
server flow with a Cache operator to remove disk I/O and
improve request latency. The packets sent down the hit arc
must adhere to the same structure as packets coming from
the Load operator. As validation of a flow graph extension is
a compile-time concern, it can be performed as a check be-
fore the actual structural rewriting is applied. Hence, rewrit-
ing is valid if the resulting dataflow graph contains neither
unconnected arcs nor orphaned ports.

5.1 Coordinated Reconnections
Update markers for operator changes carry either a com-

pletely new functionality or a property of the existing op-
erator functionality to be changed. Structural updates are
also marker-based and, as such, they adhere to our notion
of computation time and must not break the FBP abstrac-
tions. Changes can only be applied to the local operator,
i.e., a port handler may only disconnect incoming arcs of
the local input ports.

We classify three structural change operations that alter
the flow graph structure: delete, insert, and replace. Each
of these operations is essentially composed of a series of dis-
connection and reconnection steps that must be coordinated
across the flow graph. For example, the deletion of the sub-
graph oi → . . . → on, as depicted in Figure 8, involves a
disconnection step for detaching the incoming arc x from
the input port of oi and a reconnection step to reconnect
it to the input port of on+1. To coordinate these steps, we
define a reconnection marker that contains a set of recon-
nections. A reconnection is a projection from one input port
to another, and a set of reconnections is always bijective.

The pseudo-code for the reconnection operations is shown
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in Algorithm 2. It focuses solely on the update part, as we
already covered marker propagation in Algorithm 1 (includ-
ing offline initialization of the flow graph extension). Each
reconnection starts by disconnecting the target input port
from its incoming arc (Line 3). Disconnected arcs that are
not part of the flow graph to be replaced or deleted need to
be reconnected either to the new flow graph (Line 6) or to an
input port in the existing flow graph (Line 13). In the latter
case the arc is attached to a dependent marker and propa-
gated downstream the port (Lines 8–10). Dependent recon-
nections of arcs from the new flow graph are also coordinated
through the existing graph (Lines 16–19). Note finally that
reconnections inside the marker are order-sensitive, e.g., an
operation that disconnects the incoming arc from an input
port and reconnects it to the new flow graph must be per-
formed before another operation that reconnects an arc to
that same input port.

5.2 Distributed Rewriting
Figure 9 illustrates another coordinated insertion, but in

a distributed context. It performs a two phase process for
enhancing our web server with proxy functionality located
at a different cluster node to load balance disk I/O. The
first phase deploys the proxy flow. The actual structural
rewriting happens in the second phase, where we extend the
existing flow graph to not only dispatch existing requests to
the proxy flow but also join proxied requests back into the
pipeline. The structural rewriting performs the first inser-
tion at the Load operator with two reconnections. After-
wards, a marker delivers the pending two reconnections to
the Reply operator. All the original operators in the existing
flow are preserved and both parts of the rewriting happen
at the same time in computation.

The proxy rewrite also serves as a more concrete exam-
ple of an extension that is deployed in a distributed fashion.
Our rewriting algorithms do not make any assumptions on
the location and deployment of the flow graph to be in-
serted. The deployment algorithm running underneath the
FBP abstraction must however be able to cope with result-
ing deployment changes. For example, in Figure 8, if opera-
tors oi−1 and oi were deployed together in the same process,
then arc x would map to a simple queue. If operator on+1

were located on in different process or even on a different
node, then x would have to be converted to an IPC or TCP
connection. Our algorithm does not make any assumption
on the deployment of the flow graph to be inserted. This is
a problem in the underlying implementation of the deploy-
ment algorithm, which is outside the scope of this paper.

We furthermore require that reconnections at a single op-

Algorithm 2: Structural Update Algorithm

Data: operator o := (I,O) and a marker m containing
reconnections R such that m.target = o.id;

1 for reconnection r ∈ R do // operator update
2 if r.in ∈ I then
3 arc ← r.in.disconnect();
4 if r.arc = 0 then
5 if r.new 6= 0 then // insert (arc to new subflow)
6 r.new.connect(arc);
7 else // deletion (pending reconnection in old

flow)
8 r.dependent.reconnection.arc← arc;
9 r.dependent.setDependent(true);

10 o.broadcastInOrder(r.dependent);

11 end
12 else // finalize reconnection
13 r.in.connect(r.arc);
14 end

15 else // propagate dependent reconnections
16 for dependency marker c ∈ m.dependents do
17 c.setDependent(true);
18 o.broadcastInOrder(c);
19 end

20 end

21 end

erator are performed at the same time in order to keep
computation consistent throughout the rewriting process.
Therefore, operators with more than one incoming arc have
to perform a marker join before reconnections on the local
input ports are performed. This ensures that there exists a
time t at which rewriting logically took place for this oper-
ator. Note that a new portion of the data flow graph starts
to actively participate in computation as soon as the first
arc has been reconnected, i.e., even before rewriting is fully
complete. This allows us to perform structural changes to
the flow graph in a purely non-blocking manner.

