Press Releases
Perovskite Solar Cells Soar to New Heights
Published on in PRESS RELEASES
[Deutsche Version unter 'read more']
In a joint effort between Pavia University (Italy) and the Center for Advancing Electronics Dresden at Technische Universität Dresden (Germany), researchers developed a novel method to fabricate lead halide perovskite solar cells with record efficiency - publication in the renowned journal Science Advances.
Metal halide perovskites have been under intense investigation over the last decade, due to the remarkable rise in their performance in optoelectronic devices such as solar cells or light-emitting diodes. The most efficient devices, fabricated in the so called ‘standard architecture’ commonly include processing steps performed at high temperature, thus increasing their energy payback time and limiting the possibility to integrate them in emerging applications such as flexible and wearable electronics. An alternative device architecture - termed the ‘inverted architecture’ - eliminates the need for high temperature processing, but generally leads to a lower photovoltaic efficiency.
In a joint collaborative effort between the University of Pavia (Italy) and the Technische Universität Dresden (Germany), researchers have developed a novel method to significantly improve the efficiency of inverted architecture solar cells. The method is based on a modification of the interfaces of the perovskite active layer by introducing small amounts of organic halide salts at both the bottom and the top of the perovskite layer. Such organic halide salts, typically used for the formation of two-dimensional perovskites, led to the suppression of microstructural flaws and passivation of the defects of the perovskite layer. Using this approach, the team has achieved a power conversion efficiency of 23.7% - the highest reported to date for an inverted architecture perovskite solar cell.
“Importantly, the improvement in performance is accompanied by an increase in device stability” says Prof. Giulia Grancini, an Associate Professor of Chemistry at the University of Pavia. Considering that stability remains one of the key hurdles for the commercialization of perovskite solar cells, the simultaneous improvement of efficiency and stability is particularly promising.
“The fact that our devices are fabricated at low temperatures of less than 100° C and that our approach is fully applicable to the fabrication of large area devices takes us one step closer to large-scale utilization of perovskite solar cells” adds Prof. Yana Vaynzof, Chair for Emerging Electronic Technologies at the Institute for Applied Physics and Photonic Materials and the Center for Advancing Electronics Dresden (cfaed).
The record efficiency achieved by the researchers brings perovskite solar cells to new frontiers. Considering the enhanced stability and the scalability of the novel approach, it’s only a matter of time until perovskite solar cells can be found on every rooftop.
The work was now published in the prestigious journal "Science Advances”.
Title: 23.7% Efficient inverted perovskite solar cells by dual interfacial modification
Authors: Matteo Degani, Qingzhi An, Miguel Albaladejo-Siguan, Yvonne J. Hofstetter, Changsoon Cho, Fabian Paulus, Giulia Grancini and Yana Vaynzof
Sci. Adv. 7, eabj7930 (2021)
DOI: 10.1126/sciadv.abj7930
https://www.science.org/doi/10.1126/sciadv.abj7930
Photo: © Yana Vaynzof
.
Contact details:
Prof. Dr. Yana Vaynzof
Chair for Emerging Electronic Technologies
Institute for Applied Physics / Center for Advancing Electronics Dresden – cfaed, TU Dresden
Tel. +49 351 463-42132
E-Mail: yana.vaynzof@tu-dresden.de
Twitter: @vaynzof
Group website: https://cfaed.tu-dresden.de/cfeet-about
Matthias Hahndorf
TU Dresden / Center for Advancing Electronics Dresden (cfaed)
Science communications
Tel.: +49 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de
.
About cfaed
The cfaed is a research cluster at Technische Universität Dresden (TUD). As an interdisciplinary research center for perspectives in electronics, it is located at TUD as a Central Academic Unit and integrates members from extramural research institutions in Saxony and Saxon-Anhalt as well as TU Chemnitz. The Cluster is dedicated to the fundamentals of sustainable information technologies that would not be possible with the continuation of today’s silicon-based components. To achieve its goals, cfaed combines the thirst for knowledge in the natural sciences with the innovative power of the engineering sciences.
www.cfaed.tu-dresden.de
Twitter: @cfaed_TUD
[Deutsche Version]
Perowskit-Solarzellen erklimmen neues Leistungs-Hoch
In einer Zusammenarbeit zwischen der Universität Pavia (Italien) und dem Center for Advancing Electronics Dresden an der Technischen Universität Dresden (Deutschland) haben Forscher:innen eine neuartige Methode zur Herstellung von Bleihalogenid-Perowskit-Solarzellen mit Rekordwirkungsgrad entwickelt - Veröffentlichung in der renommierten Zeitschrift ‚Science Advances‘.
Metallhalogenid-Perowskite wurden in den letzten zehn Jahren intensiv untersucht, da ihre Leistungsfähigkeit in optoelektronischen Bauteilen wie Solarzellen oder Leuchtdioden bemerkenswert gestiegen ist. Die effizientesten Bauelemente, die in der so genannten "Standard-Architektur" hergestellt werden, erfordern in der Regel Verarbeitungsschritte bei hohen Temperaturen, was die Zeit erhöht, bis sich die in sie investierte Energie amortisiert. Zudem schränken diese Verfahren die Möglichkeit ein, solche Bauteile in neuartigen Anwendungen wie flexibler und tragbarer Elektronik zu integrieren. Eine alternative Bauelement-Architektur - die so genannte "invertierte Architektur" - macht die Verarbeitung bei Hochtemperaturen überflüssig, führt aber im Allgemeinen zu einem geringeren photovoltaischen Wirkungsgrad.
Im Rahmen einer gemeinsamen Forschungsarbeit der Universität Pavia (Italien) und der Technischen Universität Dresden (Deutschland) haben Forscher:innen eine neuartige Methode entwickelt, um die Effizienz von Solarzellen mit invertierter Architektur deutlich zu verbessern. Die Methode basiert auf einer Modifizierung der Grenzflächen der aktiven Perowskit-Schicht durch Einbringen geringer Mengen organischer Halogenidsalze sowohl an der Unter- als auch an der Oberseite. Solche organischen Halogenidsalze, die üblicherweise für die Bildung zweidimensionaler Perowskite verwendet werden, führen zur Unterdrückung struktureller Fehler und zur einer Passivierung von Defektzuständen in der Perowskitschicht. Mit diesem Ansatz hat das Team einen Wirkungsgrad von 23,7 % erreicht - der höchste, der bisher für eine Perowskit-Solarzelle mit invertierter Architektur veröffentlicht wurde.
„Besonders hervorzuheben ist, dass die Verbesserung der Leistung mit einer Erhöhung der Stabilität des Bauelements einherging", sagt Prof. Giulia Grancini, Professorin für Chemie an der Universität Pavia. In Anbetracht der Tatsache, dass die Stabilität von Perowskit-Solarzellen nach wie vor eines der Haupthindernisse für Kommerzialisierung dieser Technologie darstellt, ist die gleichzeitige Verbesserung von Effizienz und Stabilität besonders vielversprechend.
„Die Tatsache, dass unsere Bauelemente bei niedrigen Temperaturen von unter 100° C hergestellt werden, und dass unser Ansatz 1:1 auf die Herstellung großflächiger Bauelemente übertragbar ist, bringt uns der großtechnischen Markteinführung von Perowskit-Solarzellen einen Schritt näher“, fügt Prof. Yana Vaynzof hinzu, Inhaberin der Professur für Neuartige Elektronische Technologien am Institut für Angewandte Physik und Photonische Materialien (IAPP) sowie dem Center for Advancing Electronics Dresden (cfaed).
Der von den Forscher:innen erzielte Rekordwirkungsgrad eröffnet Perowskit-Solarzellen neue Horizonte. In Anbetracht der verbesserten Stabilität und der Skalierbarkeit des neuartigen Ansatzes ist es nur eine Frage der Zeit, bis Perowskit-Solarzellen auf jedem Hausdach zu finden sein werden.
Die Arbeit wurde jetzt in der renommierten Fachzeitschrift "Science Advances" veröffentlicht.
Titel: 23.7% Efficient inverted perovskite solar cells by dual interfacial modification
Autoren: Matteo Degani, Qingzhi An, Miguel Albaladejo-Siguan, Yvonne J. Hofstetter, Changsoon Cho, Fabian Paulus, Giulia Grancini and Yana Vaynzof
Sci. Adv. 7, eabj7930 (2021)
DOI: 10.1126/sciadv.abj7930
Studie: https://www.science.org/doi/10.1126/sciadv.abj7930
Foto: © Yana Vaynzof
.
Medienkontakt:
Prof. Dr. Yana Vaynzof
Chair for Emerging Electronic Technologies
Institute for Applied Physics / Center for Advancing Electronics Dresden – cfaed, TU Dresden
Tel. +49 351 463-42132
E-Mail: yana.vaynzof@tu-dresden.de
Twitter: @vaynzof
Gruppen-Seite: https://cfaed.tu-dresden.de/cfeet-about
Matthias Hahndorf
TU Dresden / Center for Advancing Electronics Dresden (cfaed)
Wissenschaftskommunikation
Tel.: +49 351 463-42847
E-Mail: matthias.hahndorf@tu-dresden.de
.
Über das cfaed - Center for Advancing Electronics Dresden
Das cfaed ist ein Forschungscluster an der Technischen Universität Dresden (TUD). Als interdisziplinäres Forschungszentrum für Perspektiven der Elektronik ist es an der TUD als Zentrale Wissenschaftliche Einrichtung angesiedelt und integriert Mitglieder aus außeruniversitären Forschungseinrichtungen in Sachsen und Sachsen-Anhalt sowie der TU Chemnitz. Der Cluster widmet sich den Grundlagen zukunftsfähiger Informationstechnologien, die mit den heutigen siliziumbasierten Bauelementen nicht möglich wären. Um seine Ziele zu erreichen, verbindet der cfaed den Wissensdurst der Naturwissenschaften mit der Innovationskraft der Ingenieurwissenschaften.
www.cfaed.tu-dresden.de
Twitter: @cfaed_TUD