6. PROGRAMMING MODEL
The key requirement in the definition of a programming

model for live updates is certainly simplicity. It must allow
the developer to submit its updates in a context-free fash-
ion without having to reason about concurrency or locality.
Ohua achieves this goal by defining a single update function.
We first describe the update model related to operator and
mutual dependency and later focus on the algorithm.

6.1 Operators and Mutual Dependencies
Listing 5 shows the code to submit the NIO-switch to the

executing web server.

Listing 5: The NIO-switch realized with Ohua.

1 (update
2 [com.server/reply com.server.update/reply
3 (new ReplyStateTransfer)]
4 [com.server/load com.server.update/load])

Note that the new code is defined in a different names-
pace than the old one. This is beneficial because dynami-
cally evolving a program does not implicitly mean that the
replaced code is buggy and needs to be discarded, e.g., some
functions might be swapped with others for performance rea-
sons on specific architectures. Ohua detects whether the
update references an operator or a function. In the former
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case, Ohua takes care of finding all operators of the speci-
fied type in the currently executing flow graph and creates
the necessary update requests. Mutual dependency updates
are composed by submitting update pairs, as shown for the
I/O switch in Listing 5. Dependencies are detected auto-
matically and therefore the order of operator updates can
be arbitrary. Furthermore, if state needs to be adapted to
the new version of an operator (as exemplified for the re-

ply operator in Listing 5), it is possible to specify a state

transfer object that implements a predefined interface to
return an updated state on the basis of the old version.

6.2 Algorithm Functions
Operators in Ohua represent functionality while the algo-

rithm is written in Clojure. A program can be composed of
many smaller algorithms encapsulated within an algorithm
function. In all aspects related to the algorithm descrip-
tion, Ohua strictly follows the LISP programming model
and syntax of Clojure. Listing 6 shows the definition of the
web server algorithm as a function.

Listing 6: The web server defined as a function in Ohua.

1 ; clojure namespace definition
2 (ns com.server)
3
4 ; web server defined in a function
5 (ohua
6 (defn web-server [port]
7 (−> port accept read parse load compose reply)))

Finally, the invocation in Listing 7 assigns a port for the
server to listen on.

Listing 7: Web-server invocation in Ohua.

1 ; Ohua import to use the defined web server function
2 (ohua :import [com.server])
3
4 ; configure and launch the web server
5 (ohua (com.server/web-server ”80”))

To illustrate the update process, consider the scenario
from Figure 6 of incorporating a cache to the web server.
This process entails two steps. First, the developer writes
an enhanced version of the web server algorithm utilizing a
cache (operator), as shown in Listing 8.

Listing 8: Cache-based Web Server.

1 (ns com.server.update)
2
3 ; the web server algorithm utilizing the cache
4 (ohua
5 (defn web-server-with-cache [port]
6 (let [res-ref (−> port accept read parse)]
7 (let [res (cache res-ref)]
8 (−> (if (= res nil) (load res-ref) res)
9 compose reply)))

Thereafter, this updated function is for all invocations of
the web server in the running program. Listing 9 illustrates
the submission of the update.

Listing 9: Cache Insertion Update.

1 (update
2 [com.server/web-server
3 com.server.update/web-server-with-cache])

This simple model relieves the developer from the burden
of specifying what exactly has changed in the algorithm and
what insertions or deletions need to be performed in order
to incorporate the update with the executing flow graph. In-
stead, Ohua replaces all subflows resembling to invocations
of the old function with the new version along the guidelines
of Algorithm 2. This function-level approach of updating the
structure of a flow graph avoids the above identified deadlock
problem for functions without additional I/O channels. The
marker join is coordinate at the non-deterministic function
entry that gathers the arguments. Additional marker joins
inside the function are then coordinate towards that entry
join. Due to space limitations, we delay a detailed analy-
sis and a thorough discussion of more advanced updates of
algorithm functions in Ohua to future work.

6.3 Integration with Clojure Programs
The actual insertion of new code within a running pro-

gram is already supported by existing tools.7 Clojure pro-
grams typically execute in a “read-evaluate-process-loop”
(REPL), which is similar to a command line interface that
can launch programs in another thread or even JVM process.
Attaching to an executing REPL is also functionality that
is readily available8, therefore loading new operators and
algorithm functions packaged in jars is straightforward.

7. EVALUATION
In order to evaluate our evolution framework, we imple-

mented the algorithms presented in this paper in Ohua and
dynamically developed our flow graph with the NIO, cache,
and proxy extensions described above (see Figures 2, 7 and 9).
We followed the same methodology as other similar frame-
works [22] to analyse web server performance. We deployed
our Ohua web server on one cluster node, and clients were

7https://github.com/pallet/alembic
8https://github.com/djpowell/liverepl
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Figure 10: Runtime overhead using locks and barriers to
simulate update points.

evenly spread across 19 other machines. The nodes in the
cluster were equipped with 2 Intel Xeon E5405 CPUs with
4 cores each, 8 GB of RAM, Gigabit Ethernet, and SATA-
2 hard disks. Note that the following experiments are not
meant to evaluate the scalability of the web server deploy-
ment but focus on the performance of the live updates.

7.1 Runtime Overhead Evaluation
We first investigate the naive approach of inserting update

points within the operators in order to perform an analysis
of the runtime overhead. We used two flavours of update
points: barriers and locks. One should point out that nei-
ther approach can handle on their own the type of updates
that we addressed in this paper. Even for the simple mu-
tual dependency update of switching the web server to use
NIO, barriers would deadlock and locks would fail due to
the packet inconsistency illustrated in Figure 2.

We do not explicitly consider the runtime overhead of
Ohua as the introduced port handler switch barely encom-
passes a simple conditional expression at each input port,
which is a vital part of the runtime engine. In order to intro-
duce more parallelism into the experiment, we parallelized
the whole web server pipeline and assigned each accept with
a different server socket. 1,000 clients evenly distribute their
requests among sockets and ask for one out of 10,000 files of
512 bytes each. Update points are shared across operators of
the same type to simulate updates on the level of functions.

Mean latency and request throughput, reported in Fig-
ure 10, indicate that the overhead for introducing locks is not
visible even with 8 threads competing for a single lock. In
contrast, barrier coordination exhibits overhead for a single
and two parallel pipelines. Once the performance is capped
by the I/O operations in the system, barriers seem to in-
deed have a beneficial effect on I/O coordination, which re-
sults in improved latency and throughput. The deadlock
problem mentioned earlier does however render the barriers
approach infeasible. Even in our simple experiment, which
was designed to favour barriers, we were unable to execute
a successful run above 5 parallel pipelines, i.e., 5 different
server sockets, without encountering deadlocks.

7.2 Coordinated NIO Switch
For the coordinated switch of our web server to support

the NIO API, we concurrently executed 30 clients issuing
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Figure 11: Request latency impact during a coordinated
switch of the Load and Reply to use NIO’s sendfile primitive.

requests with a delay of 1 ms. As previously, requests were
distributed evenly at random across a set of 10,000 files of
50 kB stored on disk. Figure 11 shows request latency over
the runtime of the experiment, averaged every 100 ms. At
40 s into the experiment, we performed the coordinated up-
date of the Load and Reply operators. The graph shows that
request latency drops immediately from an unstable average
of 33 ms to a stable average of 21 ms with very few outliers.
Note that there is no spike when the switch is performed.
The update does not block ongoing messages and successive
requests instantaneously benefit from the switch.

7.3 Dynamic HTTP Server Development
To support our claim that our update algorithms can

sustain the evolution from simple live updates to dynamic
development of highly concurrent systems, we perform the
cache insertion and proxy extension in a single experiment,
one after the other, on the initial version of the web server
without NIO. We consider 30 clients requesting files of size
100 kB and another 30 clients issuing requests for files of size
2 kB. All clients pause 20 ms between consecutive requests.

In this dynamic evolution scenario, updates aim at im-
proving request latency as much as possible. Therefore, we
first insert a cache over all 20,000 files 65 s into the computa-
tion, which removes disk I/O overheads and reduces latency
of both request types by 16 ms. Yet, due to the pipelined
execution model, requests for small files are penalized by re-
quests for larger files. The second rewriting operation after
145 s removes this penalty by inserting a proxy that dis-
patches requests for small files to a proxy server located on
a different cluster node. Thereafter, small requests are pro-
cessed in about 19 ms while requests for larger files have an
average latency of 42 ms.

Note the small increase in request latency for large files
by about 4 ms after the proxy insertion. This is due to the
fact that we continue to use the same Reply operator for
both request types and small file now compete with larger
files, which results in this penalty on both sides. Note that
we could easily remove this bottleneck by dynamically in-
troducing separate Reply and Send operators for small-files.

7.4 Cache Loading Strategies
Although the proxy insertion happens again without any

noticeable impact on request latency, this is not the case for
the cache rewriting. The increase in latency for about 15 s
corresponds to the time where the new cache loads the files
into memory. Although this happens in the up-init opera-
tor, outside of the graph part performing the computation,
it nevertheless competes for disk I/O with the concurrent
handling of requests. The developer needs to be aware of
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Figure 13: Various strategies to fill the cache during update.

potential I/O contention and plan its update accordingly.
In Figure 13 we investigate different strategies to fill the

cache. For simplicity we used a single set of 30 clients re-
questing a 50 kB file randomly out of 10,000 files every 20 ms.
The upper plot shows that the naive approach, which does
not use the up-init operator but inlines cache loading with
request handling, blocks the requests and results in a down-
time of almost 9 s. In the lower graph, we plot different
strategies for loading the cache offline from request handling
in the up-init operator. We compare the naive strategy of
loading directly from disk (offline-naive) to the two alterna-
tives of (1) loading the files from the Redis9 in-memory key
value store, and (2) having all files already preloaded into
memory. While the former approach already greatly im-
proves cache loading time, the latter demonstrates that our
rewriting algorithm does not degrade performance when no
contention exists. The slight latency overhead we can ob-
serve results from the heavily loaded JVM process in the
preloaded case, but we can avoid it by loading files on de-
mand (iterative approach shown in the graph).

8. RELATED WORK
Research on DSU systems is often classified with respect

to their target domain: programming languages, distributed
systems, and operating systems. The more important clas-
sification however is based on the programming model, es-
pecially with respect to concurrency and parallelism.
Disruptive Updates. Procedural and object-oriented pro-
gramming models such as C and Java support parallel ex-
ecution explicitly. Updates have to follow the very same
programming model in order to reason about the state of

9http://redis.io

the program and enforce state quiescence. Therefore, re-
cent approaches introduce synchronization in the form of
update points [16, 24]. They either use barriers or define
a more relaxed form of synchronization to remove runtime
overhead during normal execution and avoid deadlocks. Up-
date points require the update author to reason about the
different states of the program. The state space increases
with the degree of concurrency in the program and becomes
even more complicated when additional update points are
introduced to increase the timeliness of updates.

The alternative strategy of automatically inserting update
points involves heavy static analysis and code restructuring,
which again makes them scale poorly [15]. Early evaluation
of Rubah, a DSU system for Java, reports 8 % overhead
during normal processing and requires updates in the range
of seconds. This is because Rubah does not support fine-
grained online updates and must perform a full heap traver-
sal to find the objects to be updated. Hence the larger the
heap, the longer the traversal. This is a major concern be-
cause programs that rely on DSU instead of classical replica-
tion approaches typically have a large amount of state. Re-
cent work [11] showed that update points are often limited
to only the original version of the program and therefore the
update process does not scale with the program evolution.

Our FBP-based algorithms do not suffer from any of these
problems and every newly inserted operator or subflow can
again be updated on-the-fly.
Cooperative Updates. The event-driven programming
model [10] is better suited to reason about state and provide
cooperative rather than disruptive updates [11]. This model
essentially facilitates the development of a distributed sys-
tem with independent processes communicating via a com-
mon message-passing substrate. Updates of one or multiple
processes are coordinated by an update manager. The ben-
efit is that single process updates are performed without
blocking the other processes. In contrast, updates spanning
multiple processes reach state quiescence by blocking all af-
fected processes. Event-driven programming uses a process-
ing loop similar to the operators in FBP. The model does not
address, however, the nature of the IPC and the consistency
problem of packets in transit during a coordinated update.
The only work we are aware of that addresses this issue de-
lays processing to drain packets between the two components
until the whole update can be applied atomically [29].

Although less relevant to our work, one can finally men-
tion, in the area of data streaming, the so-called teleport
messages used to coordinate reconfiguration of parallel oper-
ators [28]. In software defined networks, consistent updates
of switch configurations are coordinated based on tagged
packets to achieve consistency [25].



We enhance the work on live updates by defining the con-
cept of marker joins, which is vital for the definition of a
solid notion of time in the program execution, and introduce
a scalable language-based approach that applies mutual de-
pendency updates in a non-blocking and infrastructure in-
dependent algorithm.

9. CONCLUSION AND FUTURE WORK
In this paper, we extended the dataflow-based program-

ming model [21] to support live updates as well as the dy-
namic evolution of highly concurrent programs during run-
time. We rely on a well-defined notion of time to reason
about update consistency in the live update process and
to perform structural modifications to the flow graph in a
non-blocking fashion, even with mutual dependencies across
many program parts. Since we based our extensions solely
on the abstractions of the flow-based programming model,
our algorithms work independently of the underlying archi-
tectures, e.g., multi-core systems or clusters. We conclude
that FBP is appealing as a programming abstraction not
only because it helps develop scalable programs for mod-
ern multi-core systems, but also because it is instrumental
in solving many of the problems encountered with explicit
parallelism at the language level.

10. REFERENCES
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